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Abstract: In this paper, we study approximate solutions of vector optimization problems. We introduce
the concept of cone convex functions with respect to (in short w.r.t.) a mapping. Under this kind of cone
convexity assumption, we obtain the Karush-Kuhn-Tucker type necessary and sufficient optimality conditions
for quasiminimal solutions w.r.t. a mapping of vector optimization problems. We formulate approximate
Mond-Weir type dual problem and establish the duality results. We also consider vector optimization
problems with perturbed cone constraint. The necessary and sufficient optimality conditions and duality
results for quasi-solutions w.r.t. a mapping of vector optimization problems with perturbed cone constraint
are established.
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Introduction

In recent years, more and more attention has been focused on the study of approximate
solutions for vector optimization problems. There are two main reasons. One is computa-
tional challenge. Many iterative algorithms or heuristic algorithms will provide approximate
solutions rather than exact solutions. Another is the efficient solutions set may be empty,
but under very weak requirements, approximate efficient solutions set can be nonempty.
Moreover, sometimes we do not need to find an exact optimal solution even if it does exist
due to the fact that it is often very expensive to find an exact solution. The first and most
fashionable concept of approximation solution was introduced by Kutateladze[12], where a
fixed tolerance error has been taken, independent of the choice of the decision variable. This
seems rather a stringent condition. Hence, Loridan[15] introduced the concept of approxi-
mate quasi efficient solutions, by making the error dependent on the decision variable, one
can provide more flexibility to the idea of approximate efficiency, which extend the concept
of e-quasiminimal of scalar optimization problems introduced by himself[16].

In the very recent years, there have been an increasing interest in studying approximate
quasi efficiency solutions of vector optimization problems. Dutta and Vetrivel[2] introduced
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the concept of weak quasi efficient solution in finite dimensional space, and gave the optimal-
ity conditions for this type of solutions under convexity assumptions. In infinite dimensional
space, Liu and Lee[13] established Lagrange multiplier rules for (weak) approximate quasi
efficient solution of nonsmooth vector optimization. Gutiérrez, Loépez and Novo|[6] intro-
duced the concept of (weak) generalized e-quasi-solution of vector optimization problems,
that extends the approximate efficiency notions of the literature[15, 2, 7], and developed op-
timality conditions for a particular case of these kinds of weak generalized e-quasi-solution in
nonsmooth convex problems. A new kind of generalized approximate quasi efficient solution
for vector optimization was introduced by Gutiérrez, Jiménez and Novo[8], named minimal
quasi-solution w.r.t. a mapping, they characterized these solutions through scalarization
and Lagrange multiplier rules. It is well known that convexity and generalized convexity
play a crucial role in establishing optimality conditions for optimization problems. In or-
der to deal with approximation quasi solutions of scalar optimization problems or vector
optimization by the scalarization methods, e-convexity[11], approximate convexity[17], ap-
proximate quasiconvexity[5] and approximate pseudoconvexity[5] were introduced one after
another. In this paper, in order to deal with quasi-solutions w.r.t. a mapping, we introduce
a new class of generalized convexity for vector-valued functions, named C-convexity w.r.t.
a mapping. Under the convexity assumption, we establish Karush-Kuhn-Tucker (in short
KKT) type necessary and sufficient optimality conditions for minimal quasi-solution w.r.t.
a mapping.

Duality theory provides a rich framework for the development of solution methods for
optimization problems. In scalar optimization problems, Scovel, Hush and Steinwart[18] pro-
vided the Lagrangian duality theory for approximate solutions. Son, Strodiot and Nguyen[19]
formulated a Wolfe-type dual problem, presented e-duality theorems. As for the vector case,
there are a few articles to deal with approximate quasi efficient solutions of vector optimiza-
tion problems by considering dual problems, for example, please see[4, 14, 20] and references
therein. In this paper, based on the obtained KKT type necessary and sufficient optimality
conditions for quasiminimal solutions w.r.t. a mapping of vector optimization, we formulate
Mond-Weir type dual problems and study the duality theory for this kind of quasiminimal
solutions.

The paper is structured as follows. In Section 2 some well-known definitions and re-
sults used in the sequel are recalled. In Section 3 the concept of generalized cone convex
functions w.r.t. a mapping is defined and several properties are given. In Section 4 we
consider the vector optimization problems with cone constraint and perturbation cone con-
straint, respectively. For them, the KKT type necessary and sufficient optimality conditions
for quasiminimal solutions w.r.t. a mapping are obtained. In Section 5 we formulate two
approximate Mond-Weir type dual problems and establish duality results for vector opti-
mization problems with cone convexity w.r.t. a mapping.

Preliminaries

Throughout this paper, let X, Y, Z be real Banach spaces. Let X* Y* ,Z* be the dual spaces
of XY, Z, respectively. The apex of all cones considered in this paper will be at the origin.
For a cone C C Y, we set

Cr = {y eV : (yhy) 20,y eC},

Cc = {y eY :(y"y) >0,Vy € C\{0}}.

where (-, -) denotes the dual product between Y and Y*. Let T be a nonempty subset of X
and f: ' = Y a vector-valued mapping. Let C' be a nontrivial pointed convex cone in Y,
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which induces a partial order relation <¢ on Y as follows: Vy;,y2 € Y,
y1 <oy = 1y2—y1 €C,
Y1 <c\{o} Y2 == y2 — y1 € C\{0},
Y1 Sintc Y2 == Y2 — y1 € intC.

