
2015

528 T. SUN, H. ZHANG AND L. CHENG

are equivalent. In particular, if a sparse vector x̂ is a solution to (1.1), then α = 10∥x̂∥∞ is
sufficient for equivalence under some very mild conditions on matrix A; more details please
refer to [12].

The LBreg algorithm itself is not a quite new algorithm. In fact, it can be obtained
by applying classic methods to (1.2). For example, when applying the Uzawa algorithm to
(1.2), one can get the following “primal-dual” form of LBreg:

x(k+1) ← α shrink(AT y(k)) (1.3a)

y(k+1) ← y(k) + h(b−Ax(k+1)) (1.3b)

where h is the step size and shrinkµ is the well-known shrinkage or soft-thresholding operator
with parameter µ > 0; we omit µ when µ = 1. When applying the gradient decent method
to the Lagrange dual of (1.2), i.e.,

min
y

g(y) ≜ −bT y + α

2
∥ shrink(AT y)∥22, (1.4)

one can get another equivalent form of LBreg

y(k+1) ← y(k) − h(−b+ αA shrink(AT y(k))). (1.5)

For applying LBreg to image deblurring, the author in [6] proposed the following alter-
native to deal with the case where A fails to be full row-rank.

min
x
{∥ x ∥1 +

1

2α
∥ x ∥22 : ATAx = AT b} (1.6)

Other types of forms of LBreg can be found in [12].

1.2 Accelerated LBreg algorithms

Due to the strong convexity of the primal objective of (1.2), the dual objective of (1.4)
is differntiable and has Lipschitz-continuous gradient [18]. Based on this key observation,
accelerated LBreg algorithms were designed by utilizing some techniques such as the Barzilai-
Borwein accelerated method and the limited memory BFGS method [21]. Recently, the
Nesterov accelerated methods were incorporated into the LBreg algorithm that result in
two accelerated versions of LBreg [11,25]: Algorithm 1 and Algorithm 2.

Algorithm 1 Nestorov accelerated linearized Bregman iteration(NLBreg)

Require: parameters α > 0, h > 0
Initialization: y0 = 0, θ0 = 1
fork = 0, 1, 2, . . .
zk+1 = yk − h(−b+Axk)
βk+1 = 1

2 (1− θk)(
√
θ2k + 4− θk)

yk+1 = zk + βk(z
k+1 − zk)

θk+1 = 1
2θk(

√
θ2k + 4− θk)

xk+1 = α shrink(AT yk+1)
end for

Algorithm 1 is a simple application of Nesterov’s accelerated methods [14,15] to minimize
gradient Lipschitz-continuous function g(y); while Algorithm 2 is based on the restricted

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 529

Algorithm 2 Accelerated linearized Bregman iteration with restarts(RLBreg)

Require: parameters α > 0, h = 1
α∥A∥2

2
,K > 0

Initialization: y0 = 0, θ0 = 1
fork = 0, 1, 2, . . .
restart Algorithm 1 after K iterations to obtain xj,K ; where K =

√
8eα ∥ A ∥22 /ν

set xj+1,0 = xj,K , yj+1,0 = xj,K , θ0 = 1
end for

strongly convex property with parameter ν of g(y), which was discovered in [12] and further
exploited in [25]. Since the number K for restart is not easy to compute, the authors in [25]
followed a restart scheme suggested in [16,17]:

Gradient scheme : ⟨∇f(yk−1), yk − yk−1⟩ < 0. (1.7)

Theorem 3.3 in paper [11] proves that Algorithm 1 has a sublinear convergence rate provided
the stepsize satisfies h ≤ 1

α∥A∥2
2
and b = Ax is consistent. After that, Theorem 8 in [25]

shows that Algorithm 2 enjoys a linear convergence rate if the linear system Ax = b is
consistent, and numerical results in [25] show that Algorithm 2 has a much faster speed
than Algorithm 1. Moreover, we would like to highlight that the speed of LBreg heavily
depends on the condition number of A [6]. Better condition number of A, faster speed of
the convergence. This observation motivates us to improve the condition number of A and
further accelerate existing LBreg algorithms. Thus, we propose two classes of algorithms:
the first class is to solve model (1.2), and the other one is to solve model (1.6). Our method
could be summarized into the following:

Step 1: Obtain a linear system of equations Bx = d equivalent to the linear system of
model (1.2) (model (1.6)) such that B has small condition number;

Step 2: Apply existing accelerated LBreg algorithms to

min
x
{∥ x ∥1 +

1

2α
∥ x ∥22 : Bx = d}, (1.8)

which is equivalent to model (1.2) (model (1.6)).
In Section 3.2 we will explain why the proposed algorithms are faster than the previous

ones.

1.3 Organization

The rest of the paper is organized as follows. Section 2 proposes the accelerated algorithms.
Section 3 shows that why the accelerated algorithms run faster. Section 4 consists of nu-
merical experiments. Finally, Section 5 concludes this article.

