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Abstract: The present paper is devoted to a difficult and interesting field-second order polyhedral optimiza-
tion described by ordinary discrete and differential inclusions. The posed problems and the corresponding
optimality conditions are new. The stated second order discrete problem is reduced to the polyhedral min-
imization problem with polyhedral geometric constraints and in terms of the polyhedral Euler-Lagrange
inclusions, necessary and sufficient conditions for optimality are derived. Derivation of the sufficient condi-
tions for the second order polyhedral differential inclusions is based on the discrete-approximation method.
The transversality condition is formulated separately, a fact peculiar to problems involving higher order
derivatives.
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Introduction

In the first part of the paper, we deal with certain large classes of second order discrete
optimizations, which often arise in applications:

T-1
minimize Z g(z,t) (1.1)

t=2
(Pp) subject to
Tpro € Fag,x441), t=0,1,...,T =2
To = G, T1 = (1.2)
where
F(z,v1) = {vy : Pox + Pivy — Qua < d} (1.3)

is a polyhedral multivalued mapping F' : R™ x R™ — P(R") (see [24,27,28], where P(R") is
a set of polyhedral subsets of R™), Py, P, and @ are m x n dimensional matrices with rows
P, Pi,Q;i=1,...,m respectively , d is a m-dimensional column-vector with components
di, i =1,...,m and &g, &; are fixed vectors. Moreover, g(-,t) : R® — R is a polyhedral
function that is its epigraph epi g(-,t) is polyhedral set in R"*!. Tt is required to find a
sequence of points {Zo, ¥1,...,37} = {7}i_o of problem (1.1) — (1.3) that minimizes the
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512 ELIMHAN N. MAHMUDOV

sum of functions Z g(z¢,t). We label this problem as (Pp).

In Section 3 we deal with the optimization problem for second order polyhedral differ-
ential inclusions:

minimizeJ (z(-)) = /0 g(x(t), t)dt + po(x(1)), (1.4)

(Pc) subject to
z"(t) € F(z(t),2'(t)), ae te€]0,1], (1.5)
2(0) = ag, 2'(0) = 1.6

where the functions and multivalued mapping encountered in Problem (1.4), (1.5) are poly-
hedral. The problem is to find an arc &(t) of the Cauchy problem (1.4) — (1.6) for the second
order differential inclusions satisfying (1.5) almost everywhere (a.e.) on [0, 1] and the initial
conditions (1.6) on [0, 1] that minimizes the Bolza functional J(z(-)). We label this problem
as (Pc). To this end we first derive necessary optimality conditions in the sequences of the
discrete-approximation problem (Pp4) and then establish, by passing to the limit(formally)
as h — 0 (h is the discrete step), sufficient optimality conditions for the original optimal
control problem (P¢) described by the second order polyhedral differential inclusions (1.5).
Here, a feasible trajectory x(-) is understood to be an absolutely continuous function on
a time interval [0, 1] together with the first order derivatives for which z”(-) € L}. Here
LT = L7([0,1]) is a Banach space of functions integrable on the time interval [0,1] in the
Lebesgue sense.

Notice that such a class of functions W{'5([0, 1]) is Banach space, endowed with the dif-
ferent equivalent norms. For instance, one of the norms can be defined as follows [lz()|] =

2
|[2(0)] + |2/ (O) + [[2" ()1 or [lz()I] = kzollw(’“)ﬁ)lll» where [[z(0)()]|; = f\m"“ (t)|dt and

|z| is an Euclidean norm in R™.

Note that the problems associated with the higher order differential and discrete inclu-
sions are more complicated due to the higher order derivatives and their discrete analogues.
A convenient procedure for eliminating this complication in optimal control theory involving
higher order derivatives is a formal reduction of these problems by substitution to the sys-
tem of first order differential inclusions or equations. However in practice returning to the
original higher order problem and expressing the resulting optimality conditions in terms of
the original problem data is in general very difficult.