Definition 2.1. Let Z € X, f: X — Y is said to be Gateaux differentiable at z if for any
veX,

i {@ 1)~ (@)

t—0+ t

exists and the limit is denoted by f (z;v).

Definition 2.2. A subset ' of X is said to be convex if, for any z,y € ' and A € [0, 1],
A+ (1—=NyeTl.

Definition 2.3 ([1]). The function f is said to be C-convex on convex set T, if for any
z,y € and t € [0,1],

tf (@) + (1= )f(y) — fltz + (1—t)y) € C.

Definition 2.4 ([9, 10]). The function f : I' = Y is said to be C-convexlike on T, if, for
any x,y € I' and ¢ € [0,1], there exists z € I such that

tf(z) + (1 =1)f(y) = f(2) € C.

Obviously, every C-convex function is C-convexlike. The following alternative theorem
is a special case of the convexlike results given by Jeyakumar [10].

Lemma 2.5. Let I' be a convex subset of X and let f : ' = Y be a C-convex function.
Then, exactly one of the following statements holds:

(i) 3xg € T, such that f(xzp) € —intC;

(i) Jy* € C*\{0}, such that (y*, f(z)) > 0,Vz €T

By the definition of C-convexity, it is easily to obtain the following lemma.

Lemma 2.6. Let C be closed, the function f: ' — Y C-convex on convex set I'. Suppose
that f is Gateaux differentiable at = € I'. Then, for any = € T,

f(x)—f(&@) - f'(z;2 — %) € C.

Generalized Cone Convex Functions

In this section, we will introduce a new class of vector-valued cone convex functions, named
C-convex functions with respect to (for short w.r.t.) a mapping ¢ : ' xI' — R, as a
generalization of cone convex functions.

In the following, we always assume e € C\{0}, ¥, := ¢(:, 2), ¥.e := ¥(-, z)e, where
zel.

Definition 3.1. Let I' C X be a convex set and z € I'. The function f : ' — Y is said to
be C-convex w.r.t. a mapping ¥.e if the function f(-) + (-, z)e is C-convex.
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Remark 3.2. 1) If ¢, is convex, then t¢,e is C-convex. Let h(z) = f(z) + 1(x,z)e. Then
f(x) = h(z) — Y(z,2)e. If fis C-convex w.r.t. ¥,e and 1, is convex, then f is a vector-
valued DC' function[3].

2) If f is C-convex and 1, is convex, then f is C-convex w.r.t. ¥,e. Specially, if taking ¥, =
|l = z||, then 1, is convex. Let f be C-convex, then z — f(x)+ ¢ (z,2)e = f(x) + || — z|e
is C-convex.

3)When f is C-convex w.r.t. ¥,e, f is not necessarily C-convex. Please see the following
examples.

Example 3.3. Let f: R — R? and ¥ : R x R — R, be defined by, respectively,
_ 1,1), z=0,
fx) = { (0,0), = # 0.
0, =0,z € R,
viz,2) = { 1, x 420,z € R.
Let C = R, e = (1,1). Then, f(z) + ¢(z,2z)e = (1,1). Hence, f is R?-convex w.r.t. ¢.e.

But f is not C-convex, because there exist x1 =1, zo = =1, A = % such that

fQz 4+ (1= N)z2) = f(0) = (1,1) £pz (0,0) = Af(21) + (1 = A)f(22).
In Example 3.3, 1, is convex. Next, we give another example with nonconvex ..

Example 3.4. Let f:[-1,1] — R? and ¢ : [-1,1] x [-1,1] — R, be defined by, respec-
tively,
fla) = (a®,2?),
P(x, 2) = =23 + 2% + 2.
Let C = R, e = (1,0). Then, f(z) + ¢(z,z)e = (z* + z,27). Hence, f is R -convex w.r.t.

¥,e. But f is not C-convex, because there exist 1 = —1, x5 = %, A= % such that
O+ (1= N)as) = F(=5) = (= ) o (=, 2) = Af(an) + (1= N (w2)
o V)= T e 16! TR g g/ T AW ¥2)-

In the following, we always suppose that I' C X is a convex set, C C Y is a pointed closed
convex cone with nonempty interior. Now we give some properties of C-convex functions
w.r.t. a mapping ¥,e.

Theorem 3.5. Let z € I'. If f : ' — Y is C-convex w.r.t. tze on I' and Gateaux
differentiable at Z, ¢ is Gateaux differentiable at (Z, Z), then

f@) = f(@) + (2, 7) = (@, 7)e - f1(Z 2 - 7) = ((2,7); (x — 7,0))e € C.

