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[19] and the static output feedback problem [20] are such applications. Thus, it would be
useful to develop methods for solving nonlinear SDP.

Previous studies have proposed several solution methods for nonlinear SDP [6,10,11,14,
21, 28]. Basically, these methods are extensions of existing methods for nonlinear program-
ming, such as sequential quadratic programming methods, successive linearization methods,
augmented Lagrangian methods and interior point methods.

Freund, Jarre and Vogelbusch [6] proposed a sequential semidefinite programming method
for nonlinear SDP. However, they only considered the case where the objective function is
quadratic and the constraint functions are affine. Kanzow, Nagel, Kato and Fukushima [11]
extended the successive linearization method using a certain exact penalty function and a
trust region-type technique. They showed that the extended method is globally conver-
gent under rather strong assumptions on the generated sequence, which are not verified in
advance. Stingl [21] presented an augmented Lagrangian method for nonlinear SDP. He
showed its global convergence under rather restrictive conditions such as the second order
sufficient optimality condition. Yamashita, Yabe and Harada [28] applied the primal-dual
interior point method to nonlinear SDP and they exploited a nondifferentiable L1 merit
function to determine a step length. They showed the global convergence of their algorithm
under some unclear assumptions regarding the generated sequences. These assumptions are
discussed in Section 4.3.

The aim of the present study is to propose an interior point method for (1.1) that
converges globally under milder conditions compared with the methods described above. In
particular, we specify the conditions related to the problem data, i.e., f, g and X. We also
show that these conditions hold for linear SDP.

Recently, Kato, Yabe and Yamashita [12] proposed a primal-dual interior point method
based on shifted perturbed Karush-Kuhn-Tucker (KKT) conditions, which is an extension
of the method proposed by Forsgren and Gill [5] for nonlinear programming. This method
generates points that satisfy shifted perturbed KKT conditions at each iteration. In order
to find such points, Kato, Yabe and Yamashita [12] used a merit function, which is an
extension of [27]. However, since the merit function is rather complicated, it might be
difficult to implement it appropriately. In this paper, we propose a new merit function F
whose stationary points satisfy shifted perturbed KKT conditions. This is an extension of
a merit function [5] developed for nonlinear programming. It consists of simple functions of
matrices, such as log-determinant and trace, and hence it is easy to implement. We show
the following important properties of the merit function F .

(i) The merit function F is differentiable;

(ii) Any stationary point of the merit function F is a shifted perturbed KKT point;

(iii) The level set of the merit function F is bounded under some reasonable assumptions.

Kato, Yabe and Yamashita [12] also showed that their merit function satisfies (i) and (ii),
but they did not show the property (iii). These properties mean that we can find a point
that satisfies shifted perturbed KKT conditions by minimizing the merit function F . To
minimize F , we also propose a Newton-type method based on nonlinear equations in shifted
perturbed KKT conditions. We show that the Newton direction is sufficiently descent for the
merit function F . As a result, we prove the global convergence of the proposed Newton-type
method. These details are provided in Section 4.

The present paper is organized as follows. In Section 2, we introduce some operators and
important concepts, which are used in the subsequent sections. In Section 3, we present a
primal-dual interior point algorithm based on shifted perturbed KKT conditions. In Section
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4, we first propose a merit function F for a shifted perturbed KKT point and present
its properties. Secondly, we propose a Newton-type algorithm that minimizes the merit
function. Moreover, we prove the global convergence of the Newton-type algorithm. In
Section 5, we report some numerical results for the proposed method. Finally, we make
some concluding remarks in Section 6.

Throughout this paper, we use the following notations. Let p and q be positive integers.
For matrices A,B ∈ Rp×q, ⟨A,B⟩ denotes the inner product of A and B defined by ⟨A,B⟩ ≡
tr(A⊤B), where tr(M) denotes the trace of a square matrixM , and the superscript⊤ denotes
the transposition of a vector or a matrix. Note that if q = 1, then ⟨·, ·⟩ denotes the inner
product of vectors in Rp. For a given vector w ∈ Rp and a matrix W ∈ Rp×q, wi denotes
the i-th element of the vector w, and Wij denotes the (i, j)-th element of the matrix W .

Moreover, ∥w∥ denotes the Euclidean norm of the vector w defined by ∥w∥ ≡
√

⟨w,w⟩, and
∥W∥F denotes the Frobenius norm of the matrix W defined by ∥W∥F ≡

√
⟨W,W ⟩. Let

V ≡ Rn ×Rm × Sd. For a given v ∈ V, we use the following notations for simplicity.

v =

 x
y
Z

 or v = (x, y, Z),

where x ∈ Rn, y ∈ Rm and Z ∈ Sd, respectively. We also define the inner product ⟨·, ·⟩
and the norm ∥ · ∥ on V as ⟨v1, v2⟩ ≡ ⟨x1, x2⟩+ ⟨y1, y2⟩+ ⟨Z1, Z2⟩ and ∥v∥ ≡

√
⟨v, v⟩, where

v1 = (x1, y1, Z1) ∈ V and v2 = (x2, y2, Z2) ∈ V. For a given matrix U ∈ Sd, λ1(U), . . . , λd(U)
denote the eigenvalues of the matrix U . In particular, λmin(U) and λmax(U) denote the
minimum and maximum eigenvalues of the matrix U , respectively. For a given matrix
V ∈ Sd

+, V
1
2 ∈ Sd

+ denotes the matrix such that V = V
1
2V

1
2 . Note that V

1
2 ≡ QΛQ⊤,

where

Λ =


√
λ1(V ) O

. . .

O
√

λd(V )

 ,

and Q is a certain orthogonal matrix such that V = QΛ2Q⊤. Let Φ : P1 × P2 → P3, where
P1 and P2 are open sets. We denote a Fréchet derivative of Φ as ∇Φ. We further denote
a Fréchet derivative of Φ with respect to a variable Z ∈ P1 as ∇ZΦ. Moreover, if Φ is a
vector-valued function, then JΦ denotes a Jacobian of Φ.

2 Preliminaries

In this section, we first introduce some operators. Then we present some useful properties
of the log-determinant function on Sd. Moreover, we introduce the (approximate) KKT
conditions related to the primal-dual interior point method for nonlinear SDP.

2.1 Some operators and their properties

Let U, V ∈ Sd, P,Q ∈ Rd×d and x,w ∈ Rn. We use the following notations.

(i) The product ◦ of the matrices U and V is defined by U ◦ V ≡ UV+V U
2 .

(ii) The partial derivative of X(x) with respect to xi is denoted by Ai(x) ∈ Sd, that is,
Ai(x) ≡ ∂

∂xi
X(x) for i = 1, . . . , n.
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(iii) The operator A(x) from Rn to Sd is defined by A(x)w ≡ w1A1(x) + . . .+ wnAn(x).

(iv) The adjoint operator of A(x) is denoted by A∗(x), that is, A∗(x)U =

[⟨A1(x), U⟩ , . . . , ⟨An(x), U⟩]⊤ for all U ∈ Sd.

(v) The operator P ⊙Q from Sd to Sd is defined by

(P ⊙Q)U ≡ 1

2
(PUQ⊤ +QUP⊤). (2.1)

If X(x) = x1A1 + . . . + xnAn with some constant matrices Ai ∈ Sd, i = 1, . . . , n, then
Ai(x) = Ai, i = 1, . . . , n. Note that U ◦ V = 0 is equivalent to UV = 0 if U and V are
symmetric positive semidefinite.