2 Preconditionally Accelerated LBreg Algorithms

In this section, our method for the first class of algorithms can be divided into two steps,
namely, precondition and acceleration. In the precondition step, by forced Cholesky de-
composition, we get the preconditioner P . Then, we obtain a matrix V whose rows are
orthonormal and a vector y satisfying

V x = y, (2.1)

530 T. SUN, H. ZHANG AND L. CHENG

which is equivalent to Ax = b by the multiplication schemes V = P−1A and y = P−1b.
In the acceleration step, we apply the LBreg algorithm and its accelerated versions to the
following optimization:

min
x∈Rn

{∥ x ∥1 +
1

2α
∥ x ∥22: V x = y}, (2.2)

which is equivalent to (2). In next section, we will prove that the convergence rate of LBreg
and RLBreg will be maximized in this situation. Due to the fact that linear system in (1.6)
is a little complicated, we improve the efficiency of decomposition based on the structure of
ATA.

2.1 A brief review of preconditioning strategies

Preconditioners are employed routinely to solve sparse linear systems Mx = z using itera-
tive methods whose convergence rate depends closely on the condition number of M . Hence
one may attempt to transform the linear system into anther equivalent one which has more
favorable spectral properties. A preconditioner is a matrix that can effect such a transfor-
mation. The preconditioner is usually a non-singular matrices P , which approximates the
coefficient matrix M in some way, employed to solve the equivalent linear system

P−1Mx = P−1z. (2.3)

What should be pointed out is that P should be chosen felicitously such that the inverse of
P can be easily computed and P−1M is sparse. In the following we introduce some common
preconditioners [9].

Jacobi preconditioning If M has widely varying diagonal entries, Jacobi preconditioning
can be used. This simple preconditioner consists of just the diagonal of the coefficient
matrix:

Pi,j =

{
Mi,j , if i = j
0, otherwise.

(2.4)

As a generalization of the Jacobi preconditioner, divide M into

M =

 M11 · · · M1k

...
. . .

...
Mk1 · · · Mkk

 ,

where the diagonal blocks Mii are square. Then, diag(M11,M22, · · · ,Mkk) is the
corresponding preconditioner.

SSOR preconditioning The SSOR preconditioner is usually used to the symmetrical co-
efficient matrix which is decomposed as M = D+LT +L into its diagonal, lower and
upper triangular part, respectively. The SSOR preconditioner is defined as

P (ω) =
1

2− ω
(
1

ω
D + L)(

1

ω
D)−1(

1

ω
D + L)T ,

where 0 < ω < 2.

Incomplete factorization preconditioning IfM is symmetrical, an incomplete Cholesky
factorization LLT of M is an approximation M ≈ LLT , where L is of special sparsity
form. When M is nonsymmetric, there is a corresponding incomplete LU precondi-
tioner.

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 531

However, all the preconditioners introduced above are difficult to be applied to the
linear constrain of (1.2) directly, because matrix A is not square or sparse and may be not
full row-rank; they are also poor when applied to the linear constrain of (1.6). In next
subsection, enlightened by the idea of incomplete factorization preconditioning, we develop
a preconditioner for the underdetermined linear system.

2.2 Preconditioning for the underdetermined linear system: forced Cholesky
decomposition

The first method we may consider is the SVD of A. Assume that A = UΣV , where U, V

are orthonormal matrices and Σ =

(
Λ 0
0 0

)
∈ Rm×n, Λ = diag(λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥

. . . ≥ λr > 0. Set the preconditioner P = U ∗ diag(Λ, Im−r), we can get(
Ir 0

)
V x = Λ−1

(
Ir 0

)
UT b. (2.5)

It is easy to find that the computational bottleneck lies in the SVD of A. Actually, SVD
is unwelcome in practice for its huge computational cost. To reduce the the cost of the
computation, we find V by Cholesky decomposition. In what follows, two cases are discussed
depending on the rank of A.

Case 1: A is full row-rank

Lemma 2.1 ([7, Cholesky decomposition theorem]). Let M ∈ Rm×m be a positive definite
matrix, then there exists a lower triangular L satisfying

M = LLT . (2.6)

Let A ∈ Rm×n be a full row-rank(m < n). Let us consider the Cholesky decomposition
of AAT = RRT . Obviously, R−1A is a row-orthonormal matrix, and R−1Ax = R−1b equals
to Ax = b. It’s easy to know that computing AAT will cost about m2n and the Cholesky
decomposition of AAT will cost about 1

3m
6, and R−1A will cost about m2n. Then totally,

the float count required is about 2m2n+ 1
6m

3. On the contrary, the cost of computing the
SVD of A is about 4mn2 + 8m2n+ 9m3 [7]. Note that m ≤ n, we have

TCholesky

TSV D
≈

2m2n+ 1
6m

3

4mn2 + 8m2n+ 9m3
≤ 1

8
. (2.7)

By this way, we cut down the cost of the computation.

Case 2: A is not full row-rank

When A is not full row-rank, the Cholesky decomposition of AAT cannot be done for AAT

is not positive definite. In this case, we consider the Cholesky decomposition of AAT + εIm,
where ε is a small positive number. This method is also called forced Cholesky decomposi-
tion.