Proof. Since the function f is C-convex w.r.t. ¥ze on I, for any « € I" and for any ¢ € (0, 1),
we have

t(f(x) +¥(x,z)e) + (L —=t)(f(&)+ ¢z, T)e) — flte+ (1 —t)T) — ¢tz + (1 — )T, T)e € C.

Hence

Because C is closed, letting t — 0T, we get

f@) = (@) + (W(z,7) = (2, 2))e - [T — 2) = '((2,7); (z — 2,0))e € C.
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Corollary 3.6. Let € I'. And let f : ' = Y be C-convex w.r.t. ¥ze on I' and Gateauz
differentiable at Z. In addition, let ¥ (z,y) = 0 if and only if x = y. Then

f(x) = f(&) + ¢z, Z)e — f (T2 —7) € C.

Considering the following vector optimization problem:

min  f(x)
(VOP) s.t. zel.

where I' C X, f: ' — Y, X,Y are two real Banach spaces, C' C Y is a pointed closed
convex cones with nonempty interior and induces the ordering relationship in Y.
Firstly, we recall some concepts of solution for (VOP).

Definition 3.7. A point Z € T is said to be an efficient solution of (VOP) if

(f (1) = f(2)) N (=C\{0}) = 0,
and a weak efficient solution of (VOP) if

(f(T) = f(2)) N (=intC) = 0.

Definition 3.8. ([13]) Let ¢ € R, ¢ > 0 and e € C\{0}. T € S is said to be an ce-quasi
efficient solution(resp. weak ce-quasi efficient solution) of (VOP) if

f(x) = f(@) +el|z —zlle g —C\{0}, Vz €T
(resp.  f(z)— f(Z) +¢|lz — Z|le & —intC, Vz € T).

When e = 0, ee-quasi efficient solution(resp. weak ee-quasi efficient solution) of (VOP)
will coincide with efficient solution (resp. weak efficient solution) of (VOP).

Recently, Gutiérrez, Jiménez and Novo[8] introduced a concept of minimal quasi-solution
for (VOP) with set-valued perturbations and characterized this solutions through scalariza-
tion and Lagrange multiplier rules.

Definition 3.9. ([8]) Let ¢ : I' x I' — R, be such that ¢(z,y) = 0 if and only if x = y.
z € I is said to be a minimal quasi-solution of (VOP) w.r.t. ¢ if

f(l’) - f(i') - @(x,i)q g 70\{0}7 Va € Fa v‘] € C\{O}a
and a weak minimal quasi-solution of (VOP) w.r.t. ¢ if

As a particular case of Definition 3.9, in this paper we discuss the following quasiminimal
solutions of (VOP) w.r.t. a mapping e, where pe := ¢(-,)e, and establish optimality
conditions and duality results for it.

Definition 3.10. Let e € C\{0} and ¢ : T' x ' — R, be such that ¢(z,y) = 0 if and only
if x =y. Z €T is said to be a quasiminimal solution of (VOP) w.r.t. pe if

f(x) = f(@) + (x,2)e ¢ —C\{0}, Vo €T,
and a weak quasiminimal solution of (VOP) w.r.t. pe if

f(z) = f(T) + p(z,T)e & —intC, Vx € T.
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Remark 3.11. If we take ¢(z,y) = ||z — y||, € > 0, then (weak) quasiminimal solution of
(VOP) w.r.t. we coincide with (weak) ee-quasi efficient solution.

Definition 3.12. Let e € C\{0} and ¢ : I x I' — R be such that ¢(z,y) = 0 if and only
if x =y. € T is said to be a locally quasiminimal solution of (VOP) w.r.t. pe if there is a
neighborhood U of T such that

f@) = f(@) + p(z,2)e ¢ —~C\{0}, V2 €T NT,
and a locally weak quasiminimal solution of (VOP) w.r.t. e if
f(x) = f(z) + p(x,T)e & —intC, Yz € T NU.

Definition 3.13. Let e € C\{0} and ¢ : T' x I' = Ry be such that ¢(x,y) = 0 if and only
if =y. z €T is said to be a quasimaximal solution of {mazf(z):z € I'} w.r.t. pe if

f(@) = f(Z) = (T, x)e ¢ C\{O}, Vo €T,
and a weak quasimaximal solution of {mazf(z):x € T'} w.r.t. e if
f@) = f(Z) — p(Z,x)e & intC, Yz €T.

Theorem 3.14. Let T’ be a convex set, T € T a locally quasiminimal solution of (VOP)
w.r.t. e, and let f : ' =Y be C-convex w.r.t. pzeonI'. Then Z is a globally quasiminimal
solution of (VOP) w.r.t. ge.