2.2 Properties of the log-determinant function

Let ϕ : Sd
++ → R be defined by ϕ(M) ≡ − log detM . Let Ω be defined by Ω ≡ {x ∈

Rn|X(x) ≻ 0}, and let φ : Ω → R be defined by

φ(x) ≡ ϕ(X(x)). (2.2)

We first give the differentiability and convexity of φ.

Proposition 2.1.

(a) The function φ is differentiable on Ω, and its derivative is given by ∇φ(x) =

−A∗(x)X(x)−1.

(b) Suppose that

X(λu+ (1− λ)v)− λX(u)− (1− λ)X(v) ⪰ 0 for λ ∈ [0, 1] and u, v ∈ Ω. (2.3)

Then φ is convex on Ω. Moreover, if X is injective on Ω, then φ is strictly convex.

(c) Suppose that (2.3) holds. Suppose also that A1(x), . . . , An(x) are linearly independent
for all x ∈ Ω. Then φ is strictly convex.

Proof. (a) From [23, Section 5] and the chain rule, the desired equality holds.
(b) First note that detA ≤ detB if 0 ⪯ A and 0 ⪯ B − A from [9, Corollary 7.7.4]. It
then follows from (2.3) that for any λ ∈ [0, 1] and u, v ∈ Ω, det[λX(u) + (1 − λ)X(v)] ≤
det[X(λu+(1−λ)v)]. Since − log is a decreasing function on (0,∞) and ϕ is strictly convex
from [9, Theorem 7.6.7], we have φ(λu+ (1− λ)v) ≤ λφ(u) + (1− λ)φ(v).

Suppose that u ̸= v. Then, since X is injective on Ω, X(u) ̸= X(v). Moreover, since ϕ
is strictly convex, φ(λu+ (1− λ)v) < λφ(u) + (1− λ)φ(v) for λ ∈ (0, 1). Thus, φ is strictly
convex.
(c) Since X is twice differentiable, X(v+λ(u−v))−X(v) = λA(v)(u−v)+o(λ) for u, v ∈ Ω
and λ ∈ (0, 1). Then (2.3) can be written as λA(v)(u − v) − λ(X(u) − X(v)) + o(λ) ⪰ 0.

Dividing both sides by λ, we have A(v)(u − v) −X(u) +X(v) + o(λ)
λ ⪰ 0. Letting λ → 0

yields

A(v)(u− v)−X(u) +X(v) ⪰ 0.
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Let M ≡ A(v)(u− v)−X(u)+X(v). Since M and X(v)−1 are symmetric positive semidef-

inite, there exist M
1
2 and X(v)−

1
2 . Then we have⟨

X(v)−1,M
⟩
= tr(X(v)−1M) = tr(X(v)−

1
2M

1
2M

1
2X(v)−

1
2 ) = ∥M 1

2X(v)−
1
2 ∥2F .

From the convexity of ϕ, (2.2) and ∇ϕ(M) = −M−1, we obtain

φ(u)− φ(v) = ϕ(X(u))− ϕ(X(v))

≥
⟨
−X(v)−1, X(u)−X(v)

⟩
=

⟨
X(v)−1,M

⟩
+
⟨
X(v)−1,−A(v)(u− v)

⟩
= ∥M 1

2X(v)−
1
2 ∥2F +

⟨
−A∗(v)X(v)−1, u− v

⟩
≥ ⟨∇φ(v), u− v⟩ , (2.4)

where the last inequality follows from (a).
Since φ is convex by (b), it suffices for (c) to show that u = v if and only if φ(u)−φ(v) =

⟨∇φ(v), u− v⟩. If u = v, then it is clear that φ(u) − φ(v) = ⟨∇φ(v), u− v⟩. Conversely,
suppose that φ(u)−φ(v) = ⟨∇φ(v), u− v⟩, then the equality holds in (2.4). It follows from

(2.4) that ∥M 1
2X(v)−

1
2 ∥F = 0 and ϕ(X(u))− ϕ(X(v)) =

⟨
−X(v)−1, X(u)−X(v)

⟩
. Then,

we have A(v)(u − v) = 0 from the definition of M . Since A1(x), . . . , An(x) are linearly
independent for all x ∈ Ω, we have u = v.

Note that Proposition 2.1 (b) does not assume the differentiability of X.
We next give sufficient conditions under which matrices in a level set of ϕ is uniformly

positive definite, which is a key property for the level boundedness of the merit function
proposed in Section 4.

Proposition 2.2. For a given γ ∈ R, let Lϕ(γ) = {U ∈ Sd
++|ϕ(U) ≤ γ}. Let Γ be a

bounded subset of Sd. Then, there exists λ > 0 such that λmin(U) ≥ λ for all U ∈ Lϕ(γ)∩Γ.

Proof. Suppose the contrary, that is, there exists a sequence {Uj} ⊂ Lϕ(γ) ∩ Γ such that
λmin(Uj) → 0 as j → ∞. Then

− log λmin(Uj) → ∞. (2.5)

Since Uj ∈ Lϕ(γ), we have γ ≥ ϕ(Uj) = − log detUj = −
∑d

i=1 log λi(Uj). Then, (2.5) im-
plies that there exist an index k and an infinite subset J such that limj→∞,j∈J − log λk(Uj) =
−∞, that is, limj→∞,j∈J λk(Uj) = ∞. However, this is contrary to the boundedness of {Uj}.
Therefore, there exists λ > 0 such that λmin(U) ≥ λ for all U ∈ Lϕ(γ) ∩ Γ.

2.3 Shifted perturbed KKT conditions for nonlinear SDP

We first introduce the optimality conditions for nonlinear SDP (1.1). Let v = (x, y, Z). The
Lagrangian function L of (1.1) is given by

L(v) ≡ f(x)− g(x)⊤y − ⟨X(x), Z⟩ ,

where y ∈ Rm and Z ∈ Sd are the Lagrange multiplier vector and matrix for g(x) = 0 and
X(x) ⪰ 0, respectively. The gradient of the Lagrangian function L with respect to x is given
by

∇xL(v) = ∇f(x)− Jg(x)
⊤y −A∗(x)Z.
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The Karush-Kuhn-Tucker (KKT) conditions of (1.1) are written as∇xL(v)
g(x)

X(x)Z

 =

 0
0
0

 (2.6)

and
X(x) ⪰ 0, Z ⪰ 0. (2.7)

Most of the solution methods for nonlinear SDP is developed to find a point v = (x, y, Z)
that satisfies the KKT conditions. However, it is difficult to get such a point directly due
to the complementarity condition X(x)Z = 0 with X(x) ⪰ 0 and Z ⪰ 0. To overcome
this difficulty, the primal-dual interior point method proposed by Yamashita, Yabe and
Harada [28] exploits the following perturbed KKT conditions with a parameter µ > 0. ∇xL(v)

g(x)
X(x)Z − µI

 =

 0
0
0

 , X(x) ≻ 0, Z ≻ 0. (2.8)

They [28] proposed a Newton-type algorithm to get a point satisfying the perturbed KKT
conditions.

In this paper, we focus on the following shifted perturbed KKT conditions. For µ > 0, ∇xL(v)
g(x) + µy

X(x)Z − µI

 =

 0
0
0

 (2.9)

and

X(x) ≻ 0, Z ≻ 0. (2.10)

The above shifted perturbed KKT conditions are derived by Forsgren and Gill [5] for non-
linear programming. In what follows, we call a point v satisfying the shifted perturbed KKT
conditions a shifted perturbed KKT point. Furthermore, we define the set W ⊂ V by

W ≡ {(x, y, Z) ∈ V | X(x) ≻ 0, Z ≻ 0}.