To our best knowledge, control problems for higher order differential inclusions have not
been studied in the literature and on the whole only the qualitative problems with second or-
der differential inclusions have been investigated. The first viability results for second order
differential inclusions were given by Haddad and Yarou [15]. The nonconvex case for second
order differential inclusions has been studied by Lupulescu [19] and Cernea [7]. In [19] exis-
tence of viable solutions was proved for an autonomous second-order functional differential
inclusion in the case when the multifunction that define the inclusion is upper semicontin-
uous compact valued and contained in the subdifferential of a proper lower semicontinuous
convex function. In the paper [6] the existence of solutions for initial and boundary value
problems for second order impulsive functional differential inclusions in Banach spaces are
investigated. Here a fixed point theorem for contraction multivalued maps due to Covitz
and Nadler [9] is used. The theory of impulsive differential equations has seen consider-
able development; see the monograph of Lakshmikantham, et al. [17]. The paper [5] gives
necessary and sufficient conditions ensuring the existence of solutions to the second order
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differential inclusions with state constraint. In [29] the existence of Lyapunov functions for
second-order differential inclusions is analyzed by using the methodology of the viability
theory.

The problems (Pp) and (P¢) have a wider class of applications. For example, they can
be applied in the investigations of the so-called von Neumann economic dynamics model [30]
the graph of which is a polyhedral cone K = {(z,v1,v2) : * > BoA, v1 > B1A, va = A\, A >
0, A € R™}, where A, By, By are n X m matrices with nonnegative elements and \ is a vector
with components A;,j = 1,..., m. Moreover, the problems (Pp) and (P¢) can be applied in
the linear discrete (412 = Aori+A12441+Bug,uy € U CR", t =0,...,T—1,Ap, A1 —nxn
and B — n x r matrices,respectively) or linear differential optimal control problem (z” =
Aoz + A1z’ + Bu, u = u(t) € U,t € [0,1]) where a control domain U is a polyhedral set.
The key problem for the investigation of the problem (Pg) is the discrete-approximation
problem. Note that in [24,27,28] some properties of nondegenerate polyhedral mappings,
where F(x,v1) = F(x) (the number of constraints defining every vertex of polytope F(x)
is n ) are studied. Although the given problems (Pp),(Pc) are governed by multivalued
mappings we do not use the LAM notion (see [20], [22]- [27]) in formulation of any optimal-
ity conditions. In general, in the last decade discrete and continuous time processes with
lumped and distributed parameters have found wide application in the field of mathematical
economics and in problems of control dynamic system optimization and differential games
(see, for example [1,2,10-14,17, 18,29, 30, 34, 37,40, 41]. Note that for different problems
described by set-valued mappings the reader can consult Aubin and Cellina [3], Aubin and
Frankowska [4],Clarke [8], Mordukhovich [31-33], Mahmudov [27], Rockafellar [36], Vinter
and Zheng [39] and the bibliography therein.

The paper is organized as follows. In Section 2, by converting the problem (Pp) into
a problem with geometric constraints and applying Farkas theorem [27, p.22] we formulate
necessary and sufficient conditions for a convex minimization problem with linear inequality
constraints. Then with the problem data, we are able to obtain the conditions of optimality
for polyhedral second order discrete inclusions, where a Slater condition of convex analysis
about existence of an interior point is not needed in this case.

In Section 3 the necessary and sufficient conditions of optimality for discrete-approximation
problem (Ppa) are formulated using the approximation method for the continuous polyhe-
dral problem (P¢). Note that an important role of the discrete-approximation method for
different type of ordinary and partial differential inclusions is demonstrated in [20], [22]-
[27], [31,33].

In Section 4 in order to formulate necessary and sufficient conditions for second order
differential inclusions, Theorem 3.1 plays a significant role. Thus by passing to formally limit
the sufficient conditions of optimality for second order polyhedral optimization is obtained.

