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Abstract: This paper is concerned with the robust Ho optimal stabilization problem for a class of impul-
sive switched linear systems with norm-bounded time-varying uncertainty. Based on a Riccati inequality
approach, sufficient conditions of robust Hso exponential stability of the impulsive closed-loop systems are
derived and those results are hence applied to design effective linear state feedback stabilizing controllers.
A numerical example is presented to illustrate the obtained results and the control synthesis procedure.
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Introduction

There exist many dynamical processes with impulsive effects in physics, chemical engineer-
ing, biology and information science. For example, the population of a kind of insects can
be controlled by leaving its natural enemies at some proper time instants and the operation
process of chemical reactors can be regulated by impulsively adding chemicals to instanta-
neously change the solution’s concentration. These dynamical behaviors with abrupt state
change characteristics can be modeled by impulsive systems [1,4,10]. Besides the above
impulsive models, dynamics of the total stock value of a particular investor can be modelled
by an impulsive systems as well; see, for example, [5] and the references therein. Stability
problems of these impulsive systems have been investigated in [1,2] and various stability
criteria have been provided. Based on these results, sufficient conditions of exponential sta-
bility of impulsive systems with time delays have been studied and presented in [6] by using
the method of Lyapunov functionals.

In recent decades, an impulsive switched system, naturally describing dynamical processes
with the interaction of impulses and switchings, has attracted more and more attention.
Stability and control synthesis problems of impulsive switched systems have been studied
in [7-9,11]. In particular, a variety of linear quadratic controllers are devised to achieve
guaranteed cost control performance in [7,9] and the corresponding guaranteed cost will
be obtained as well. In this paper, we consider the robust H., optimal stabilizing control
problem of impulsive switched linear systems with time-varying uncertainty. We hence
design an appropriate feedback controller such that the controlled impulsive switched closed-
loop system is exponentially stable and the robust H., optimal performance will be satisfied
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at the same time. A Riccati inequality approach will be applied to construct these linear
feedback controllers.

The rest of the paper is organized as follows. In Section 2, we present the robust H.,
optimal stabilizing control problem of an impulsive switched linear system with time-varying
uncertainty. In Section 3, sufficient conditions for the existence of exponential H,, optimal
stabilizing controllers are derived by using Lyapunov stability theory and then the associate
feedback controllers are obtained by solving algebraic Riccati inequalities. A numerical
example is then presented to illustrate the feedback controller’s design procedure in Section
4. Finally, this paper is concluded in Section 5.

System Description and Problem Statement

A linear impulsive switched system in which impulses occur at fixed time instants can be
described by

():A (O)z(t) + Ci, (Dult) t# tk 2.1)
Ax(t) = Ix(t, x) t=ty, k=1,2,..., ir €{1,2,...,m} :

where z(t) € R" is the state, u(t) € R™ is the control input, A;, (¢) and C;, (t) are state

matrices and control matrices of system (2.1) with appropriate dimensions, Ij, : R™ — R™ are

continuous functions, and ¢y (k =1,2,--+) = oo ask — co. Ax(t) = z(tT)—z(t™), z(t7) =
lim z(t—h), and x(¢tT) = lim z(¢+ h). It means that the solution of impulsive switched

h—0+ h—0+

system (2.1) is left continuous. When the above system experiences external disturbances,

the uncertain impulsive switched system can be expressed in form of

x(t) = Ay, x()JrB () Ciu(t) t#ty

z(t) =0, t=to=0

where z(t) € R™ is the state, u(t) € R™ is the control input, w(t) € RP is the disturbance
input, and z(t) € R? is controlled output. A;, € R"*", B; € R"*?, (C;, € R"™*™ E;, €
RY%™ are constant real matrices that describe known nominal system. Dj are a series of
matrices with appropriate dimensions.

Definition 2.1. For a given v > 0, the impulsive closed-loop system (2.2) is said to be
robustly H, exponentially stable if for any admissible uncertainty, the following conditions
are satisfied under any switching law :

(i) Exponential stability: the resulting impulsive closed-loop system (2.2) is exponentially
stable when w(t) = 0.

(ii) Robust H., performance: when a positive constant + is given as the objective perfor-
mance, ||z2(t)]] < v |lw(t)] will be satisfied.