We call a point v ∈ W an interior point.

3 Primal-Dual Interior Point Method Based on Shifted Perturbed
KKT Conditions

In this section, we introduce a prototype of an interior point algorithm based on the shifted
perturbed KKT conditions (2.9) and (2.10). Note that the prototype has already been
proposed in [12].

The primal-dual interior point method generates a sequence {vk} ⊂ Rn ×Rm ×Sd such
that the point vk approximately satisfies the shifted perturbed KKT conditions (2.9) and
(2.10) with µ = µk > 0, where {µk} is a positive sequence such that µk → 0 (k → ∞).

To construct a concrete algorithm, it is important to define an approximate shifted
perturbed KKT point, and to provide a method for finding an approximate shifted perturbed
KKT point.
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We first give a concrete definition of an approximate shifted perturbed KKT point. To
this end, let

r(v;µ) ≡

 ∇xL(v)
g(x) + µy

X(x)Z − µI

 and ρ(v;µ) ≡

√∥∥∥∥[ ∇xL(v)
g(x) + µy

]∥∥∥∥2 + ∥X(x)Z − µI∥2F .

For a given ε > 0, a point v ∈ W is called an approximate shifted perturbed KKT point if it
satisfies ρ(v;µ) ≤ ε. Note that ρ(v;µ) = 0 and v ∈ W if and only if v is a shifted perturbed
KKT point. Note also that ρ(v; 0) = 0, X(x) ⪰ 0 and Z ⪰ 0 if and only if v is a KKT point
of the nonlinear SDP (1.1).

Now, we give the framework of the primal-dual interior point method.

Algorithm 1.

Step 0. Let {µk} be a positive sequence such that µk → 0 as k → ∞. Choose constants
σ, ϵ > 0. Set k = 0.

Step 1. Find an approximate shifted perturbed KKT point vk+1 with ε = σµk, that is,
vk+1 ∈ W such that ρ(vk+1;µk) ≤ σµk.

Step 2. If ρ(vk+1; 0) ≤ ϵ, then stop.

Step 3. Set k = k + 1 and go to Step 1.

The following theorem gives conditions for the global convergence of Algorithm 1. It can
be proved in a way similar to [28, Theorem 1]. Thus, we omit the proof.

Theorem 3.1. Suppose that an approximate shifted perturbed KKT point vk+1 is found in
Step 1 at every iteration. Moreover, suppose that the sequence {xk} is bounded and that the
Mangasarian-Fromovitz constraint qualification condition holds at any accumulation point
of {xk}, i.e., for any accumulation point x∗ of {xk}, the matrix Jg(x

∗) is of full rank and
there exists a nonzero vector w ∈ Rn such that

Jg(x
∗)w = 0 and X(x∗) +

n∑
i=1

wiAi(x
∗) ≻ 0.

Then, the sequences {yk} and {Zk} are bounded, and any accumulation point of {vk} satisfies
the KKT conditions (2.6) and (2.7). 2

The theorem guarantees the global convergence if an approximate shifted perturbed KKT
point vk+1 is found at each iteration. Thus it is important to present concrete algorithm
that finds the point. In the next section, we will propose a merit function for the shifted per-
turbed KKT point and a Newton-type algorithm for solving the unconstrained minimization
problem of the merit function.

4 Finding a Shifted Perturbed KKT Point

In order to find the approximate shifted perturbed KKT point in Step 1 of Algorithm 1, we
may solve the following unconstrained minimization problem:

minimize ρ(v;µ)2,
subject to v ∈ V,
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where V = Rn×Rm×Sd. Unfortunately, a stationary point of the problem is not necessarily
a shifted perturbed KKT point unless∇r(v;µ) is invertible. In this section, we first construct
a differentiable merit function F whose stationary point is always a shifted perturbed KKT
point. Moreover, we show that a Newton direction for the nonlinear equations r(v;µ) = 0
is a descent direction of the merit function F . Next, we propose a Newton-type algorithm
for solving the unconstrained minimization of the merit function F . Finally, we show that
the proposed algorithm finds a shifted perturbed KKT point under some mild assumptions.

4.1 Merit function and its properties

We propose the following merit function F : W → R for the shifted perturbed KKT point.

F (x, y, Z) ≡ FBP (x) + νFPD(x, y, Z),

where ν is a positive constant, and the functions FBP : Ω → R and FPD : W → R are
defined by

FBP (x) ≡ f(x) +
1

2µ
∥g(x)∥2 − µ log detX(x),

and

FPD(x, y, Z) ≡ 1

2µ
∥g(x) + µy∥2 + ⟨X(x), Z⟩ − µ log detX(x) detZ,

respectively. The functions FBP and FPD are called the primal barrier penalty function and
the primal-dual barrier penalty function, respectively. Note that F is convex with respect
to x when f is convex and g, X are affine. The merit function F is an extension of the one
proposed by Forsgren and Gill [5] for nonlinear programming.

Remark 4.1. For the shifted perturbed KKT conditions, Kato, Yabe and Yamashita [12]

also proposed the following merit function F̃ : W → R.

F̃ (x, y, Z) ≡ FBP (x) + νF̃PD(x, y, Z),

where F̃PD(w) is defined by

F̃PD(x, y, Z) ≡ 1

2
∥g(x) + µy∥2 + log

1
d ⟨X(x), Z⟩+ ∥Z 1

2X(x)Z
1
2 − µI∥2F

(det(X(x)Z))
1
d

.

They showed that F̃ has nice properties like the merit function F . However, F̃ is more
complicated than F , and hence it might not be easy to implement the Newton-type method
based on F̃ in [12]. Furthermore, even if f is convex and g, X are affine, F̃ is not necessarily
convex with respect to x.

In the rest of this subsection, we present some useful properties of the merit function F
such as the differentiability, the equivalence between a stationary point of F and a shifted
perturbed KKT point, and the level boundedness.

First of all, we present a concrete formula of the derivatives of the merit function F .

Theorem 4.2. The merit function F is differentiable on W. Moreover, its derivative is
given by

∇F (w) =

∇FBP (x) + ν∇xFPD(w)
ν∇yFPD(w)
ν∇ZFPD(w)

 ,
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where ∇FBP (x) = ∇f(x) + 1
µJg(x)

⊤g(x) − µA∗(x)X(x)−1,∇xFPD(w) = 1
µJg(x)

⊤(g(x) +

µy) +A∗(x)(Z − µX(x)−1),∇yFPD(w) = g(x) + µy and ∇ZFPD(w) = X(x)− µZ−1. 2

Next, we show the equivalence between a stationary point of the merit function F and a
shifted perturbed KKT point.

Theorem 4.3. A point w∗ ∈ W is a stationary point of the merit function F if and only if
w∗ is a shifted perturbed KKT point.

Proof. First, let w∗ = (x∗, y∗, Z∗) ∈ W be a stationary point of the merit function F .
Theorem 4.2 yields that

∇f(x∗) +
1

µ
Jg(x

∗)⊤ {(1 + ν)g(x∗) + νµy∗}+A∗(x∗)
{
νZ∗ − µ(1 + ν)X(x∗)−1

}
= 0,(4.1)

g(x∗) + µy∗ = 0, X(x∗)− µ(Z∗)−1 = 0. (4.2)

Thus we have

∇xL(w
∗) = ∇f(x∗)− Jg(x

∗)⊤y∗ −A∗(x∗)Z∗

= ∇f(x∗) +
1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

= −ν

µ
Jg(x

∗)⊤ {g(x∗) + µy∗} − νA∗(x∗)X(x∗)−1
{
X(x∗)− µ(Z∗)−1

}
Z∗

= 0,

where the second and third equalities follow from (4.2) and (4.1), respectively. Therefore,
w∗ is a shifted perturbed KKT point.