Proof. Let Z € T be a locally quasiminimal solution of (VOP) w.r.t. we. Then, there is a
neighborhood U of T such that

flz) = f(@) + o(z,T)e ¢ —C\{0}, Yz eI NU. (3.1)

Suppose that Z is not a globally quasiminimal solution of (VOP) w.r.t. @e. Then, there is
a y € ' such that

fy) = f(@) + oy, 2)e € —=C\{0}. (3.2)
Because the function f is C-convex w.r.t. pze and (7, Z) = 0, by Definition 3.1, we get
f@+ty—2)) = f(@)+o@+tly—2),2)e—t(f(y) - [(Z) +¢(y, T)e) € =C, ¥Vt € [0,1]. (3.3)
(3.2) and (3.3) imply that, for any ¢ € (0,1),
f@+tly—2)— f(@)+ @ +tly—7),%)e e —C — C\{0} C —C\{0}. (3.4)
For small enough ¢, T + t(y — Z) € U, then (3.4) contradicts (3.1). O

Similar to the proof of Theorem 3.14, we get the following theorem about weak quasi-
minimal solution of (VOP) w.r.t. pe.

Theorem 3.15. Let I' be a convex set, £ € I' a locally weak quasiminimal solution of
(VOP) w.r.t. e, and let f : T' — Y be C-convex w.r.t. pze on I'. Then T is a globally weak
quasiminimal solution of (VOP) w.r.t. we.
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Optimality Conditions

Consider the following vector optimization problem with cone constraint:

min  f(z)
(VP) s. t.  g(x) e —D,
zel,

where ' C X, f:T' =Y, g: T - Z. XY, Z are three real Banach spaces, C C Y,
D C Z are pointed closed convex cones with nonempty interior and induce the ordering
relationships in Y and Z, respectively. We denote S := {z € I' : g(x) € —D}, i.e. S is the
feasible set of (VP).

Now we give the necessary and sufficient optimality conditions for quasiminimal solution
of (VP) w.r.t. we. In the following, we assume that I' is a convex subset of X.

Theorem 4.1. Let Z € T be a weak quasiminimal solution of (VP) w.r.t. pe. Suppose
that f : I' = Y is C-convex w.r.t. pze, g : I' — Z is D-convex, and f,g are Gateaur
differentiable at Z, ¢ is Gateaux differentiable at (Z,Z). Then, there exists (A, u) € C* x D*
with (A, u) # (0, 0) such that

A\ f(@2—2) + (g (@2 —2)) + ¢ ((2,2); (2 — 7,0)) (A e) 20, Vael,  (41)
(n,g(z)) = 0. (4.2)

Proof. Since T € T' is a weak quasiminimal solution of (VP) w.r.t. we, we have
f@)— f(Z)+ ¢(x,T)e & —intC, Ve e S:={x el :g(x)e€ —D}.
Hence, there exists no x € T" such that
(f(z) = f(z) + ¢(z,T)e, g(x)) € —int(C x D).
By Lemma 2.5, there exists (A, u) € C* x D* with (A, u) # (0,0) such that
A f(@) = £(Z) + p(z, T)e) + (u, g(x)) > 0, Vo €T (4.3)

Taking x = Z in (4.3), we get

(b, 9(z)) 2 0. (4.4)
On the other hand, ¢(z) € —D, u € D*, then
(n9(2)) < 0. (4.5)

The inequalities (4.4) and (4.5) imply (u, g(Z)) = 0, i.e. (4.2) holds. Since I is a convex set,
for any x € T, for any t € (0,1), T+ t(z — Z) € . By (4.3) and (i, g(Z)) = 0, we obtain

MA@+t =) = f(2) + (1 9(Z + Uz = 7)) = g(2)) + (T + t(z — ), T) (A, €) = 0.

Consequently,

<A7 f@+t(x—1)) - f(a’f)> N <u, 9(z +t(x — 7)) —9(56)> L P+t —7),7))

> 0.
" ; (MNey=0

Letting t — 07, we get
A (@ e = 2)) + (g (50 = ) + ¢'((7,2); (¢ = 2,0)) (N €) 20, V€T,
i.e. (4.1) holds. O
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Corollary 4.2. If the conditions of Theorem 4.1 are satisfied, in addition, ¢z is convex,
then there exists (A, u) € C* x D* with (A, u) # (0,0) such that

</\,f/(i‘;.13 - j)> + </~ng/(-i;x - i‘)> + <P($7i')</\’e> >0, Vzel,

(1, 9(z)) = 0.

Theorem 4.3. Let f, g and ¢ be as in Theorem 4.1. Suppose that £ € ' be a weak
quasiminimal solution of (VP) w.r.t. e and there is & € T such that g(&) € —intD. Then
there exist A € C*\{0}, p € D* such that

N (@2 = 2) + (g (70 — 7)) + ¢'((7,7); (¢ — 7,0))(\e) >0, Vael,  (4.6)

(1, 9(@)) = 0. (4.7)

Proof. Let & be a weak quasiminimal solution of (VP) w.r.t. ge. It follows from Theorem
4.1 that there exists (A, ) € C* x D* with (A, u) # (0,0) such that (4.6) and (4.7) hold.
Next we prove A # 0. Assume, on the contrary, A = 0, then p # 0. Thus, letting x = Z in
(4.6), we get

(u,g'(z;2 — 7)) > 0. (4.8)

Since g is D-convex, by Lemma 2.6, we have

9(&) —9(z) — ¢'(z;2 — ) € D.