Optimization of Second Order Polyhedral Discrete Inclusions

We reduce the problem (Pp) to a convex mathematical programming problem with con-
straints consisting of the linear inequalities. Let us denote A and D by

P, P —-Q 0 -0 e e 0 d

a=| O R Ame 0 0
0 - i .. 0 P, P — :
v P-Q y
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where A is the partitioned into submatrices Py, P1, —Q and m X n zero matrices 0, D is a

m(T — 1) dimensional column-vector and A is a matrix with size
m(T — 1) x n(T + 1); the number of rows and the number of columns are equal to T-1
and T+1, respectively. If we introduce a vector w = (zg,21,...,27) € R™T+D) | then the

problem can be reduced to the problem with geometric constraints and with the objective
function f(w) = Til g(x¢,1); the problem (Pp) can be replaced by the following equivalent
problem in Eucli(i:aQn space R™MT+1).
minimize  f(w), (2.1)
subject to w € MNNyN Ny, w e R+
where M = {w = (zg,...,27) : Aw < D}, Ng ={w = (xg,...,2x7) : xo = o}, N1 = {w =
(xo,...,x7) @1 = a1}
Thus, if {#;}]_, is a solution of problem (1.1)-(1.3), then @ = (530,501,.. ,ZT) is a
solution of the problem (2.1) and vice versa. Obviously, M = ﬂ M;, where M; =

{’LU = (.’Eo, . ) P0$t + P1$t+1 — Q(Z?H_Q < d}, = 0,. T — 2 Let KM( ) €
M; Ky, (@ ) w 6 Ny and Ky, (w),w € N;j be the cone of tangent directions [20]- [27],
[35] Then by Theorem 3.4. [27, p.99] there exist a vector w} € 9, f(w) and vectors
wh € Ky (0),wy € Ky, (w), wy € Ky, () such that w} = wg + wj, +wy. Here, Kg(w) is
the dual cone to the cone of tangent dlrectlons Kg(w) =cone(S — w) at a point w € S, i.e.,
Ki(w) = {w* = (,...,2%) : (W,w*) >0, Vw € Kg(w)}, where (,) is a scalar product.
On the other hand, the cone of tangent directions K Mt( ),t=0,...,T — 2 are polyhedral

cones and so by Lemma 1.22 [27, p.23] K}, (0) = Z K3y, (). Thus, we have a formula
i=0

T—-2
wi=wj+ Y why, +wh,  why, € Kiy, (@). (2.2)
t=0

Note that for @ to be a point minimizing f over M N Ny N Ny in problem (2.1), it is
necessary and sufficient that the condition (2.2) is fulfilled. Clearly w} € 0, f(w) implies
that w} = (J:’}O,a:}l, .. ,xch), T} € 0pg(Z4,t), t=2,...,T.

Now, we shall compute the dual cones Kj,(w), K}, (@) and K, () . First, by using
Farkas Theorem [27, p.22] , we prove the following result.
Lemma 2.1. For a polyhedral set M; at a point w € M; one has
Ko, () = {w*(t) : wf(t) = =PG5 A, 2741 (t) = =Pl A, 2p,5(t) = Q7 2 =0,
k#tt+1,t+2, Ay >0, Ay € R (PoZy + P1@iy1 — QFp2—d, Ny) =0, t=0,...,T—2}.
Proof. By the definition of the cone of tangent directions, we infer
K, (0) = {w : Po(& + ATy) + Pi(Zi41 + ATiq1) — Q(Zug2 + ATyyo) < d (2.3)

for a small A > 0}, t=0,...,7 — 2.
Let I(w) denote the set of active indices, i.e.

I(IE)Z{’L'Zpéi‘t+Pli.ft+1—Qii‘t+2:di, 221,,7’77,}
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It follows from (2.3) that for indices ¢ € I(w) , the inequality

Pyt + XTy) + Pl (F111 4 ATey1) — Qi(Frp2 + ATrsa)
=d; + N(P{T¢ + P{Tes1 — QiTry2) < dj , t=0,...,T -2

holds, if ‘ A
PiZy + PiTip1 — QiTeq2 <0, i € I(W). (2.4)

Clearly, if ¢ ¢ I(w), the inequality
Pi(Zs + AZy) — Qi(Teq1 + ATpy1) = Pidy — QiZrp1 + A(PiTp — QiTi41) < d;

holds for small A, regardless choosing (T, T¢y1,%¢42). Thus, a cone Kj, (w) is defined
completely by the system of inequalities (2.4). Now we rewrite (2.4) in the form

(@, —P) + @1, —Pp) + Frg2, Qi) >0, i€ I(w).