Conversely, let w∗ = (x∗, y∗, Z∗) be a shifted perturbed KKT point. Then, we obtain
that

∇xL(w
∗) = 0, g(x∗) + µy∗ = 0, X(x∗)Z∗ − µI = 0.

From Theorem 4.2, it is clear that ∇yF (w∗) = ν{g(x∗) + µy∗} = 0 and ∇ZF (w∗) =
ν{X(x∗)− µ(Z∗)−1} = ν{X(x∗)Z∗ − µI}(Z∗)−1 = 0. Moreover,

∇xF (w∗) = ∇f(x∗) +
1

µ
Jg(x

∗)⊤ {(1 + ν)g(x∗) + νµy∗}+A∗(x∗)
{
νZ∗ − µ(1 + ν)X(x∗)−1

}
= ∇f(x∗) +

1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

+
ν

µ
Jg(x

∗)⊤ {g(x∗) + µy∗}+ νA∗(x∗)
{
Z∗ − µX(x∗)−1

}
= ∇xL(x

∗) +
ν

µ
Jg(x

∗)⊤ {g(x∗) + µy∗}+ νA∗(x∗)X(x∗)−1 {X(x∗)Z∗ − µI}

= 0.

Therefore, we have ∇F (w∗) = 0, that is, w∗ is a stationary point of F . 2

This theorem is an extension of [5, Lemma 3.1] for nonlinear programming.
From this theorem, we can find an approximate shifted perturbed KKT point by solving

the following unconstrained minimization problem.

minimize F (w),
subject to w ∈ W.

(4.3)
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One of the sufficient conditions under which descent methods find a stationary point is
that a level set of the objective function is bounded. Thus, it is worth providing sufficient
conditions for the level boundedness of the merit function F . For a given α ∈ R, we define
the level set L(α) of F by

L(α) = {w ∈ W | F (w) ≤ α} .

We first give two lemmas. The following lemma follows directly from [28, Lemma 1].

Lemma 4.4. Let w = (x, y, Z) ∈ W and µ > 0. Then the following properties hold.

(a) ⟨X(x), Z⟩ − µ log detX(x)Z ≥ dµ(1− logµ).

(b) FPD(w) ≥ dµ(1− logµ). The equality holds if and only if g(x)+µy = 0 and X(x)Z−
µI = 0.

(c) lim
⟨X(x),Z⟩↓0

FPD(w) = ∞ and lim
⟨X(x),Z⟩↑∞

FPD(w) = ∞.

Lemma 4.5. Suppose that an infinite sequence {wj = (xj , yj , Zj)} is included in L(α).
Suppose also that the sequence {xj} is bounded. Then, the sequences {yj} and {Zj} are also
bounded. In addition, the sequences {X(xj)} and {Zj} are uniformly positive definite.

Proof. Since {xj} is bounded, the sequence {− log detX(xj)} is bounded below. Thus, there
exists a real number M1 such that M1 ≤ FBP (xj) for all j. Then, the definition of F and
wj ∈ L(α) imply that FPD(wj) ≤ 1

ν (α−M1) for all j, which can be rewritten as

1

2µ
∥g(xj) + µyj∥2 ≤ α−M1

ν
− ⟨X(xj), Zj⟩+ µ log detX(xj)Zj ≤

α−M1

ν
− dµ(1− logµ),

where the last inequality follows from Lemma 4.4 (a). Hence, the sequence {yj} is bounded.
Next, we show that {X(xj)} is uniformly positive definite. From Lemma 4.4 (b), we

have

M1 ≤ FBP (xj) = F (wj)− νFPD(wj) ≤ α− νFPD(wj) ≤ α− νdµ(1− logµ) for all j,

and hence, the sequence {FBP (xj)} is bounded. It then follows from the boundedness of
{xj} and FBP (xj) = f(xj) +

1
2µ∥g(xj)∥2 − µ log detX(xj) that {− log detX(xj)} is also

bounded. From Proposition 2.2, the boundedness of {− log detX(xj)} and {X(xj)} implies
that {X(xj)} is uniformly positive definite, that is, there exists λ such that λmin(X(xj)) ≥
λ > 0 for all j.

Next we show that {Zj} is bounded. From Lemma 4.4 (b), we have

dµ(1− logµ) ≤ FPD(wj) ≤
1

ν
(α−M1) for all j,

and hence the sequence {FPD(wj)} is bounded. Then, Lemma 4.4 (c) yields that {⟨X(xj), Zj⟩}
is bounded. Thus, there exists a real number M2 such that for all j,

M2 ≥ tr(X(xj)Zj) ≥ λmin(X(xj))tr(Zj) ≥ λtr(Zj) = λ
d∑

k=1

λk(Zj) (4.4)

where the second inequality follows from [3, Proposition 8.4.13]. Since {Zj} is positive
definite, λk(Zj) > 0 for k = 1, . . . , d. Then, (4.4) implies that {λk(Zj)} is bounded for
k = 1, . . . , d, and hence {Zj} is bounded.
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Finally, we show that {Zj} is uniformly positive definite. Recall that

FPD(wj) =
1

2µ
∥g(xj) + µyj∥2 + ⟨X(xj), Zj⟩ − µ log detX(xj)− µ log detZj ,

and that the sequences {xj}, {yj}, {⟨X(xj), Zj⟩}, {− log detX(xj)} and {FPD(wj)} are
bounded. Therefore, {− log detZj} is also bounded. It then follows from Proposition 2.2
and the boundedness of {Zj} that {Zj} is uniformly positive definite. 2

We now give sufficient conditions under which any level set of the merit function F is
bounded.

Theorem 4.6. Suppose that the following five assumptions hold.

(i) The function f is convex;

(ii) The functions g1, . . . , gm are affine;

(iii) The function X satisfies X(λu + (1 − λ)v) − λX(u) − (1 − λ)X(v) ⪰ 0 for λ ∈ [0, 1]
and u, v ∈ Ω;

(iv) The matrices A1(x), . . . , An(x) are linearly independent for all x ∈ Ω;

(v) There exists a shifted perturbed KKT point w∗.

Then, the level set L(α) of F is bounded for all α ∈ R.

Proof. Let {(xk, yk, Zk)} be an infinite sequence in L(α). We first show that the sequence
{xk} is bounded. In order to prove this by contradiction, we suppose that there exists a
subset I ⊂ {0, 1, . . .} such that limk→∞,k∈I ∥xk∥ = ∞. Since F (wk) ≤ α and FPD(wk) ≥
dµ(1− logµ) from Lemma 4.4 (b), FBP (xk) = F (wk)− νFPD(wk) ≤ α− νdµ(1− logµ).

On the other hand, since w∗ is a shifted perturbed KKT point, Theorem 4.2 implies that

0 = ∇xL(w
∗) = ∇f(x∗) +

1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1 = ∇FBP (x
∗). (4.5)

Note that FBP is strictly convex from Proposition 2.1 (c) and the assumptions (i)–(iv). Thus,
(4.5) implies that x∗ is the unique global minimizer of FBP . Note that x∗ ∈ Ω andX(x∗) ≻ 0.
Then, there exists ε > 0 such that {x∗ + εu | ∥u∥ = 1} ⊂ Ω and min{FBP (x

∗ + εu) | ∥u∥ =
1} > FBP (x

∗). Let dk ≡ 1
ε (xk − x∗) (k ∈ I) and F ε

BP ≡ min{FBP (x
∗ + εu) | ∥u∥ = 1}.