Lemma 2.2 ([3]). Given a matriz G € RP*? such that GTG < I then
207Gy < zla+yTy (2.3)

for all x € RP and y € RY. In the case that G is an identity matriz, (2.3) reduces to
20Ty < aTw+yTy. Here, for two symmetric matrices A and B, A < B (A > B) means the
eigenvalues of A — B are non-positive (non-negative, respectively).
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Lemma 2.3 ([8]). Given a positive definite matric P € R" "™ and a symmetric matric
Q € R™ ™ then
Amin(P1Q)z(t)T Pa(t) < ()T Qu(t) (2.4)

for all z(t) € R™.
The objective of this paper is to design a linear state feedback controller
u(t) = F;, () (2.5)

where F;, € R™*™ are constant matrices such that the resulting impulsive closed-loop
system is robustly H,, exponentially stable, i.e., the following closed-loop system

x(t) = (Alk =+ CikFik)x(t) + szw(t) t 7’é t

0 E e (26)
2(t) =0, t=ty=0

will be exponentially stable satisfying a given H,, optimal performance constraint for all
admissible uncertainties.

Exponential H,, Control

Theorem 3.1. Let By, be the largest eigenvalue of Pizl(I—V—Dk)TPik (I4+Dy) and0 < B <1,
k € N, hold. For a given v > 0, the impulsive closed-loop system (2.6) is robustly Hu,
exponentially stable if there exist positive definite symmetric matrices P;, € R"*™ such that

(Aik + CikFik)TPik + PLk (Alk + ClkFlk) + ’VizpikBik Bi:,;:.Pik + EzT Eik <0. (3'1)

k

Proof. For the case of t € (t,tg41], let u(t) = F;, xz(t) and the resulting impulsive closed-
loop system can be given by (2.6). First, without loss of generality, consider the following
quadratic Lyapunov function candidate

V() = 2(t)T Py, z(t). (3.2)

The derivative of the Lyapunov function (3.2) along the closed-loop system (2.6) is

V(z) &(t)T P x(t) + 2(t)T Py, &(t)

x(t)TA;f';R-kx(t) + x(t)TAikPikx(t) + 2u(t)TCg;Pikx(t) + 2x(t)TPZ-k B, w(t).

Then, applying the linear feedback controller (2.5) and using the following inequality
2x(t)T‘Pik Blkw(t) < ’Y_Qx(t)T‘Pik Blszj; Pikm(t) + 72w(t)Tw(t)
derived from Lemma 2.2, we have

V(t) < x(t)T((Aik +CikFik)TPik +Pi1c (Aik +CikFlk) +772PikBik B;Z;:‘P'Lk)x(t) +’72w(t)Tw(t)
. (3.3)
Vi) < —x(t)TEg;Eikx(t) + 2w (t)Tw(t)
==z + > lw®)|l
which leads to _
12D < =V (t) + 2 [lw(®)]|
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and
/0 ||z(t)H2dt<—/O V(t)dt+72/0 lw®)||?dt T € (th, try1]. (3.4)

According to the zero initial condition and (3.2), we can see V(0) = 0, V(tx) > 0. When
0 < Bk <1, we have
tk

/TV(t)dt: th(t)dt+/t2V(t)dt+...+ V(t)dt + TV(t)dt
0 0

t1 tr—1 t

=V(t1) = V() +V(ta) =Vt )+ ...+ V(ty) = V() +V(r) = V()

E

Z [1-BulV(tr) +V(r) =0

Then, from the above inequality and (3.4), it follows that

W2 =1 / le(e)lar < 2 / ()t = 2 (b))

which shows that the H, optimal performance will be satisfied for a given v > 0. Next, for
the case of w(t) = 0, then

V(t) < = =)+ [w®)]| = ()T Qi (t) (3.5)
where Q;, = EZ; E;,. Then, by using
‘r(t)TQikI( ) = )‘mm(P sz) (t )Tpikz(t)
derived by Lemma 2.3, and (3.5), we have
V() +mV(t) <0 te (tr,tr]

where ng = Amin(P;, Q,k) ()T P, z(t) > 0. At the impulsive switching time instants, it
th

x
follows from (2.6) and (3.2)

at
V() = x(t+)TP ()
< Br(te) " Pi(te)
= BV (tr)
Let 7 = min(7y), then
V() < V() exp(—n(t —tx)) t € (tr,th1]

< BV (tr) exp(—n(t — tx)).

When t € (to,tl],
V(t) < V(to) exp(—n(t — to))
then,
V(tl) < V(to) exp(—n(t1 — to))
When t € (t1, tg],
V(t) <V(t])exp(—n(t—t))
< BV (t) exp(—n(t —t1))
< BV (to) exp(—n(t —to))



EXPONENTIAL H., STABILIZING CONTROL 553

Thus, when ¢ € (tk, tkt1],
V() < Vk(tD exp(—n(t — tx))
< [T BiV(to) exp(—n(t — to))

=1
< V(to) exp(—n(t — to)).
Therefore, the impulsive closed-loop system (2.6) is exponentially stable for the case that
w(t) = 0. This completes the proof. O