Then applying Farkas Theorem [27, p.22] and taking into account that Ty, k # ¢,t +1,t+2

are arbitrary, it follows from the latter inequality that w* = (x5, 27,...,27) € K} (w) if
and only if
TP =— Z PyEN;, 2y = — Z PPN, 2745(t) = Z QiNi, A 20, (2.5)
i€l(@) i€I(@) iel(®)

where Pi*, Pi*, Q7 are transposed vectors of Pg, P{, Q; respectively. Thus, taking \! = 0 for
i ¢ I(w) and denoting \; a vector with the components A\!, formula (2.5) can be rewritten
in the equivalent form

K3 (0) = {w*(t) = (0,...,0,2{ (1), v7 11 (1), 77 12(1),0,...,0) s 27 (t) = =Py Ay,
$:+1(t) = _Pf)‘tv$:+2(t) = Q*)‘tv )‘t > 07 )\t € Rm’ t= 07 <. 'aT - 27
(Poy + Pidies1 — QFryn —d, Ae) =0} (2.6)

The proof of the lemma is completed. O

The necessary and sufficient condition of optimality for the problem given by second
order polyhedral discrete inclusions can be resumed as following theorem.

Theorem 2.2. Let F be a polyhedral mapping defined by (1.3) and g(+,¢) be a polyhedral
function. Then, for the {Z;}]_, to be an optimal trajectory of the second order discrete poly-
hedral optimization problem (Pp), it is necessary that there exist vectors ;,t =0,...,T—1
simultaneously not all equal to zero satisfying the discrete Euler-Lagrange and transversality
inclusions:

xf = Pide + Pidi—1 +ul, A\ >0, uf € 9g(Z4, 1), 0g(Zo,0) = 0g(Z1,1) =0,
Tio=Q N, A1=0,t=0,...,7—2.
(PoZt + Prtyy1 — QTpyo — d, Ag) = 0,
—Pl*)\T,Q + $}71 S 89(53T,1,T — 1) s l‘} =0.
Proof. The cones K}, (), K}, (@) should be computed to give the component-wise repre-

sentation of the relationship (2.2). In fact on the definition of cone of tangent directions
w e Kn,(w),w € Ny if and only if w4+ Aw € Ny for a sufficiently small A > 0. It follows
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that g + ATg = dg. On the other hand w € Ny and so xg = ag. Thus Tg = 0. As a result
we have Ky, (w) = {w = (To,...,Tr) : To = 0}, whence

Ky, (w) = A{w" = (z5,...,207): (W,w") >0,w e Ky,(w)}
= { Y@ 20w e Ky, (w
0
= {u)

= (zg,...,2p): zf =0,t=1,...,T}
In analogy to calculation of K, (w), we derive the following formula

N———
—

~
* |

Ky, (w) ={w" = (2q,...,27) : xf =0,t # 1}.
Then, it easily be seen that in accordance with Lemma 2.1 and formulas (1.3), we can write

wé = (x30’07"'a0)7 IUT Z(O,I‘TI,O...,O),

w*(t) = (0,...,0,27(t), x; 1 (t), 7 5(t),0,...,0), t=0,...,T — 2. (2.7)

In turn, by using the structure of the vectors (2.7) the component-wise representation of
(2.2) imply

0= zg + 25(0),
0=x5; +23(1) + z3(0), (2.8)

vy =ai(t) tait -1 +azi(t-2), t=2,....,T—2. (2.9)
Further, by Lemma 2.1

xi(t) = =Py, o71(t) = =P A, i o(t) = Q" A, A > 0.