Note that ∥dk∥ → ∞ (k → ∞, k ∈ I). Without loss of generality, we suppose that ∥dk∥ > 1
for all k ∈ I. From the convexity of FBP , we have

∥dk∥ − 1

∥dk∥
FBP (x

∗) +
1

∥dk∥
FBP (x

∗ + εdk) ≥ FBP

(
x∗ + ε

dk
∥dk∥

)
≥ F ε

BP ,

which implies that FBP (xk) = FBP (x
∗ + εdk) ≥ ∥dk∥(F ε

BP − FBP (x
∗)) + FBP (x

∗). Thus,
since F ε

BP − FBP (x
∗) > 0, we have FBP (xk) → ∞ (k → ∞, k ∈ I). However, this result

contradicts FBP (xk) ≤ α− dµ(1− logµ). Hence, for any sequence {xk, yk, Zk} ⊂ L(α), the
sequence {xk} is bounded. Since {xk} is bounded and {F (wj)} is bounded above, it follows
from Lemma 4.5 that the sequences {yk} and {Zk} are also bounded. 2

Remark 4.7. The level boundedness of the merit function for nonlinear programming is
not given in [5]. Applying Theorem 4.6, it is easy to show that the merit function M in [5]
is level bounded if the objective function f is convex, the constraint functions ci (i ∈ E) are
affine, and rank(Jc) = n.
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Remark 4.8. Kato, Yabe and Yamashita [12] showed that their merit function F̃ is differ-
entiable and its stationary point is a shifted perturbed KKT point. However, they did not
discuss the level boundedness of their merit function.

Remark 4.9. Theorem 4.6 assumes that f is convex and g is affine. These assumptions
are rather restrictive for some applications. We can replace these assumptions with the
following coerciveness condition.

lim
∥x∥→∞,x∈Ω

1

∥x∥

(
f(x) +

1

2µ
∥g(x)∥2

)
= ∞.

Due to Theorems 4.2–4.6, we can solve the unconstrained minimization problem (4.3) by
any descent method, such as the quasi-Newton method and the steepest descent method, and
hence we can get an approximate shifted perturbed KKT point vk+1 in Step 1 of Algorithm
1.

4.2 Newton algorithm for minimization of the merit function

In this subsection, we propose a Newton-type method for the unconstrained minimization
problem (4.3) of the merit function F .

We exploit the scaling of X(x) and Z. Let T ∈ Rd×d be a nonsingular matrix such that

TX(x)T⊤T−⊤ZT−1 = T−⊤ZT−1TX(x)T⊤. (4.6)

Let X̃(x) and Z̃ be defined by

X̃(x) = TX(x)T⊤ = (T ⊙ T )X(x) and Z̃ = T−⊤ZT−1 = (T−⊤ ⊙ T−⊤)Z,

respectively. Note that X̃(x) and Z̃ commute, that is, X̃(x)Z̃ = Z̃X̃(x) from (4.6). As
seen later, the scaling enables us to analyze and calculate a Newton direction easily. In the
subsequent discussions, for simplicity, we denote X(x) and X̃(x) by X and X̃, respectively.

Next, we give a Newton direction, and show that it is a descent direction for the merit
function F . The Newton direction is derived from the nonlinear equations r(w;µ) = 0 in
the shifted perturbed KKT conditions (2.9). However, the matrix ∆Z of a pure Newton
direction (∆x,∆y,∆Z) for r(w;µ) = 0 is not necessarily symmetric due to XZ − µI = 0.
Thus, we consider the following symmetrized shifted perturbed KKT conditions with scaling.

rS(w;µ) ≡

 ∇xL(w)
g(x) + µy

X̃ ◦ Z̃ − µI

 =

0
0
0

 (4.7)

and

X̃ ≻ 0, Z̃ ≻ 0.

Note that X̃ ◦ Z̃ − µI = 0 is equivalent to XZ − µI = 0 if X and Z are symmetric
positive semidefinite [28]. Moreover, X̃(x) ≻ 0 and Z̃ ≻ 0 if and only if X(x) ≻ 0 and
Z ≻ 0. Therefore, the symmetrized shifted perturbed KKT conditions (4.7) are essentially
the same as the original shifted perturbed KKT conditions (2.9).

We apply the Newton method to the equation (4.7). Then, it follows from [12] that

G∆x− Jg(x)
⊤∆y −A∗(x)∆Z = −∇xL(w), (4.8)

Jg(x)∆x+ µ∆y = −g(x)− µy, (4.9)

Z̃∆X̃ +∆X̃Z̃ + X̃∆Z̃ +∆Z̃X̃ = 2µI − X̃Z̃ − Z̃X̃, (4.10)
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where G denotes the Hessian matrix of the Lagrangian function L with respect to x or its
approximation. In what follows, we call the solution ∆w ≡ (∆x,∆y,∆Z) of the Newton
equations (4.8)–(4.10) the Newton direction.

Next, we give the explicit form of the Newton direction ∆w. It follows from [12] that(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x = −

(
∇f(x) +

1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
, (4.11)

∆y = − 1

µ
(g(x) + µy + Jg(x)∆x), (4.12)

∆Z = µX−1 − Z − (T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x, (4.13)

where the elements of H ∈ Rn×n are written as

Hij =
⟨
Ai(x), (T

⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )Aj(x)
⟩
. (4.14)

Since Jg(x)
⊤Jg(x) is positive semidefinite, we can solve (4.11) with respect to ∆x if G+H

is positive definite. Fortunately, H is positive semidefinite. The following lemma can be
proved by using the similar arguments as in [28, Theorem 3].

Lemma 4.10. Suppose that X and Z are symmetric positive definite. Then, H is symmetric
positive semidefinite. Furthermore, if A1(x), . . . , An(x) are linearly independent for all x ∈
Rn, then H is symmetric positive definite. 2

Remark 4.11. In the case of linear SDP, A1(x), . . . , An(x) are usually supposed to be
linearly independent for all x ∈ Rn. Then, H is positive definite from Lemma 4.10.

To summarize the discussion above, we give the concrete formulae of the Newton direction
∆w in the following theorem.

Theorem 4.12. Let µ > 0 and w = (x, y, Z) ∈ W. Suppose that G+H is positive definite.
Then, the Newton equations (4.8)–(4.10) have the unique solution ∆w = (∆x,∆y,∆Z) such
that

∆x = −
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)−1 (
∇f(x) +

1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
,(4.15)

∆y = − 1

µ
(g(x) + µy + Jg(x)∆x),

∆Z = µX−1 − Z − (T⊤ ⊙ T⊤)(X̃ ⊙ I)−1(Z̃ ⊙ I)(T ⊙ T )A(x)∆x.

Proof. It is clear that 1
µJg(x)

⊤Jg(x) is positive semidefinite. Thus, the positive definiteness

of G+H and (4.11) yield that

∆x = −
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)−1 (
∇f(x) +

1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
.