Theorem 2.2. Assume M ∈ Rm×n is not full row-rank, L̄ is the lower triangular matrix
of forced Cholesky decomposition of MMT . Denote that V̄ = L̄−1M , r = rank(M). Then,

V̄i,j = O(
√
ε), r + 1 ≤ i ≤ m. (2.8)

532 T. SUN, H. ZHANG AND L. CHENG

The proof of Theorem 2.2 can be found in Appendix. Theorem 2.2 shows that when ε is
small enough, V̄i,j(i ≥ r) are also very small. Therefore, in the actual calculation we can set
a threshold to eliminate some rows of V̄ to reduce the scale of matrix V̄ . The speed of each
iteration will be greatly improved for a “smaller” V̄ . Assume that R̄ is the lower triangular
matrix of forced Cholesky decomposition of AAT , finally, we get(

Ir 0
)
R̄−1Ax =

(
Ir 0

)
R̄−1b. (2.9)

When ε is very small, (2.9) approximatively equals to Ax = b, and
(
R̄−1

1 R1 0
)
Q is

approximatively row-orthonormal. When r = m, Case 2 returns to Case 1, and hence the
forced Cholesky decomposition can also work even if A is full row-rank.

2.3 Acceleration

Below, we propose two accelerated algorithms for augmented l1 model depending on the
(in)consistency of the linear system Ax = b.

2.3.1 Accelerated algorithms for consistent linear system

The algorithms proposed here are all based on the results proposed in last subsection. Here

Algorithm 3 Accelerated linearized Bregman algorithms for consistent linear system via
precondition

Require: parameters h > 0, α > 0, ε > 0, threshold ζ > 0
Initialization: y0 = 0, θ0 = 1
Step1. get the triangular matrix R̄ by the Cholesky decomposition of AAT + εI
Step2. update: (R̄)−1A→ A,(R̄)−1b→ b

Step3. for i = 1, 2, . . . ,m,eliminate row i of A and b if |A(i,i)
∥Ai∥ | < ζ

Algorithm 3.1: Precondition Linearized Bregman iteration (P-LBreg)
Step4. run LBreg.
Algorithm 3.2: Precondition Nesterov Accelerated Linearized Bregman iteration
(PN-LBreg)
Step4. run NLBreg.
Algorithm 3.3: Precondition Accelerated LinearizedBregman iteration withRestarts
(PR-LBreg)
Step4. run RLBreg.
end

parameters h, α in Step 4 are the same as the ones in Algorithms 1 and 2. In step 4,
Algorithm 3 use one of LBreg, NLBreg and RLBreg. ε is an important parameter for
Algorithm 3: theoretically, a smaller ε will produce a more accurate solution. Actually a
very small ε will cause large error in computation of Algorithm 3. Parameter ζ is a threshold.
By Theorem 2.2, we know that ζ should be set as O(

√
ε). In numerical experiments, we set

ζ = 10
√
ε.

2.3.2 Accelerated algorithms for inconsistent linear system

We consider the QR decomposition of A, where Q is the orthogonal matrix and R is the
lower triangular matrix, R̄ is the lower triangular matrix of forced Cholesky decomposition

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 533

of AAT . Because A is not full-rank , R =

(
R1 0
R2 0

)
∈ Rm×n, where R1 ∈ Rr×r is a

non-singular lower triangular matrix. Divide matrix R̄ into blocks in the same way as R,

R̄ =

(
R̄1 0
R̄2 R̄3

)
, where R̄1 ∈ Rr×r. Then ATAx = AT b can be equivalently transformed

to (
RT

1 R1 +RT
2 R2 0

0 0

)
Qx =

(
RT

1 RT
2

0 0

)
b, (2.10)

where Q =

(
Qr

Qm−r

)
and Qr is the first r rows of Q. (2.10) can be expressed as follow:

Qrx = (RT
1 R1 +RT

2 R2)
−1

(
RT

1 RT
2

)
b. (2.11)

From the deduction in Appendix, we can conclude that R̄i−Ri = O(ε)(i = 1, 2). That means
when ε is very small, R̄i is very close toRi(i = 1, 2). Let d = (R̄T

1 R̄1+R̄T
2 R̄2)

−1
(
R̄T

1 R̄T
2

)
b,

and then
R̄1

−1
R1Qrx = d (2.12)

is approximatively equivalent to (2.11). (2.12) is consistent for that R̄1
−1

R1Qr is full row-
rank.

Then, we can propose corresponding accelerated algorithms in the following. Except for

Algorithm 4 Accelerated linearized Bregman algorithms inconsistent linear system via
precondition

Require: parameters h > 0, α > 0, ε > 0, threshold ζ > 0
Initialization: y0 = 0, θ0 = 1
Step1. get the triangular matrix R̄ by the Cholesky decomposition of AAT + εI
Step2. update: (R̄)−1A→ A

Step3. for i = 1, 2, . . . ,m, eliminate row i of A if |A(i,i)
∥Ai∥ | < ζ

Step4. update: (R̄T
1 R̄1 + R̄T

2 R̄2)
−1

(
R̄T

1 R̄T
2

)
b→ b

Algorithm 4.1:Precondition Linearized Bregman iteration with Inconsistent linear
system (IP-LBreg)
Step5. run LBreg.
Algorithm 4.2:Precondition Nesterov accelerated Linearized Bregman iteration with
Inconsistent linear system (IPN-LBreg)
Step5. run NLBreg.
Algorithm 4.3:Precondition Accelerated Linearized Bregman iteration with Restarts
with Inconsistent linear system (IPR-LBreg)
Step5. run RLBreg.
end

the different ways to update b, Algorithms 4.1-4.3 are almost the same as Algorithms 3.1-3.3.