Then by denoting @y 5(t) = 5, t =1,...,T =2, x}, = uy, x5 = 2§ in view of (2.9) we
obtain
rf = Pih+ PN +uy, up € 0g9(3y,t),
The = QN ,AN>0, t=0,...,T-2 (2.10)
where

<P02~7t + Pl'ft-i-l - QSNCt_;,_Q - d, )\t> == 0

On the other hand,it is easy to see that by setting ¢(Zo,0) = g(#1,1) =0, 2, = 2§ , A1 =
0, z7; = «7 and using the relations (2.8), the formula (2.9) can be generalized to the case
t = 0,1 Finally for t =T — 1 we have 2{p_,)q = 27_y(T —2) + a7_(T — 3) or on the
accepted notations

f(kT—no =ap_y — P Ar—a.

It is obvious that since g(Zr,T) = 0, it follows that z% = 0. Thus, we have

89(.%0,0) = 89(@1, 1) = O,
x}il — Pl*)\T,Q S (r“)g({fol,T — 1) {E} =0.

Now, these relations and formulas (2.10) justify the validity of the theorem. O
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T
Remark 2.3. Suppose we have the problem (Pp) with the objective function > g(zy,t)
t=2

that is g(xp,T) # 0 for second order polyhedral discrete inclusions. Then it is ea_sy to see
that in this case % # 0 and 2% € dg(xp,T). This means that transversality condition for
such problems consists of the following inclusions z%._ A —PfAp_o € 8g(5:T 1,T—1)and z% €

0g(Zr,T). Also in the problem (Pp), we can replace Z g(xg, t) by Z g(xe, t)+g(zr—1,27),
where g(-, ) : R™ x R" — R is a polyhedral functlon Clearly for the problem (Pp) with the
objective function Z g(xzt,t) +g(xr—1, z7) the transversality condition of Theorem 2.2 has

a form

(@71 — PfAr—2,27) € 09(Z1-1,27).
Optimization of Second Order Polyhedral Discrete-approximation
Problem

Let h be a step on the t-axis and xp,(t) is a grid function on a uniform grid on [0,1]. We
introduce the following first and second order difference operators

Ahxh(t) = ( (t+h) —{,Eh(t))

S (@n(t + 2h) = 22, (t + h) + (1))

==

Ahxh( ) =

>|H

We associate with the continuous problem (P¢) the following discrete- approximation prob-
lem

1-2h

minimize Z hg(xp(t),t) + @ol(xn (1 — h)),
t=0

(Ppa) subject to
Pol'h(t) + PlAh{Eh(t) — QA}%ICh(t) <d,
2 (0) = o, (3.1)
Apzp(0)=ay, t=0,h,...,1—2h

We label this problem as (Pp4) and we formulate the optimality conditions for it.

Theorem 3.1. Let F' be a polyhedral multivalued mapping and g be a polyhedral function
with respect to x. In order that {#,(¢)};_, be a solution of the second order polyhedral
discrete-approximation optimization problem (Pp4), it is necessary and sufficient that there
exists an adjoint trajectory of vectors {z} (t)};_, simultaneously not all equal to zero satis-
fying the approximate Euler-Lagrange inclusions and the transversality condition:

(a) AZzy(t) € PEAn(t) — PyApAL(t — h) 4+ 0g(Zn(t),t), An(t) >0
(b) —Apzj (1) = PrAR(1 —2h) € Opo(Zn(1 — h)), x5(1) =0,

(C) <P(){fh(t) + PlAhi'h(t) - QA%i'h(t) - d, )\h(t)> = 0, t= 2h, ey 1—2h.
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Proof. We apply the Theorem 2.2 to formulate the necessary and sufficient conditions for
problem (3.1). First we reformulate this problem in the form of the (Pp) problem:

1-2h

minimize Z hg(zn(t),t) + po(zn(l — h)),
t=0

subject to
[W*Py — hPy — Qlay(t)+[hPy + 2Q|ap(t + h) — Qui(t + 2h) < B,
zp(0) = ao, zp(h) = ap + hay, (3.2)
t=0,h,...,1—2h.
Let {z,(t)},t = 0,h,...,1 be an optimal solution of the problem (3.2). Obviously, an

adjoint discrete inclusions Theorem 2.2 for second order polyhedral problem with discrete
approximation inclusions (3.2) has a form

ap(t) € [W2Py — hPy — Q) "Mn(t) + [hPr + 2Q) "M (t — h) + hdg(@n(t), 1),
zh(t42h) = Q* Mu(t) , Mu(t) >0, t=0,h,...,1—h, (3.3)
((h*Py — hPy — Q)&n(t) + (hPy +2Q)Zn(t + h) — QT (t + 2h) — h*d, Au(t)) = 0.

We rewrite the first inclusions in (3.3) in more convenient form, that is to express it in terms
of second order difference operators. Clearly

Ti(t) € R2PEN(E) — RPEAR(E) — Q" An () + hPENG(E — h)
+2Q*An(t — h) + hog(Zn(t),t)
which yields
Q*An(t) — 2Q*Ap(t — h) + x5 (t) € h2*PiAn(t) + hPiAL(t — h)
—hPfAL (L) + hOg(Zn(t),t), t=0,h,...,1—2h.
On the other hand, since z} (t + 2h) = Q* A (
25+ 2h) = 201 (4 ) + 35,(6) € R2PEA(E) — hPEL(D)
+hPiAL(t — h) + hOg(Zn(t),t), t=0,h,...,1 — 2h.

)

t)
t) it follows from the last inclusion that

Dividing both sides of the latter relation by h?, we have

A5 () € PiAp(t) — Py ARAL(t — h) + 0g(Zn(t),t), t = 2h,..., 1 — 2. (3.4)
Here it is taken into account that hA,(t) and hzx} (t) are denoted again by Ay (t) and z7 (¢),
respectively.

Similarly, the second formula in (3.3) can be rewritten as follows

<P0i’h(t) + PlAh(fh( ) QAhCL'h( ) —d, )\h(t» =0,t=2h,...,1—2h.

On the other hand, transversality condition of Theorem (2.2) imply:
—PAp(1 —2h) + 25 (1 — h) € hdpo(Zn(1 — h)), x5(1) = 0.

Since 7} (1) = 0 the second assertion (2) of theorem follows from the last relation which can
be rewritten as

—Apai(1) — PiAR(1 — 2h) € 8o (En(1 — h)), z}(1) = 0.

Therefore, we have obtained the desired result. O
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Remark 3.2. By the analogy in Remark 2.3 the result of Theorem 3.1 can be easily de-
1-2h

veloped to the problem (Pp4) with the objective function > hg(zn(t),t) + Po(zn(l —
=0

h),xn(1)), where 3y(-,-) : R x R™ — R is a polyhedral function_having the form @y (xp(1 —
h),zp(1)) = @o(xn(1l — h), Azxp(1)). Thus according to the Remark 2.3 we have a new form
of the transversality condition for the problem (Ppy) :

(@3 (1 = h) = Py An(1 = 2h), 27,(1)) € Opo(Zn(1 — h), ApZn(1)).

Theorem 3.3. Let p,(-,-) be a polyhedral function defined by relation py(x,v1) =

©o (:c, x—_hvl) and 29 = (2°,09) € domp,. Then the following inclusions are equivalent:

(i) (@*,91%) € 9Py (20),
0

0
it —% | =k — =
(ii) (T* +71%, —hvy )Gaga()(xo, W 1).