Furthermore, ∆y and ∆Z directly follow from (4.12) and (4.13), respectively. 2

One of the main burdens during the computation of the Newton direction ∆w is the
calculation of the operator (X̃⊙I)−1 in (4.13) and (4.14). Note that (X̃⊙I)−1 in (4.13) and

(4.14) appears as (X̃⊙ I)−1(Z̃⊙ I). Hence, when X̃ = I, it is clear that (X̃⊙ I)−1(Z̃⊙ I) =

Z̃ ⊙ I. On the other hand, when X̃ = Z̃, (X̃ ⊙ I)−1(Z̃ ⊙ I) is the identity mapping. Thus,
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if we choose the scaling matrix T such that X̃ = I or X̃ = Z̃, we do not have to handle the
operator (X̃ ⊙ I)−1 explicitly. This is one of the reasons why we exploit the scaling. Note

that the choices of T such that X̃ = I or X̃ = Z̃ are well known as the HRVW/KSH/M
choice or the NT choice.

(i) HRVW/KSH/M choice

Let T = X− 1
2 . Then we have X̃ = I and Z̃ = X

1
2ZX

1
2 . This choice corresponds to the

dual HRVW/KSH/M choice for the linear SDP [7,13,15].
(ii) NT choice

Let T = W− 1
2 , where W = X

1
2 (X

1
2ZX

1
2 )−

1
2X

1
2 . Then we have X̃ = W− 1

2XW− 1
2 =

W
1
2ZW

1
2 = Z̃. This choice corresponds to the NT choice for linear SDP [16,17].

Next, we show that the Newton direction is a descent direction for the merit function F .
For this purpose, we first show the following two lemmas.

Lemma 4.13. Let µ > 0 and w = (x, y, Z) ∈ W. Suppose that G +H is positive definite.
Let ∆x be given by (4.15). Then we have

∇FBP (x)
⊤∆x = −∆x⊤

(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x ≤ 0.

Furthermore, ∇FBP (x)
⊤∆x = 0 if and only if ∆x = 0.

Proof. We easily see that G + H + 1
µJg(x)

⊤Jg(x) is positive definite from the positive

definiteness of G+H. Since ∇FBP (x) = ∇f(x)+ 1
µJg(x)

⊤g(x)−µA∗(x)X−1 from Theorem

4.2, (4.11) yields that

∇FBP (x)
⊤∆x = ∆x⊤

(
∇f(x) +

1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1

)
= −∆x⊤

(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x

≤ 0.

Furthermore, since G+H+ 1
µJg(x)

⊤Jg(x) is positive definite, ∇FBP (x)
⊤∆x = 0 if and only

if ∆x = 0. 2

Lemma 4.14. Let µ > 0 and w = (x, y, Z) ∈ W. Suppose that G +H is positive definite.
Let ∆w = (∆x,∆y,∆Z) be given in Theorem 4.12. Then we have

⟨∇FPD(w),∆w⟩ = − 1

µ
∥g(x) + µy∥2 − ∥(X̃Z̃)−

1
2 (µI − X̃Z̃)∥2F ≤ 0.

Furthermore, ⟨∇FPD(w),∆w⟩ = 0 if and only if g(x) + µy = 0 and XZ − µI = 0.

Proof. Let Ψ1 : W → R and Ψ2 : W → R be defined by Ψ1(w) ≡ 1
2µ∥g(x) + µy∥2 and

Ψ2(w) ≡ ⟨X,Z⟩ − µ log detXZ, respectively. Note that FPD(w) = Ψ1(w) + Ψ2(w). Then,
we have

⟨∇Ψ1(w),∆w⟩ = 1

µ
(g(x) + µy)⊤(Jg(x)∆x+ µ∆y) = − 1

µ
∥g(x) + µy∥2 ≤ 0,

where the second equation follows from (4.9). The equality holds if and only if g(x)+µy = 0.
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On the other hand, ⟨∇Ψ2(w),∆w⟩ = −∥(X̃Z̃)−
1
2 (µI − X̃Z̃)∥2F ≤ 0 holds from [28,

Lemma 3]. Moreover the equality holds if and only if XZ − µI = 0. 2

We show that the Newton direction ∆w is the descent direction for the merit function
F .

Theorem 4.15. Let µ > 0 and w = (x, y, Z) ∈ W. Assume that G+H is positive definite.
Then, ∆w = (∆x,∆y,∆Z) given in Theorem 4.12 is a descent direction for the merit
function F , i.e.,

⟨∇F (w),∆w⟩ = −∆x⊤
(
G+H +

1

µ
Jg(x)

⊤Jg(x)

)
∆x

− ν

µ
∥g(x) + µy∥2 − ν∥(X̃Z̃)−

1
2 (µI − X̃Z̃)∥2F

≤ 0.

Furthermore, ⟨∇F (w),∆w⟩ = 0 if and only if w is a shifted perturbed KKT point.

Proof. It is clear that the first part of this statement holds from Lemmas 4.13 and 4.14.
Now, we show the second part of this theorem. Suppose that w is a shifted perturbed KKT
point, i.e., ∇f(x) − Jg(x)

⊤y − A∗(x)Z = 0, g(x) + µy = 0 and XZ − µI = 0. Then, we
obtain ⟨∇FPD(w),∆w⟩ = 0 from Lemma 4.14. Moreover, we have

∇f(x) +
1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1 = ∇f(x)− Jg(x)
⊤y −A∗(x)Z = 0,

and hence ∆x = 0 from (4.15). Then, ∇FBP (x)
⊤∆x = 0, and hence ⟨∇F (w),∆w⟩ = 0.

Conversely, suppose that ⟨∇F (w),∆w⟩ = 0. It then follows from Lemmas 4.13 and 4.14
that ∆x = 0, g(x) + µy = 0 and XZ − µI = 0. Then we have from (4.15) that

∇xL(w) = ∇f(x)− Jg(x)
⊤y −A∗(x)Z = ∇f(x) +

1

µ
Jg(x)

⊤g(x)− µA∗(x)X−1 = 0.

Thus, w is a shifted perturbed KKT point. 2

Theorem 4.15 guarantees that F (w + α∆w) < F (w) for sufficiently small α > 0 if w is
not a shifted perturbed KKT point.

Now, we discuss how to choose an appropriate step size α such that F (w+α∆w) < F (w).
The merit function F and the Newton equations (4.8)–(4.10) are well-defined only on W.
Therefore, the new point w+α∆w is required to be an interior point. Thus, we must choose
a step size α ∈ (0, 1] such that X(x + α∆x) ≻ 0 and Z + α∆Z ≻ 0. To this end, we first
calculate

ᾱx =

{
− τ

λmin(X
− 1

2 ∆XX− 1
2 )

if λmin(X
− 1

2∆XX− 1
2 ) < 0 and X is affine

1 otherwise

and

ᾱz =

{
− τ

λmin(Z
− 1

2 ∆ZZ− 1
2 )

if λmin(Z
− 1

2∆ZZ− 1
2 ) < 0

1 otherwise,

where τ ∈ (0, 1) is a given constant. Set

ᾱ = min{1, ᾱx, ᾱz}. (4.16)
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Then Z +α∆Z ≻ 0 for any α ∈ (0, ᾱ]. Moreover, X(x+α∆x) ≻ 0 for any α ∈ (0, ᾱ] if X is
affine. Note that if X is nonlinear, X(x + α∆x) is not necessarily positive definite for any
α ∈ (0, ᾱ].

Next, we choose a step size α ∈ (0, ᾱ] such that F (w+α∆w) < F (w) and X(x+α∆x) ≻
0. For this purpose, we adopt the following Armijo’s line search rule. Find the smallest
nonnegative integer l such that

F (w + ᾱβl∆w) ≤ F (w) + ε0ᾱβ
l ⟨∇F (w),∆w⟩ , X(x+ ᾱβl∆x) ≻ 0

and set α = ᾱβl, where β, ε0 ∈ (0, 1). Note that the second condition is not necessary when
X is affine.