Theorem 3.2. Let By, be the largest eigenvalue of Pizl(I+Dk)TPik_ (I+Dy) and0 < B <1,
k € N, hold. For a given v > 0, the impulsive closed-loop system (2.6) is robustly Hu,
exponentially stable if there exist positive definite symmetric matrices P;,, € R"™™ such that

AT P, + P, A, + P, (v 2B, Bl —eCi CE)P, + EFE;, < 0. (3.6)

Moreover, a suitable feedback controller can be expressed in the form of
1
u(t) = Fikx(t)aFik = _%C?;Ptk

Proof. A linear feedback controller is constructed in the form of w(t) = Fj; «(¢), where
F; = —%C’iTk P, , £ > 0. By applying the designed controller and using (3.1), we can get

AP, + P, A, + P, (v °B; Bl —eC;,,CIP;,, + ELE;, <0

k

which shows that if condition (3.6) is satisfied, the impulsive closed-loop system (2.6) will
be robustly H,, exponentially stable. This completes the proof. O

Without loss of generality, we normally choose the free parameter v = ¢ = 1, then we can
obtain the following corollary straightforwardly.

Corollary 3.3. Let ) be the largest eigenvalue ofﬂzl(I—i—Dk)TPik (I4+Dy) and0 < B <1,
k € N, hold. The impulsive closed loop system (2.6) is robustly Ho, exponentially stable if
there exist positive definite symmetric matrices P € RZCX" such that

Al P, + P, A, + P, (BBl —C;,,chp, + El'E;, <o0. (3.7)

Moreover, a suitable feedback controller can be presented by
1
u(t) = Fiz(t), F = —§Ci7;Pik.

When the impulses and switchings do not occur during the evolution process, the uncer-
tain linear system will be

{ #(t) = Az(t) + Bw(t) + Cu(t) (3.8)

z(t) = Ex(t)
For this case, we can have the following corollary.

Corollary 3.4. For a given v > 0, the linear system (3.8) is robustly Ho, exponentially
stable if there exist a constant ¢ > 0 and a positive definite symmetric matric P € R"*"
such that

ATP+ PA+P(y?BBT —c2ccT)P+ ETE <.

Moreover, a suitable feedback control law is given by

1
u(t) = Fa(t), F = f@cTP
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A numerical Example

Consider the uncertain impulsive switched systems (2.2) with the following specifications.

Al:[é 1_1},31:{0 1 ]701:[1.2 0.3}7Dk:_0.57E:{1 o}

1 05 0.5 1.2 0 1
and
1 05 02 1 1.3 0.3 10
Az = { 01 ]’BQ [ 1.2 0.8}’62 [ 0.6 1.5}’D’“0'5’E { 0 1}
Then, the two subsystems will be
11 1.2 0.3 0 1
) =1y }z(t) {0.5 1.2 ]“(tH [ 1 05 }w(t) L7t
Ax(t) = —0.5z t=1tg
10
z(¢) = [ 0 1 }x(t)
and
. 1 05 1.3 0.3 02 1
o= [ 0 1 }WH [ 0.6 1.5 ]““H [ 12 08 }w(t) t# b
Ax(t) = —0.5z t=tg

A = [ 0y ]x(t)

respectively. Let v = ¢ = 1, by using (3.7), we can obtain the following algebraic Riccati
inequalities

1
0
T T
01 1[0 1 12 03[ 12 03
P“LPl({l 0.5“1 0.5} _[0.5 1.2“0.5 1.2] >P1

f[a 0T s 9= wo

and
(423 2]
ren (93 0 ][00 0s ] (00 2] (00 03] )
+H ?]T“ H<o. (4.2)
Then, we can find the following feasible solutions of (4.1) and (4.2),

P — 1.7759 0.8800 P — 4.0119 —0.9226
V71 1.6703 0.8437 | "2 | —0.4580 3.3750
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Hence, the required state feedback controllers can be devised as

u(t) = Fix(t), ix=1, or 2 (4.3)

F = | 14831 —0.7389 ] By [ —2.4703 —0.4128

| —1.2686 —0.6382 —0.2583 —2.3929 |-

Therefore, the feedback controller (4.3) will exponentially stabilize the impulsive switched
system (2.2) and meanwhile guarantees

[2lloe <71/l

Conclusion

We have developed a state feedback robust H,, optimal control technique for a class of
impulsive switched systems with time varying uncertainty. Based on a positive definite solu-
tion of a modified algebraic Riccati inequality, the proposed robust H, static state feedback
controllers guarantee both exponential stability and robust H., performance for a class of
impulsive switched systems with norm-bounded time-varying uncertainty. An illustrative
example have been given to demonstrate the applicability of the proposed approach.
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