Hence,
(1:9(2) = 9(2)) = (1, ¢'(: 7 — 2)). (4.9)
By (4.7), (4.8) and (4.9), we obtain

(,9(2)) > 0. (4.10)
On the other hand, g(&) € —intD and 0 # p € D* imply (i, g(Z)) < 0, which contradicts
(4.10). So, A # 0. O

Theorem 4.4. Let z €', and let f : ' = Y be C-convex w.r.t. pze, g: ' — Y D-convex
on convex set I', f and g Gateaux differentiable at Z, ¢ is Gateaux differentiable at (Z, Z).
If there exist A € C*\{0}, p € D*, T € S such that (4.6) and (4.7) hold, then Z is a weak
quasiminimal solution of (VP) w.r.t. ge.

Proof. Since f is C-convex w.r.t. pze and g : I' = Y is D-convex, by Theorem 3.5, we get

9(z) — g(z) — ¢'(z;2 - 7) € D.
Hence, for A € C*, p € D*,

A f(@) = f(@) + (@, 2)e) = (N (T2 — 7)) — @' ((2,2); (2 = 7,0)) (A, e) 2 0. (411)

(1. 9(x) — 9(2)) — (. ¢’ (T30 — 7)) > 0. (4.12)
Adding (4.11) and (4.12), by (4.6), (4.7), we obtain

A f(@) = f(@) + oz, )e) + (1, g(x)) = 0.
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For any feasible solution x € S of (VP), (u, g(x)) < 0. Hence,
A f(2) = f(z) + p(z,T)e) > 0.
Since 0 # A € C*, we have
f(x) = f(Z) + o(z,T)e & —intC, Vz €S,
which shows that z is a weak quasiminimal solution of (VP) w.r.t. ge. |

Theorem 4.5. Let f,g and ¢ be as in Theorem 4.4. If there exist A € C*, p € D*, z € S
such that (4.6) and (4.7) hold, then Z is a quasiminimal solution of (VP) w.r.t. pe.

The proof of Theorem 4.5 is similar to Theorem 4.4, here it is omitted.
Next, we consider the optimization problem with perturbation cone constraint:

min  f(x)
(VP)x s. t.  g(x)+w(x,T)p € —D,
rzel,

where I' is a convex subset of X, Z € I', f: T - Y, g: ' - Z, w:T'xI' - Ry and
w(z,y) = 0ifand only if z = y, p € D\{0}. We denote Sz := {z € " : g(x)+w(x,Z)p € —D},
i.e. Sz is the feasible set of (VP)z. Let wzp := w(-, Z)p.

Theorem 4.6. Let Z € T’ be a weak quasiminimal solution of (VP); w.r.t. pe. Suppose
that f : I' — Y is C-convex w.r.t. @ze, g : I' — Z is D-convex w.r.t. wzp, f,g are
Gateaur differentiable at Z and ¢, w are Gateaux differentiable at (Z,Z). Then, there exists
(A, n) € C* x D* with (A, u) # (0,0) such that

N f (@ 2—2)+(u, ¢ (32—2)) +¢' (7, 7); (r—7,0)) (A, )+ (7, T); (£ —7,0)) (1, p) > 0,
Veel, (4.13)

(b, 9(x)) = 0. (4.14)
Proof. Suppose that Z € I' is a weak quasiminimal solution of (V P)z w.r.t. we, we have
f(z) = f(@) + p(z,T)e & —intC, Vo e Sz :={zr el :g(x)+w(x,z)pe —D}.
Hence, there exists no x € I" such that
(f(2) = £(2) + p(@,B)e, g() +w(z,)p) € —int(C x D).

By the cone convexity of f and g w.r.t. a mapping, and Lemma 2.5, there exists (A, u) €
C* x D* with (A, u) # (0,0) such that

N f(x) — f(@) + p(x,Z)e) + (u, g(x) + w(z,T)p) 20, Vo €T (4.15)

Taking = Z in (4.15), we get
(,9(z)) = 0. (4.16)
On the other hand, since g(Z) + w(z,Z)p € —D, u € D*, p € D\{0}, we have

{n,9(z)) < 0. (4.17)
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e. (4.14) holds. Since I' is a convex

The inequalities (4.16) and (4.17) imply (i, g(Z)) =0, i
z) € F By (4.15) and (u, g(Z)) = 0, we

set, then, for any z € T, for any ¢ € (0,1), T+ ¢(x —

obtain
A f@+tz—12)) = f(2) + (p,9(@ +tz —2)) — g(2))
+o(Z +tlx —z),z)(\e) +w(T + t(x — T),Z){u,p) = 0.
Consequently,
f(@+tz—2) - f(z) (@ +tx—1)) —g(@)
</\’ t > * <”’ ’ ' : >
oz +t(£;:—x) )</\ &) + w(f—kt(ag—f),i‘) p) > 0.