Proof. Note that 9,%(zp) is a convex closed set and for zy € ri(domp,) is bounded [27,33,35].
By the definition of subdifferential sets

0:50(z0) = { @ 71") 1 Bol2) = Bo(20) 2 (@, = ) + (01", 01 — o),

Vz = (z,v1) € R*™ 25 = (xo,v?)} (3.5)
and
20— . s T—0 20—
8900('1:07T1) = {(.13 » U1 ):¢0(1‘le> —<p0(x, h 1)
0 0
* » L U1 T =y 2n
> — 20 - }
> <m,x x>—|—<v1, W W >,VZE]R

which yield

0

oo, )

{75 e )

<:1:* + %,x - x0> + < — %,vl — v?> , V(x,v1) € RQ”}.(?).G)

Y

Comparing (3.5) and (3.6) we derive that

—k %k Ul* — ok __ _ﬁ
=z + B U1 = B
whence
=T +01%, v =-hv"
20 — 30
This means that (T*,71%) € 0,9 (20) if and only if (T* + v1*, —hv1*) € o (xo, Tl)
The proof of the theorem is ended. O
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Optimization of Polyhedral Differential Inclusions

By passing to the formally limit in conditions of Theorem 3.1 as h — 0, we have the adjoint
polyhedral Euler-Lagrange inclusion with the transversality condition. It occurs that these
conditions are sufficient for the optimality of Z(t), ¢ € [0,1] in the problem for polyhedral
differential inclusions (Pg). We remind that our notation and terminology are generally
consistent with those in Mordukhovich [33], Mahmudov [27] and Pshenichnyi [35] for first
order differential inclusions. In what follows, we assume that z*(t), ¢ € [0, 1] is absolutely a
continuous function together with the first order derivatives for which z*" (-) € L.

Theorem 4.1. Let F be a polyhedral multivalued mapping defined by (1.3) and g(-, )
and ¢o(+) be a polyhedral functions. Then, in order for the trajectory Z(t) ,¢ € [0, 1],lying
interior to domF to be an optimal in Bolza problem with the second order polyhedral
differential inclusion (P¢), it is sufficient that there exists an absolutely continuous function
x*(t) satisfying the following polyhedral Euler-Lagrange inclusion and the transversality
condition almost everywhere
2 %
() T2

€ PyA(t) — Py 1 g(&(t),t) ae. t € [0,1],2*(t) = Q*A() A(t) >0,

(b) =220 — PrA(L) € dyo(i(1), 27(1) =0,

dt?

(c) <P05c(t) B0 Qdtin d,/\(t)> =0, aetel01].

Proof. By definition of subdifferential for all feasible solutions, we rewrite the Euler-Lagrange
polyhedral inclusion (a) in the form

o000, > (T2 pon + p A0 iy s
In turn, it follows from the condition (b), that
eola1) ~ po(i(1) 2 (P 4 piaw).2(1) - 30). (4.2

Now we transform, the right hand side of the inequality (4.1) :
dA(t)

d?x*(t) y . . d?*z*(t) .

(237 = BoM®) + L2 a(t) — a(t)) = (S () = (1))
. dA(t -
—(A(), Pox(t) — Po(t)) + <% Pia(t) - Pii(t) ). (4.3)
Moreover, for all feasible solutions z(-), the inequality
dx(t) d*x(t)
— <
Poa(t) + P = Q= <d
holds a.e. Then for A(t) > 0,¢ € [0, 1] we have

dflit),A(t)> < <Qd2dﬁ§t) —|—d,)\(t)>.

Using the third condition (¢) of theorem, we can write

<P0:U(t) )

<Pof(t)+P1dZ(tt),)\(t)> - <Qd2d€§t) +d7>\(t)>
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and then by subtracting the last two relations, we derive that

(Poa(t) — Poi(t) + Pldz—(tt) -n d”z(:) AlD) < <Qddﬁ§t) - Qddigt) A).