3 Why Faster?

In iteration (5), paper [12] shows that

∥ yk − ykprj ∥2≤
√

1− (
ν

α ∥ A ∥22
)2 ∥ yk−1 − yk−1

prj ∥2, (3.1)

534 T. SUN, H. ZHANG AND L. CHENG

where ykprj is the projection of yk onto solution set of problem (4), ν is the RSC(defined in
section 3.1) constant of the objective function of problem (4). Later, paper [25] improved
the rate of convergence and obtained

∥ yk − ykprj ∥2≤
√
1− ν

α ∥ A ∥22
∥ yk−1 − yk−1

prj ∥2 . (3.2)

Besides this, [25] also proved that RLBreg reaches ε-accuracy inO(

√
α∥A∥2

2

ν log(1ε)) iterations.
It is easy to find that ν

∥A∥2
2
is the key to the efficiency of LBreg and RLBreg.

Definition 3.1. Let M ∈ Rm×n, z ∈ Rn, α > 0, and Mx = z be consistent.

ωM := νM/ ∥M ∥22, (3.3)

where ∥M ∥2 is the spectral radius of M .

From the discussion above we know that the larger ωM is, the faster LBreg and RLBreg
are.

3.1 Preliminaries

We first collect some definitions and lemmas required for upcoming analysis.

Definition 3.2 ([12]). Let M be a positive semi-definite matrix. Define

λ++
min(M) := min

λ(M)∈S(M)
{λ(M)}, (3.4)

where S(M) is the set of all positive eigenvalues of M .

Definition 3.3 ([12]). (Restricted strong convexity − RSC(ν)). A convex function
f(x):Rn → R is restricted strongly convex with constant ν > 0 if it is differentiable, and
obeys:

⟨∇f(x)−∇f(xprj), x− xprj⟩ ≥ ν ∥ x− xprj ∥22, (3.5)

where xprj = prjχ∗(x) is the projection of x onto the set χ∗, and χ∗ is the solution of
problem minx{f(x)}.

Lemma 3.4 ([12,25]). The objective function of problem (1.4) is RSC, and the RSC constant
is

νA = λA · min
i∈supp(x∗)

{ α|x∗
i |

α|x∗
i |+ 2

}. (3.6)

where λA = min{λ++
min(C

TC)|C is a nonzero submatrix of A of m rows}, x∗ is the unique
solution of model (1.2), supp(x∗) is support set of x∗.

Lemma 3.5 ([12]). Let D ∈ Rn×n be a diagonal positive define matrix, and M ∈ Rn×n.
Then

λ++
min(M

TDM) = min
∥MTα∥=1

{αTMMTDMMTα}. (3.7)

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 535

3.2 Technique lemmas and main results

Before stating the main result, we need several technique lemmas.

Lemma 3.6. Let convex function f be differentiable, U ∈ Rm×m, UUT = I, and denote
g(y) = f(UT y). If f(x) is RSC(ν), then g(y) is also RSC(ν).

Proof. Assume that χ∗ = {x|∇f(x) = 0}, ϕ∗ = {y|∇f(UT y) = 0}; obviously, χ∗ = Uϕ∗.
It’s easy to know that χ∗ is the solution of problem minx{f(x)}, and ϕ∗ is the solution of
problem miny{g(y)}. For any vector y, it holds that

prjϕ∗(y) = arg min
ȳ∈ϕ∗
{1
2
∥ y − ȳ ∥22}. (3.8)

Then, for UUT = I, we have

prjϕ∗(y) = arg min
ȳ∈ϕ∗
{1
2
∥ UT y − UT ȳ ∥22}, (3.9)

Let ŷ = UT ȳ; Then,

prjϕ∗(y) = arg min
ŷ∈χ∗
{1
2
∥ UT y − ŷ ∥22}. (3.10)

Namely ∀y, UT prjϕ∗(y) = prjχ∗(UT y).
Now, we verify that g(y) is RSC with constant ν:

⟨y − prjϕ∗(y),∇g(y)⟩ = ⟨UT y − UT prjϕ∗(y),∇f(UT y)⟩ (3.11a)

= ⟨UT y − prjχ∗(UT y),∇f(UT y)⟩ (3.11b)

≥ ν ∥ UT y − prjχ∗(UT y) ∥22 (3.11c)

= ν ∥ UT y − UT prjϕ∗(y) ∥22 (3.11d)

= ν ∥ y − prjϕ∗(y) ∥22 . (3.11e)

Lemma 3.7. Let m < k < n, M ∈ Rm×n, z ∈ Rm, and Mx = z be consistent. Denote that

M̂ =

(
M
0

)
∈ Rk×n, ẑ =

(
z
0

)
∈ Rk. Then ωM = ωM̂ .