Letting ¢t — 0™, we get

A\ (@5 2—2)) + (. ¢ (T2 -2)) +¢' (2, 2); (2 -2, 0)) (A, €) +w' (2, 2); (z—2,0)) (1, p) = 0,
Vzxel,

i.e. (4.13) holds. O

Corollary 4.7. If the conditions of Theorem 4.6 are satisfied, in addition, ¢z and wz are
convex, then there exists (A, u) € C* x D* with (A, u) # (0,0) such that

A (@2 = 7))+, g/ (T2 — 2)) + @z, 2) (N, e) +w(z,Z){u,p) 20, VaeT,

(1, 9(2)) = 0.

Theorem 4.8. Let f,g and ¢,w be as in Theorem 4.6. Suppose that £ € T' is a weak
quasiminimal solution of (VP)z w.r.t. e and there is & € I" such that g(&) + w(&,Z)p €
—intD. Then there exist A € C*\{0}, u € D* such that

N (@ 2=2))+ (s ¢ (T 0—2)) +¢' (7, 7); (2-7,0)) (N, €) +0' (7, 2); (£ —7,0)) (u, p) > 0,
Vazel, (4.18)

{1, 9(2)) = 0. (4.19)

Proof. Let T be a weak quasiminimal solution of (VP)z w.r.t. ge. It follows from Theorem
4.6 that there exists (A, u) € C* x D* with (A, u) # (0,0) such that (4.18) and (4.19) hold.
Next we prove A # 0. Assume, on the contrary, A = 0, then p # 0. Thus, letting x = Z in
(4.18), we get

(n,g'(z;2 — 7)) + (2, 7); (& — 7,0)) (1, p) > 0. (4.20)
Since g is a D-convex w.r.t. wzp, by Theorem 3.5, we get
9(2) — 9(z) + w(&, 2)p — g'(7;& — 7) — ' (7, 2); (2 — ,0))p € D.
Hence,
(1, 9(2) — g(2) + w(@,2)p) = (1, 9'(7: 2 — 7)) + ' ((2,2); (2 — 2,0)){u, p). (4.21)
By (4.19), (4.20) and (4.21), we obtain
(1, 9(%) + w(2,Z)p) = 0. (4.22)

On the other hand, ¢(£) + w(&,Z)p € —intD and 0 # p € D* imply (u, g(Z) +w(Z, Z)p) < 0,
which contradicts (4.22). So, A # 0. O
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Theorem 4.9. Let £ € I', f and g be Gateaux differentiable at =, ¢,w are Gateaur
differentiable at (Z,z), and let f : I' = Y be C-convex w.r.t. pze, g : ' = Y D-convex
w.r.t. wgp on I'. If there exist A € C*\{0}, u € D* such that (4.18) and (4.19) hold, then Z
is a weak quasiminimal solution of (V P)z w.r.t. ge.

Proof. Since f is C-convex w.r.t. pze and g : I' — Y is D-convex w.r.t. wzp, by Theorem
3.5, we get

f@) = f(@) + o, z)e — f'(@2 —7) — ¢ ((2,2); (z — 2,0))e € C.
9(x) — 9(z) + w(z, T)p — ¢'(T;20 — 7) — W' ((2,2); (x — 7,0))p € D.
Hence, for A € C*, u € D*,
(A f(@) = f(@) + o2, 2)e) — (A, /(T2 — 7)) — (2, 2); (v = 2,0)) (A, e) 2 0. (4.23)
(1, 9(z) — 9(2) + w(z,2)p) — (1, ¢' (T2 — 7)) — ' ((2,2); (x — 2,0))(\,p) 2 0. (4.24)
Adding (4.23) and (4.24), by (4.18) and (4.19), we obtain
(A f(@) = (@) + olz, T)e) + (1, 9(z) + w(z, Z)p) = 0.
For any feasible solution x € Sz, (u, g(z) + w(z, #)p) < 0. Hence
(A f(@) = f(@) + (z,T)e) > 0.
Since 0 # A € C*, then
f(x) — f(&) + p(z,2)e & —intC, Vz € Sg,
which shows that Z is a weak quasiminimal solution of (V P); w.r.t. ge. O

Theorem 4.10. Let f,g,,w be as in Theorem 4.9. If there exist A € C**, y € D*, z € S
such that (4.18) and (4.19) hold, then Z is a quasiminimal solution of (VP)z w.r.t. e.

The proof of Theorem 4.10 is similar to Theorem 4.9, here it is omitted.
The following example illustrate Theorem 4.3 and 4.4.

Example 4.11. Consider a (VP) as follows:
st g(x)=22-1 <0,

We take C' = R2, D = Ry, p(z,z) = |z — z|, e = (1,0).

We can verify that £ = 0 € [—1,1] is a weak quasiminimal solution of (VP) w.r.t. we.

fis Ri—convex w.r.t. pze, g is convex, f and g are Gateaux differentiable at z = 0,

V£0) = (1,0)F, ¢’(0) = 0, ¢ is Gateaux differentiable at (0,0), for any = € [—1,1],

¢'((0,0); (z,0)) = |2/, there exists & = 1 such that g(&)+w(&,2)p = (3)?—3+[z| = - <.
]

Now, there exist A = (A1, A2) with A\; > 0, i = 1,2, u = 0 such that for any « € [-1,1],
A (@2 —2) +(u g (@2 — 7)) + @' ((2,2); (= 2,0)) (A, €) = Mz + Mz] > 0.