Recalling that *(t) = Q*A(t) , the last inequality can be rewritten as follows:

(Pox(t) — Po(t) + Pld“jd—gf) - P1dz—§f),)\(t)> < <d dﬁgt) _4d dﬁgt),x*(o) (4.4)

Then from (4.3) and (4.4), we conclude that

S BN + B a0~ 0) 2 (a0~ 30)

(D p B ) (L) RO ) 4 (PO piy) - pia)

or by rewriting it, we have

(228 poney + 20 ()~ 20) 2 (L5 10 200) - 20

(T - ) + iR~ P, 30}

Then (4.1) can be rewritten as follows

o (0).1) — a(e(0).0) > (T o) ) - (CAD T gy

dt?
+%<P1x(t) — PiE(t), A(¢)). (4.5)

Thus, integrating the inequality (4.5) over the interval [0, 1] and taking into account that
x(+), Z(+) are feasible (z(0) = Z(0) = «yp), we obtain

L 1 2:17*
/0 lo(t), 1) — g(2(2). )] dt > /O (T2 o) - ate)ya
_/0 <dda;§t) _ ddigt),w*(t)>dt+ (Pra(1) — Pa(1),A(1)). (4.6)

Furthermore, by summing the inequalities (4.2) and (4.6), we deduce that

j [g(a(t), ) — g(2(t),8)]dt + @o(x(1)) — po(E(1)) > — dx;lfl)’x(l) B 55(1)>
L d?z*(t) B 2x(t)  d2E(t)
+g [< ) - x(t)> - <F — T (t)>}dt. (4.7)

Now, since z*(t) = Q*A(t) and z(t),t € [0,1] is feasible (x(0) = £(0) = «ayg), (¢'(0) = &' (0) =
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a1), the integral on the right hand side of (4.7) can be evaluated as follows
' d2 “( . d*(x(t) —3(t) .
/0 dt2 I x(t)> - < d? - (t)ﬂdt
! 2 2(x(t) — &
At H@)%@_w )
— / it &, (z(t) — #(1)) — i<QM,)\(t)>]dt
0

dt dt

= (P o) - 200)) - (P9 o) - 20))
QU050 gy (odla)—am)
= (@ o) - a) - (I gy, (1.8
Consequently, recalling that %}El) =Q* d)(\i(tl) and by condition (b) of theorem z*(1) =

Q*A(1) =0, the relation (4.8) implies

1
d2 *( . d?(z(t) — 2(t) . dz*(1) .
/ dt2 ) a(t) — x(t)> - <T,x (t)>]dt = < Lz(1) — x(1)>. (4.9)
0
Therefore, taking into account (4.9), from the inequality (4.7) we have

1 1
| sta®.0dt +-o0(e1) = [ glato). 01+ ol (1),
0 0
ie. J(z(-)) — J(Z(-)) > 0 for all feasible solutions z(t) and so Z(t) is optimal. O

Remark 4.2. The result of Theorem 4.1 can be easﬂy generahzed to the polyhedral opti-
mization problem (Pg) with the function J(z fo t)dt + po(x(1),2'(1)), where
©o(++) : R" x R™ = R is a polyhedral functlon Indeed accordlng to the equivalence condi-
tions of Theorem 3.3, the transversality condition for problem (Ppa) , (z},(1—h)—PfA(1—
2h), x5 (1)) € 0%y (Zn(1 — h), Zx(1)) (see Remark 3.2) has a form:

( - Ath(l) - Pf)\h(]. - 2h), xZ) S a(po(i'h(l - h), Ahiﬁh(l))

Here as a result of formally limit as 1 — 0, we have the transversality condition for the
second order polyhedral optimization problem (Pz) with the objective function J(x(-)):

(- 2 = A, () € go(e(1), # (1)

or equivalently

eole(D). /(1) - 0@, 7)) > (W w)—50) - (PrA).2) - 2)
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To justify this, recall that by (4.8)

P00t 10) (PO o

- <%§”,m(1) - 55(1)> - <x*(1),x/(1) - :z’(l)>, (4.11)

where 2*(1) = Q*A(1) # 0. Then taking into account this relation, summing the inequalities
(4.6) and (4.10), it can easily be seen that

1 1
/ g(a(t),t)dt + po(z(1),2'(1)) Z/ 9(&(t), t)dt + po(Z(1),7'(1))
0 0
that is, J(z(t)) > J(&(t)), t € [0, 1] for all feasible solutions ().
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