Now, we describe a concrete Newton-type method for Step 1 of Algorithm 1. Recall that
the script k denotes the k-th iteration of Algorithm 1.

Algorithm 2. (for Step 1 of Algorithm 1)

Step 0. Choose β, ε0, τ ∈ (0, 1) and set j = 0 and w0 = vk.

Step 1. If ρ(wj ;µk) ≤ σµk, then set vk+1 = wj and return.

Step 2. Obtain the Newton direction ∆wj = (∆xj ,∆yj ,∆Zj) by solving the Newton equa-
tions (4.8)–(4.10).

Step 3. Set αj = ᾱjβ
lj , where ᾱj is given by (4.16) and lj is the smallest nonnegative integer

such that

F (wj + ᾱjβ
lj∆wj) ≤ F (wj) + ε0ᾱjβ

lj ⟨∇F (wj),∆wj⟩ , X(xj + ᾱjβ
lj∆xj) ≻ 0.

Step 4. Set wj+1 = wj + αj∆wj and j = j + 1, and go to Step 1.

4.3 Global convergence of Algorithm 2

In this subsection, we prove the global convergence of Algorithm 2. For this purpose, we
make the following assumptions.

(A1) The functions f, g1, . . . , gm and X are twice continuously differentiable.

(A2) The sequence {xj} generated by Algorithm 2 remains in some compact set Ω of Rn.

(A3) The sequence {Gj + Hj + 1
µJg(xj)

⊤Jg(xj)} is uniformly positive definite and the

sequence {Gj} is bounded.

(A4) The sequences {Tj} and {T−1
j } are bounded.

Note that Assumption (A2) holds under the assumptions of Theorem 4.6. Assumption (A3)
guarantees that the Newton equations (4.8)–(4.10) have a unique solution.

Remark 4.16. Assumptions (A1)–(A3) hold for linear SDP such that A1(xj), . . . , An(xj)
are linearly independent. In fact, it is clear that Assumption (A1) holds. Theorem 4.6
guarantees that Assumption (A2) holds. Moreover, Hj is positive definite from Remark
4.11 and Gj = 0. Thus, Assumption (A3) holds.

Remark 4.17. Yamashita, Yabe and Harada [28] showed the global convergence of their
Newton-type algorithm under the boundedness of the sequence {yj}, in addition to Assump-
tions (A1)–(A4). However, they did not give sufficient conditions for the boundedness of
{yj}.
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Remark 4.18. Kato, Yabe and Yamashita [12] also showed that a Newton-type algorithm

with the merit function F̃ can find a shifted perturbed KKT point under the same assump-
tions. However, concrete sufficient conditions were not given for Assumption (A2).

First of all, we show that the sequence {wj} generated by Algorithm 2 is bounded.

Lemma 4.19. Suppose that Assumptions (A2) holds. Then, the sequence {wj = (xj , yj , Zj)}
generated by Algorithm 2 is bounded. Furthermore, the matrices {Xj} and {Zj} are uni-
formly positive definite.

Proof. Since the sequence {F (wj)} is monotonically decreasing, we have F (wj) ≤ F (w0) for
all j. From Assumption (A2) and Lemma 4.5, we have the desired results. 2

Note that the lemma above guarantees that Assumption (A4) holds if the scaling matrix
T is given by HRVW/KSH/M choice or NT choice.

Lemma 4.20. Suppose that Assumptions (A2)–(A4) hold. Then, the sequence {∆wj} gen-
erated by Algorithm 2 is bounded.

Proof. Assumptions (A2)–(A4), Lemma 4.19 and Theorem 4.12 yield that the sequence
{∆wj} generated by Algorithm 2 is bounded. 2

We now show the global convergence of Algorithm 2.

Theorem 4.21. Suppose that Assumptions (A1)–(A4) hold. Then the sequence {wj =
(xj , yj , Zj)} generated by Algorithm 2 is bounded. Moreover, any accumulation point w∗ =
(x∗, y∗, Z∗) of {wj} is a shifted perturbed KKT point.

Proof. Since the sequence {wj} is bounded from Lemma 4.19, it has at least one accumula-
tion point w∗.

Next, we prove that w∗ is a shifted perturbed KKT point. To this end, we first show that
the sequence {ᾱj} given in Step 3 of Algorithm 2 is bounded away from zero, that is, there
exists a real number ᾱ such that 0 < ᾱ ≤ ᾱj for all j. Note that from Lemmas 4.19 and
4.20, the sequences {Xj}, {Zj}, {∆Xj} and {∆Zj} are bounded. Moreover, the matrices

{Xj} and {Zj} are uniformly positive definite. Thus, the sequences {λmin(X
− 1

2
j ∆XjX

− 1
2

j )}
and {λmin(Z

− 1
2

j ∆ZjZ
− 1

2
j )} are also bounded. Then, the definition of ᾱj yields that there

exists a real number ᾱ such that 0 < ᾱ ≤ ᾱj for all j.

Next, we show ⟨∇F (wj),∆wj⟩ → 0 as j → ∞. From the Armijo’s line search strategy
in Step 3, we have F (wj+1)− F (wj) ≤ ε0ᾱjβ

lj ⟨∇F (wj),∆wj⟩ and X(xj + ᾱjβ
lj∆xj) ≻ 0.

Summing up the above inequalities from j = 1 to j = j̃, we have

F (wj̃+1)− F (w1) ≤ ε0

j̃∑
j=1

ᾱjβj ⟨∇F (wj),∆wj⟩ .

It then follows from ⟨∇F (wj),∆wj⟩ ≤ 0 by Theorem 4.15 and ᾱ ≤ ᾱj that

F (wj̃+1)− F (w1) ≤ ε0ᾱ

j̃∑
j=1

βlj ⟨∇F (wj),∆wj⟩ .
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Since the sequence {wj} is bounded, the sequence {F (wj)} is also bounded, and hence

−∞ <
∞∑
j=1

βlj ⟨∇F (wj),∆wj⟩ ≤ 0.

Therefore, we have

lim
j→∞

βlj ⟨∇F (wj),∆wj⟩ = 0.

Now, we consider two cases: lim infj→∞ βlj > 0 and lim infj→∞ βlj = 0.

Case 1: lim infj→∞ βlj > 0. Then, we have limj→∞ ⟨∇F (wj),∆wj⟩ = 0.

Case 2: lim infj→∞ βlj = 0. In this case, there exists a subset J ⊂ {0, 1, . . . } such that
limj→∞,j∈J lj = ∞. Since {X(xj)} is uniformly positive definite and {∆xj} is
bounded, there exists l̄ such that X(xj + ᾱjβ

lj∆xj) ≻ 0 for all lj > l̄. Therefore,
without loss of generality, we suppose that X(xj + ᾱjβ

lj−1∆xj) ≻ 0 for all j ∈ J .
Furthermore, since lj − 1 does not satisfy the Armijo rule in Step 3, we have

ε0tj ⟨∇F (wj),∆wj⟩ < F (wj + tj∆wj)− F (wj),

where tj ≡ ᾱjβ
lj−1. Let h(t) ≡ F (wj + t∆wj). By the mean value theorem for h,

there exists θj ∈ (0, 1) such that

ε0tj ⟨∇F (wj),∆wj⟩ < F (wj + tj∆wj)− F (wj)

= h(tj)− h(0)

= tjh
′(θjtj)

= tj ⟨∇F (wj + θjtj∆wj),∆wj⟩ ,

which yields that

0 < (ε0 − 1) ⟨∇F (wj),∆wj⟩ < ⟨∇F (wj + θjtj∆wj)−∇F (wj),∆wj⟩
≤ ∥∇F (wj + θjtj∆wj)−∇F (wj)∥∥∆wj∥, (4.17)

where the last inequality follows from the Cauchy-Schwarz inequality. Since {wj} and
{∆wj} are bounded and limj→∞,j∈J tj = 0, we have from Assumption (A1)

lim
j→∞,j∈J

∥∇F (wj + θjtj∆wj)−∇F (wj)∥ = 0.