Proof. For Mx = z is equivalent to M̂x = ẑ, the solution to minx∈Rn{∥ x ∥1 + 1
2α∥ x ∥

2
2 :

Mx = z} is also the solution to minx∈Rn{∥ x ∥1 + 1
2α∥ x ∥

2
2 : M̂x = ẑ}. By Lemma 3.4,

what we should do is just to verify whether λM = λM̂ . If Ĉ is a nonzero submatrix of M̂ of

k rows, it’s easy to know Ĉ =

(
C
0

)
, where C is a nonzero submatrix of M of m rows.

λM̂ = min{λ++
min(Ĉ

T Ĉ)|Ĉ is a nonzero submatrix of M̂ of k rows}
= min{λ++

min(C
TC)|C is a nonzero submatrix of M of m rows}

= λM (3.12)

So we get ωM = ωM̂ .

Lemma 3.8. Let Q ∈ Rm×m,M ∈ Rm×n, QQT = I, then ωM = ωQM .

536 T. SUN, H. ZHANG AND L. CHENG

Proof. It’s easy to know that νQM = νM by Lemma 3.6. For QQT = I, ∥ QM ∥2=∥ M ∥2.
By Definition 3.2

ωQM = νQM/ ∥ QM ∥22= νM/ ∥M ∥22= ωM . (3.13)

Lemma 3.9. Assume that row-orthonormal matrix Vi ∈ Rr×n (i=1,2) satisfy two equivalent
linear systems V1x = b1 and V2x = b2. Then ωV1 = ωV2 .

Proof. There exists matrix Q satisfying V1 = QV2. Since Vi is an row-orthonormal matrix,
Ir = V1V

T
1 = QV2V

T
2 QT = QQT . Then Q is also an orthogonal matrix. By Lemma 3.6,

ωV1 = ωV2 .

Lemma 3.10. Let M ∈ Rm×n, z ∈ Rn, and Mx = z be consistent. Assume that the SVD

of M is M = UΣV , where U, V are orthogonal matrices and Σ =

(
Λ 0
0 0

)
∈ Rm×n,

Λ = diag(λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥ . . . ≥ λr > 0, denote that Vr =
(
Ir×r 0r×(m−r)

)
V ,

zr = Λ−1
(
Ir×r 0r×(m−r)

)
UT z. Then, the linear system Vrx = zr is equivalent to the

linear system Mx = z, and ωM ≤ ωVr .

Proof. For U is orthogonal,

ΣV x = UT z =⇒
(

ΛVr

0

)
x = UT z. (3.14)

It’s easy to get ωΣV = ωM by Lemma 3.6. Actually, this is equivalent to

ΛVrx =
(
Ir×r 0r×(m−r)

)
UT b. (3.15)

By Lemma 3.7, we can get ωΣV = ωΛVr . And (3.15) is also equivalent to

Vrx = Λ−1
(
Ir×r 0r×(m−r)

)
UT z = zr. (3.16)

Next, we prove ωΛVr ≤ ωVr by Lemma 3.4. We derive that

λΛVr = min
C
{λ++

min(C
TΛTΛC)} (3.17a)

= min
C

min
∥CTα∥=1

{αTCCTΛTΛCCTα} (3.17b)

≤ min
C

min
∥CTα∥=1

{αTCCTΛTΛCCTα} (3.17c)

= λ2
1 min

C
min

∥CTα∥=1
{αTCCTCCTα} (3.17d)

= λ2
1 min

C
{λ++

min(C
TC)} (3.17e)

= λ2
1λVr , (3.17f)

where C is a nonzero submatrix of Vr of r rows. For all linear systems mentioned above
are equivalent, so they enjoy the same solution x∗, by Lemma 3.4 νΣVr ≤ λ2

1νVr . Clearly,
∥ Vr ∥2= 1, ∥ ΣVr ∥2= λ1. Then,

ωΣVr
=

νΣVr

∥ ΣVr ∥22
≤ λ2

1νVr

λ2
1

=
νVr

1
=

νVr

∥ Vr ∥22
= ωVr

. (3.18)

Therefore,
ωM = ωΣVr ≤ ωVr . (3.19)

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 537

Definition 3.11. Assume that Ax = b is consistent with A ∈ Rm×n, b ∈ Rm.

SA := {M |There exists z ∈ Rm satisfying that Mx = z equals to Ax = b}. (3.20)

The following theorem guarantees that the convergence speed of pretreated problem is
superior to the original one.

Theorem 3.12. Assume that Ax = b is consistent and A ∈ Rm×n, b ∈ Rm, y ∈ Rr. Row-
orthonormal matrix V ∈ Rr×n satisfies the linear system V x = y, which equals to Ax = b.
Then

ωV = sup
M∈SA

{ωM}. (3.21)

Proof. By Definition 3.11, ∀M ∈ SA, there exists a vector z satisfying Mx = z. Then,
V x = y equals to Mx = z. Obviously, by Lemma 3.10, V x = y also equals to Vrx = zr,
where all notations are the same as in Lemma 3.10. By Lemma 3.9, ωV = ωVr ≥ ωM .