{1, 9(x)) = 0.
The following example illustrate Theorem 4.8 and 4.9.
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Example 4.12. Consider a (VP); as follows:

min  f(x)
s. t. g(x)+w(x,z)p <0,
xz € [-1,1],

where f(z) = (z,2%), g(z) = 2? — §, w(z,2) = |z — 7|, p=1. We take C = R2, D = Ry,
¢($7j) = |l’ - ‘i|7 €= (170)

We can verify that £ = 0 € [—1, 1] is a weak quasiminimal solution of (V P)z w.r.t. we. f
is Ri—convex w.r.t. pze, g is convex w.r.t. wzp, [ and g are Gateauz differentiable at T = 0,
V£(0) = (1,0)T, ¢’(0) = 0, p,w are Gateauxr differentiable at (0,0), for any = € [~1,1],
©'((0,0); (2,0)) = ||, w'((0,0); (x,0)) = |z, there exists # = 1 such that g(2) + w(&,z)p =
()2 =1 + 2| = =< < 0. Now, there exist A = (A, A2) with \; > 0, i = 1,2, u = 0 such
that for any = € [—1,1],

M (@52 = 2) + (' (T2 — 7)) + ¢ (7, 2); (2 = 2,0) (A, ) + (2, 7); (¢ — 7,0)) (1, p)

= Mz + Mz| > 0.
(1, 9(z)) = 0.

Approximate Duality

Consider the following approximate Mond-Weir type dual problem:

max  f(y)
s.t. (N f(ye—y) + (g (v —y) + @' (g, v); (2 —y,0)) (N e) >0, YreTl,
(AVD) (1, 9(y)) >0,

yel, 0#NeC*, pe D,
wheree e C\{0}, T C X, f:T =Y, g: T > Z, p: X xX — Ry and p(z,y) = 0 if and
only if x = y.

Theorem 5.1 (Approximate Weak Duality). Let 2 € T’ be a feasible solution of (VP) and
(y, A, 1) be a feasible solution of (AVD). Let f : I' — Y be C-convex w.r.t. gyeand g : I' — Z
D-convex on convex set I', f, g Gateauzr differentiable at & and ¢ Gateaur differentiable at
(y,9). Then

f(@) = f(y) + o(z,y)e & —intC.

Proof. Since f is C-convex w.r.t. ¢ye and g is D-convex, by Theorem 3.5 and Lemma 77,
for the dual feasible solutions x € T and (y, A, 1), we get

f(@) = fy) +e(z,y)e = f(y;2 —y) — &' (y,9); (x — y,0))e € C,

g(z) —g(y) —g'(y;z —y) € D.
As A e C*, u e D,

A fl) = F) + (@, y)e) — N flys e —y) — @' (9, 9); (= 9,0)) (A e) >0, (5.1)

(1 9(x) = 9(y)) — (. 9" (w52 = y)) = 0. (5:2)
Adding (5.1) and (5.2), by feasibility of (y, A, u) for (AVD), we obtain

A (@) = fy) + e(z,y)e) + (u, g(x)) = 0.
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According to feasibility of x, we get (i, g(x)) < 0. Hence,

A f(@) = fy) + o(z,y)e) = 0.

Because A € C* and X\ # 0, we get f(z) — f(y) + p(z,y)e € —intC. The proof is completed.
U

Theorem 5.2 (Approximate Strong Duality). Let Z € T’ be a weak quasiminimal solution
of (VP) w.r.t. we. Suppose that f:T' = Y is C-convex w.r.t. pze, g : ' = Z is D-convex
on I, f, g are Gateaux differentiable at Z and ¢ is Gateaux differentiable at (z,z). If there
is some & € T, such that g(#) € —intD, then there exist 0 # A € C* and i € D* such that
(Z,\, i) is a weak quasimaximal solution of (AVD) w.r.t. ge.

Proof. Since the conditions of Theorem 4.3 are satisfied, there exist 0 # X\ € C* and i € D*
such that (4.6) and (4.7) hold. Thus (Z, A, i) is dual feasible. If (Z, ), fi) is not a weak
quasimaximal solution of (AVD) w.r.t. e, then there is a feasible solution (y, A, u) of
(AVD), such that

fly) = f(x) — ¢(z,y)e € intC,
which contradicts the Approximate Weak Duality. O

Theorem 5.3 (Approximate Converse Duality). Let (7, A, i) is a weak quasimaximal so-
lution of (AVD) w.r.t. we. Suppose that f : I' — Y is C-convex w.r.t. ¢ge, g : I' = Z
is D-convex on I', f, g are Gateaux differentiable at T and ¢ is Gateaux differentiable at
(g,9). If there is some & € T, such that g(&) € —intD, then § € T" is a weak quasiminimal
solution of (VP) w.r.t. we.