Then, limj→∞,j∈J ⟨∇F (wj),∆wj⟩ = 0 from (4.17).

From both cases, we can conclude that

lim
j→∞

⟨∇F (wj),∆wj⟩ = 0. (4.18)

From the boundedness of {wj} and Assumptions (A3) and (A4), there exists a subset
K ⊂ {0, 1, . . .} such that {wj}K, {Gj}K and {Tj}K converge to w∗, G∗ and T ∗, respec-
tively. Moreover from (2.1), the sequences {Tj ⊙Tj}K and {T⊤

j ⊙T⊤
j }K converge to T ∗⊙T ∗

and (T ∗)⊤ ⊙ (T ∗)⊤, respectively. Then we have from (4.14) that {Hj}K converges to H∗.
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Note that the matrix G∗+H∗+ 1
µJg(x

∗)⊤Jg(x
∗) is positive definite from Assumption (A3).

Thus, (4.15) implies that the subsequence {∆xj}K converges to ∆x∗, where

∆x∗ = −
(
G∗ +H∗ +

1

µ
Jg(x

∗)⊤Jg(x
∗)

)−1 (
∇f(x∗) +

1

µ
Jg(x

∗)⊤g(x∗)− µA∗(x∗)X(x∗)−1

)
.

Similarly, {∆yj}K and {∆Zj}K converge to ∆y∗ and ∆Z∗, where

∆y∗ = − 1

µ
(g(x∗) + µy∗ + Jg(x

∗)∆x∗),

∆Z∗ = µX(x∗)−1 − Z∗ − ((T ∗)⊤ ⊙ (T ∗)⊤)(X̃(x∗)⊙ I)−1(Z̃∗ ⊙ I)(T ∗ ⊙ T ∗)A(x∗)∆x∗,

and Z̃∗ = ((T ∗)−⊤⊙ (T ∗)−⊤)Z∗. Then, ⟨∇F (w∗),∆w∗⟩ = 0 by (4.18). Therefore, Theorem
4.15 yields that

∇xL(w
∗) = 0, g(x∗) + µy∗ = 0 and X(x∗)Z∗ − µI = 0,

i.e., w∗ is a shifted perturbed KKT point. 2

5 Numerical Experiments

In this section, we report some numerical experiments for the proposed algorithm (Algorithm
1 with Algorithm 2). We compare the proposed algorithm with the interior point method [28]
based on the perturbed KKT conditions (2.8). We present the number of iterations and the
CPU time of both algorithms. The program is written in MATLAB R2010a and run on
a machine with an Intel Core i7 920 2.67GHz CPU and 3.00GB RAM. The parameter µk

used by both algorithms is updated by µk+1 = µk/10 with µ0 = 0.1. Moreover, we use the
approximate Hessian Gk updated by the Levenberg-Marquardt type algorithm [28, Remark

3]. We employ the scaling matrix T = X− 1
2 and the following parameters.

ϵ = 10−4, σ = 3.5, ν = 1.0, τ = 0.95, β = 0.95, ε0 = 0.50.

We solve the following three test problems described in [28] by using the initial points
indicated in [28].

Gaussian channel capacity problem:

maximize
1

2

n∑
i=1

log(1 + ti),

subject to
1

n

n∑
i=1

Xii ≤ P, Xii ≥ 0, ti ≥ 0,

[
1− aiti

√
ri√

ri aiXii + ri

]
⪰ 0, (i = 1, . . . , n),

where the decision variables are Xii and ti for i = 1, . . . , n. In the experiment, the constants
ri and ai for i = 1, . . . , n are selected randomly from the interval [0, 1], and P is set to 1.
Note that the objective function of the problem is concave and the constraint functions are
affine.

Minimization of the minimal eigenvalue problem:

minimize tr(ΠM(q)),

subject to tr(Π) = 1, Π ⪰ 0, q ∈ Q,
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where Q ⊂ Rp, and M is a function from Rp to Sn, and decision variables are q ∈ Rp

and Π ∈ Sn. In the experiment, p is set to 2 and the function M is given by M(q) ≡
q1q2M1 + q1M2 + q2M3, where M1,M2,M3 ∈ Sn are constant matrices whose elements are
selected randomly from the interval [−1, 1]. The constraint region Q is set to [−1, 1]×[−1, 1].
Note that the objective function is nonconvex and the constraint functions are affine.

Nearest correlation matrix problem:

minimize
X∈Sn

1

2
∥X −A∥2F ,

subject to X ⪰ ηI, Xii = 1, (i = 1, . . . , n),

where A ∈ Sn is a constant matrix and η ∈ R is a positive constant. Note that X ⪰ ηI
is equivalent to X − ηI ⪰ 0. In the experiment, the elements of the matrix A are selected
randomly from the interval [−1, 1] with Aii = 1 for i = 1, . . . , n. Moreover, we set η = 10−3.
Note that the objective function is quadratic and convex, and the constraint functions are
affine. Therefore, the problem is convex.

The numerical results are presented in Tables 1–3. In these tables, SDPIP denotes the
interior point algorithm of [28]. From Tables 1–3, we see that the results obtained by using
Algorithm 1 are comparable to those produced with SDPIP.

6 Concluding Remarks

In this paper, we proposed a new merit function F for shifted perturbed KKT conditions. We
also showed the properties of the merit function F . In particular, we gave the level bound-
edness of the merit function F , which is not given in other related papers for nonlinear SDP.
Moreover, we proposed a Newton-type method (Algorithm 2) to find an approximate shifted
perturbed KKT point. We further proved the global convergence under weaker assumptions
than those in [28]. In the numerical experiments, we showed that the performance of Algo-
rithm 1 was comparable to that of the interior point method [28] based on the perturbed
KKT conditions.

As future research, it is worth to show the superlinear convergence of Algorithm 1 under
appropriate conditions.
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Table 1: Gaussian channel capacity problem

Algorithm 1 SDPIP
n iteration time(s) iteration time(s)
5 126 5.17 128 5.25
10 142 19.52 153 20.36
15 190 87.58 175 84.04
20 148 184.57 126 169.09
25 169 500.51 145 432.62
30 70 472.58 63 429.41
35 106 1421.61 79 1119.49
40 110 3033.11 80 2020.00

Table 2: Minimization of the minimal eigenvalue problem

Algorithm 1 SDPIP
n iteration time(s) iteration time(s)
5 6 0.23 9 0.28
10 7 1.16 10 1.60
15 7 7.19 10 10.09
20 8 39.03 10 46.88
25 8 108.23 11 162.18
30 8 241.76 14 443.60
35 8 560.41 16 1161.47
40 10 1289.72 16 2092.33

Table 3: Nearest correlation matrix problem

Algorithm 1 SDPIP
n iteration time(s) iteration time(s)
5 8 0.13 9 0.15
10 8 1.52 10 1.79
15 10 10.33 11 11.02
20 11 37.47 12 40.68
25 10 151.93 11 180.84
30 9 307.40 10 328.88
35 11 875.31 11 872.60
40 11 1503.82 11 1461.04
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