Theorem ?? tells that the convergent rate of the LBreg or RLBreg applied to minx∈Rn{∥
x ∥1 + 1

2α∥ x ∥
2
2 : V x = y} is lager than the one applied to minx∈Rn{∥ x ∥1 + 1

2α∥ x ∥
2
2 :

Mx = z,M ∈ SA}. The M is any matrix which belongs to SA; of course includes A itself.
Therefore, Theorem ?? provides the theoretical support for Algorithms 3 and 4.

4 Numerical Demonstration

In this section, we present three examples in each subsection to demonstrate that our algo-
rithms run faster.

4.1 Comparison of the algorithms for model (1.2)

The sparse signals x∗ ∈ R2400 with N nonzero entries sampled independently from the
standard Gaussian distribution. The examples have a sensing matrix A formed by multi-
plication A = BC, where B ∈ R1000×r and C ∈ Rr×2400 are both generated by Matlab
function randn(·, ·). The following parameters are used as follow: b = Ax∗, α = 10 ∥ x∗ ∥∞,
ε = 10−6, ζ = 10−2, and h = 1/α ∥ A ∥22. All iterations were stopped if ∥ Axk− b ∥2< 10−12

or 5000 iterations. The primal solution relative error is calculated by

RE =
∥xk − x∗∥2
∥x∗∥2

.

In numerical tests, we are also interested in the function value f(xk). Here, we employ the
definition of the function relative error in [20]:

FRE =
|f(xk)− f(x∗)|
|f(x∗)|

.

In test 1, we set N = 150 and r = 940, 960, 980, 1000. Figure 1 depicts primal solution
relative error versus iteration k of different r, Figure 2 depicts the function relative error
versus iteration k of different r. Table 1 reports the time(T) that each algorithm finally
costs, the primal solution relative error (RE) and function relative error (FRE) that each
algorithm finally gets.

538 T. SUN, H. ZHANG AND L. CHENG

Table 1: Time, primal solution relative error and function relative error for different r in
test 1

Figure 1: Primal solution relative error of different r in test 1

In test 2, the rank of the sensing matrix is set as r = 960, and sparsity levels of signal
are set as N = 110, 120, 130, 140. The other parameters are the same as in test 1. Similarly,
Figure 3 depicts the primal solution relative error versus iteration k of different N , Figure
4 depicts the function relative error versus iteration k of different r, and Table 2 reports
(T,RE,FRE) versus N . Now, we present the results of test 2 as follow:

The CPU times of P-LBreg, PN-LBreg and PR-LBreg in Table 1 and Table 2 include
the time for pre-conditioning. It can be found that P-LBreg, PN-LBreg and PR-LBreg are
much faster than LBreg, NLBreg and RLBreg.

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 539

Figure 2: Function relative error of different r in test 1

4.2 Comparison of the algorithms for model(1.6)

In this subsection the sparse signals x∗ ∈ R1200 with N nonzero entries sampled inde-
pendently from the standard Gaussian distribution. The tests in this subsection all have
a sensing matrix A with 500 rows and entries sampled independently from the standard
Gaussian distribution. The rank of A is r.

But we barge up against immediately. The first problem we encounter is how to create
an inconsistent linear system. The second one is that if we get that system, how to get the
solution of problem (1.6). In this part we set

b = Ax∗ + 10−6 a

∥ a ∥2
, (4.1)

Table 2: Time, primal solution relative error and function relative error for different N in
test 2

540 T. SUN, H. ZHANG AND L. CHENG

Figure 3: Primal solution relative error of different N in test 2

where a is a nonzero random vector. (4.1) is consistent if and only if a ∈ range(A), here
range(A) := {Ax|x ∈ Rn}. Obviously, dim(range(A)) = rank(A) < m. Therefore, P{a ∈
range(A)} = 0. The tail added in (4.1) can make Ax = b be an inconsistent linear system.
On the other hand, the tail is very small, so we can regard x∗ as the solution of (1.6). Then
by using this method we successfully solve the two problems we faced.

The other parameters here are as follows: α = 10 ∥ x∗ ∥∞, ε = 10−6, ζ = 0.01, and
the fixed step h = 1/α ∥ A ∥22. All iterations were stopped if ∥ Axk − b ∥2< 10−6 or 5000
iterations.

In test 1, we set N = 50 and r = 450, 460, 470, 480. Figure 5 depicts the primal solution
relative error versus iteration k of different N , Figure 6 depicts the function relative error
versus iteration k of different r, and Table 3 reports (T,RE,FRE) versus r. All notations
are the same as before. The results of test 1 are as follows:

In test 2, the rank of the sensing matrix is set as r = 450, and sparsity levels of signal
are set as N = 35, 45, 55, 65. The other parameters are the same as in test 1. Figure 7
depicts the primal solution relative error versus iteration k of different N , Figure 8 depicts
the function relative error versus iteration k of different r, and Table 4 depicts (T,RE,FRE)
versus the sparsity of the signal.