Proof. On the contrary, assuming that § € I" is not a weak quasiminimal solution of (VP)
w.r.t. pe, then there is a feasible solution x € S such that

f@) = f(@) + ¢(x,9)e € —intC.
Because 0 # \ € C*, we get

(A f(@) = f(@) + o(z,7)e) <O0. (5.3)

According to the convexity of g and f w.r.t. pze and the feasibility of (g, A, 1) for (AVD),
similar to the proof of Theorem 5.1, we obtain

A f(@) = f() + oz, y)e) = 0.
which contradicts (5.3). 0

Consider optimization problems (VP), with perturbation cone constraint, we formulate
the following approximate Mond-Weir type dual problem:

max  f(y)
s.to Ny —y) + (g’ (v e —y))
(AVD). +¢' ((y,y); (x — 9,0)) (A e) + ' ((y,9); (x —,0))(p,p) >0, VaeT,
(1, 9(y)) >0,
yel, 0#Xe C* pue D

where e € C\{0}, p e D\{0}, T C X, f: T =Y, g: T = Z, o :TxI — Ry and
olr,y) =0 =y, w:I'xI' > Ry and w(z,y) =0z =y.
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Theorem 5.4 (Approximate Weak Duality). Let « € T" be a feasible solution of (V P), and
(y, A, 1) be a feasible solution of (AVD).. Let f:T' — Y be C-convex w.r.t. pye,g:I' = Z
D-convex w.r.t. wyp on convex set I', f,g Gateauz differentiable at y and ¢,w Gateaux
differentiable at (y,y). Then

f@) = fly) + oz, y)e & —intC.

Proof. Since f is C-convex w.r.t. ¢ye and g is D-convex w.r.t. wyp, by Theorem 3.5, for
the dual feasible solutions = € I' and (y, A, ), we get

f(@) = fy) + ez, y)e = f(y;2 —y) — &' (y,9); (x — y,0))e € C,

g(x) —g(y) + w(z,y)p — ¢ (y;2 — y) — ' ((y,); (x — y,0))p € D.
As A e C*, ue D,

(A f(@) = f) +e@y)e) = N flyse —y) — ¢ (0, 9); (@ —y,0)(A,e) 20, (54)

(1 9(x) = 9(y) + w(z, y)p) — (. g' (2 = y)) = ' ((W,9); (& = ¥, 0)(w,p) 2 0. (5.5)
Adding (5.4) and (5.5), by feasibility of (y, A, u) for (AVD)., we obtain

A f(@) = f(y) + o(z,y)e) + (u, g(x) + w(z,y)p) > 0.

According to feasibility of « for (VP),, we get (i, g(x) + w(z,y)p) < 0. Hence,

Because A € C* and A # 0, we get f(z)—f(y)+p(z,y)e € —intC. The proof is complete. O

Theorem 5.5 (Approximate Strong Duality). Let € I be a weak quasiminimal solution
of (VP)z w.r.t. pe. Suppose that f: ' = Y is C-convex w.r.t. @ze, g: ' = Z is D-convex
w.r.t. wzp on I, f, g are Gateaux differentiable at T and ¢, w are Gateaux differentiable at
(z,7). If there is some & € T, such that g()+w(Z, %) € —intD, then there exist 0 # \ € C*
and i € D* such that (Z, \, i) is a weak quasimaximal solution of (AV D), w.r.t. ge.

Proof. Since the conditions of Theorem 4.8 are satisfied, there exist 0 # X\ € C* and i € D*
such that (4.18) and (4.19) hold. Thus (Z, A, i) is dual feasible. If (Z,\, 1) is not a weak
quasimaximal solution of (AV D). w.r.t. e, then there is a feasible solution (y, A, ) of
(AV D)., such that

fy) — f(Z) — (T, y)e € intC,

which contradicts the Approximate Weak Duality (Theorem 5.4). O

Theorem 5.6 (Approximate Converse Duality). Let (7, A, i) is a weak quasimaximal so-
lution of (AV D). w.r.t. we. Suppose that f : I' — Y is C-convex w.r.t. gge, g:I' — Z
is D-convex w.r.t. wgp on I, f, g are Gateaur differentiable at 4 and ¢,w are Gateaux
differentiable at (g,y). If there is some & € T, such that ¢(Z) + w(&,y) € —intD, then g € T’
be a weak quasiminimal solution of (VP); w.r.t. pe.

Proof. On the contrary, assuming that § € I is not a weak quasiminimal solution of (VP)j
w.r.t. e, then there is a feasible solution = € Sy such that

flx) = f(§) + o(z,§)e € —intC.



OPTIMALITY CONDITIONS AND DUALITY 509

Because 0 # A € C*, i € D* and z € Sy, we get

—
ot
D

6)

According to the convexity of f w.r.t. ¢ze and g w.r.t. wyp and the feasibility of (7, \, i)
for (AVD),, similar to the proof of Theorem 5.4, we obtain

(N, f(x) = f(@) + ez, 9)e) + (1, g(x) + w(z, §)p) < 0.

N f(@) = f(@) + ez, 9)e) + (B, 9(x) + w(@, g)p) = 0.
which contradicts (5.6). O
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