The CPU times of IP-LBreg, IPN-LBreg and IPR-LBreg in Tables 3 and 4 also include
the time for pre-conditioning. From the numerical results we get the same conclusion: IP-
LBreg, IPN-LBreg and IPR-LBreg run much faster.

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 541

Figure 4: Function relative error of different N in test 2

4.3 Application to image deblurring

The Frame-Based Deblurring model [6] can be expressed as follows:

min
u∈Rn

{∥ u ∥1 +
1

2α
∥ u ∥22 : BFu = g}, (4.2)

where B is the linear blurring operator matrix, and F is a tight frame matrix [2]. We omit
the details about model (4.2) here, since the details can be found in [2,6]. Here, the blurring
kernel is a 15× 15 Gaussian one with σ = 2 which can be easily generated by the MATLAB
command fspecial(′Gaussian′, 15, 2). The tight frame is chosen as the same as the one
in [6]. The other parameters are set as the same as the ones in section 4.1, all iterations
were stopped if ∥ BFuk − g ∥2< 10−2 or 200 iterations. Figure 9 shows the results; and the
CPU times contain the time for preconditioning.

The preconditioning implemented here is the same as what stated in Section 2.2: first,
we get a triangular matrix R by calculating the Cholesky decomposition of BF (BF)T + εI;
then, we multiple both sides of the constrained linear system by R−1. Actually, note that
F is a tight frame matrix which satisfies FFT = I, we just need to calculate the Cholesky
decomposition of BBT +εI. The numerical results on the fingerprint deblurring experiment
coincide the conclusions we have got above. The preconditioned algorithms preform much
better: they can get a better solution in less time.

542 T. SUN, H. ZHANG AND L. CHENG

Figure 5: Primal solution relative error of different r in test 1

5 Conclusion

In this study, we have shown that LBreg and RLBreg can be accelerated impressively after
applying precondition techniques to them. The main observation lies in that the smaller
condition number of the sensing matrices, the faster speed of LBreg and RLBreg. We
also consider the case, which arise in image restoration, for the inconsistent linear system.
Numerical experiments on sparse signal recovery and image deblurring demonstrate that the
proposed algorithms perform reasonably faster than the previous ones.

Appendix

The proof of Theorem 2.2: Assume that the QR decomposition of M is M = LQ, where

Q ∈ Rn×n is the orthonormal matrix and L =

(
L1 0
L2 0

)
∈ Rm×n, with L1 ∈ Rr×r being

a non-singular lower triangular matrix. Obviously,

MMT + εIm = LLT + εIm = L̄L̄T . (5.1)

Thus, it’s easy to get

L2
1,1 + ε = L̄2

1,1. (5.2)

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 543

Figure 6: Function relative error of different r in test 1

Let L1,1 = sign(L̄1,1)
√
L̄2
1,1 − ε. Therefore,

L̄1,1 = L1,1 +O(ε). (5.3)

By induction and the explicit scheme of Cholesky decomposition , while 1 ≤ j ≤ r

L̄i,j = Li,j +O(ε). (5.4)

Table 3: Time, primal solution relative error and function relative error for different N in
test 1

544 T. SUN, H. ZHANG AND L. CHENG

Figure 7: Primal solution relative error of different N in test 2

By (5.1), while i = r + 1,

r+1∑
j=1

L̄2
r+1,j =

r+1∑
j=1

L2
r+1,j + ε

r∑
j=1

L2
r+1,j + L̄2

r+1,r+1 +O(ε) =
r∑

j=1

L2
r+1,j + L2

r+1,r+1 + ε

Because Lr+1,r+1 = 0,
L̄r+1,r+1 = O(

√
ε). (5.5)

Similarly, using induction and the Cholesky decomposition explicit scheme, while r + 1 ≤
j ≤ m

L̄i,j = O(
√
ε), j ≤ i. (5.6)

Denote that L̄ =

(
L̄1 0
L̄2 R̄3

)
, where L̄1 ∈ Rr×r. By the explicit scheme of inversion of

block lower triangular matrix, we have

V̄ = L̄−1M =

(
L̄−1
1 0

−L̄−1
3 L̄2L̄

−1
1 L̄−1

3

)(
L1 0
L2 0

)
Q (5.7a)

=

(
L̄−1
1 L1 0

−L̄−1
3 (L2 − L̄2L̄

−1
1 L1) 0

)
Q. (5.7b)

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 545

Figure 8: Function relative error of different N in test 2

Now, we estimate L2 − L̄2L̄
−1
1 L1 as follows:

L2 − L̄2L̄
−1
1 L1 = L2 − L̄2L̄

−1
1 (L̄1 − (L̄1 − L1)) = L2 − L̄2 + L̄2L̄

−1
1 (L̄1 − L1). (5.8)

From the inferences above, the entries of L̄1 − L1 and L̄2 − L2 are all O(ε) and L̄2L̄
−1
1 →

L2L
−1
1 when ε→ 0. Therefore,

L2 − L̄2L̄
−1
1 L1 = O(ε). (5.9)

For the entries of L̄3 are O(
√
ε), by the explicit scheme of inversion of lower triangular

Table 4: Time, primal solution relative error and function relative error for different N in
test 2

546 T. SUN, H. ZHANG AND L. CHENG

Figure 9: The comparison of different recovery algorithms

matrix, it’s easy to get that (L̄−1
3)i,j = O(ε−

1
2). Then,

L̄−1
3 (L2 − L̄2L̄

−1
1 L1)i,j =

r∑
k=1

(L̄−1
3)i,k(L2 − L̄2L̄

−1
1 L1)k,j = O(

√
ε). (5.10)

References

[1] J.-F. Cai, E. Candès and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optimiz. 20 (2010) 1956–1982.

[2] J.-F. Cai, R.H. Chan and Z.W. Shen, A framelet-based image inpainting algorithm,
Appl. Comput. Harmon. Anal. 24 (2008) 131–149.

PRECONDITION FOR LINEARIZED BREGMAN ALGORITHMS 547

[3] J.-F.Cai, S.Osher and S.W.Shen, Linearized Bregman iteration for frame-Based image
deblurring, SIAM J. Imaging Sci. 2 (2009) 226–252.

[4] J.-F. Cai, S. Osher and Z. Shen, Linearized Bregman iterations for compressed sensing,
Math. Comput. 78 (2009) 1515–1536.

[5] J.-F. Cai, S. Osher and Z. Shen, Convergence of the linearized Bregman iteration for
ℓ1-norm minimization, Math. Comput. 78 (2009) 2127–2136.

[6] J.-F.Cai, S. Osher and S.W. Shen, Linearized Bregman iteration for frame-Based image
deblurring, SIAM J. Imaging Sci. 2 (2009) 226–252.

[7] G.H. Golub and C.F. Van Loan, Matrix computation, The Johns Hopkins university
press, 1992.

[8] S.S. Chen, D.L. Donoho and M.A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput. 20 (1999) 33–61.

[9] J.H. Demmel, Applied numerical linear algebra, Tsinghua university press, Beijing,
2011.

[10] M.P. Friedlander and P. Tseng, Exact regularization of convex programs, SIAM J.
Optimiz. 18 (2007) 1326–1350.

[11] B. Huang, S.Q. Ma and D. Goldfarb, Accelerated Linearized Bregman Method, J. Sci.
Comput. 54 (2013) 428–453.

[12] M.J. Lai and W. Yin, Augmented ℓ1 and nuclear-norm models with a globally linearly
convergent algorithm, SIAM J. Imaging Sci. 6 (2013) 1059–1091.

[13] D.A. Lorenz, F. Schopfer and S. Wenger, The linearized Bregman method via split
feasibility problems: analysis and generalizations, arXiv:1309.2094 (2013).

[14] Y. Nesterov, Introductory lectures on convex optimization: A basic course, Kluwer
Academic Publishers, 2004.

[15] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE
discussion paper, 2007.

[16] B. O′Donoghue and E. Candès, Adaptive restart for accelerated gradient schemes, To
appear in Found. Comput. Math.

[17] S. Osher, Y. Mao, B. Dong and W. Yin, Fast linearized bregman iteration for compres-
sive sensing and sparse denoising, Commun. Math. Sci. 8 (2010) 93–111.

[18] R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.

[19] F. Schopfer, Exact regularization of polyhedral norms, SIAM J. Optimiz. 22 (2012)
1206–1223.

[20] Q. Tran-Dinh and V. Cevher, A Primal-Dual Algorithmic Framework for Constrained
Convex Minimization, arXiv:1406.5403v1 (2014).

[21] W. Yin, Analysis and generalizations of the linearized Bregman method, SIAM J.
Imaging Sci. 3 (2010) 856–877.

548 T. SUN, H. ZHANG AND L. CHENG

[22] W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for ℓ1-
minimization with applications to compressed sensing, SIAM J. Imaging Sci. 1 (2008)
143–168.

[23] H. Zhang, J.-F. Cai, L.Z. Cheng and J. Zhu, Strongly convex programming for exact
matrix completion and robust principal component analysis, Inverse Probl. Imag. 6
(2012) 357–372.

[24] H. Zhang, L.Z. Cheng and W. Zhu, A lower bound guaranteeing exact matrix comple-
tion via singular value thresholding algorithm, Appl. Comput. Harmon. Anal. 31 (2011)
454–459.

[25] H. Zhang and W. Yin, Gradient methods for convex minimization: better rates under
weaker conditions, UCLA CAM Report (2013).

[26] H. Zhang and W. Yin, A dual algorithm for a class of augmented convex models, UCLA
CAM Report (2013).

Manuscript received 22 October 2013
revised 7 March 2014, 12 August 2014

accepted for publication 14 August 2014

Tao Sun
College of Science, National University of Defense Technology
Changsha, 410073, Hunan, China
E-mail address: nudtsuntao@163.com

Hui Zhang
College of Science, National University of Defense Technology
Changsha, 410073, Hunan, China
E-mail address: hhuuii.zhang@gmail.com

Lizhi Cheng
The State Key Laboratory for High Performance Computation
National University of Defense Technology
Changsha, 410073, Hunan, China
E-mail address: clzcheng@nudt.edu.cn

