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STRONG KUHN-TUCKER OPTIMALITY IN NONSMOOTH
MULTIOBJECTIVE OPTIMIZATION PROBLEMS*
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Abstract: In this paper, a nonsmooth multiobjective optimization problem with inequality constraints is
considered. T'wo types of regularity conditions are proposed in terms of Clarke derivative and relations with
some other regularity conditions are investigated. A strong Kuhn-Tucker necessary optimality condition is
derived under one regularity condition and some examples are given to illustrate the main results.
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Introduction

Multiobjective optimization theory has been playing an important role in many fields such
as economics and engineering design (see [10,13,18]). We say that strong Kuhn-Tucker
conditions hold when all the multipliers corresponding to the objective functions are positive.
In general, it needs some conditions to ensure strong Kuhn-Tucker necessary optimality
conditions. These conditions are called regularity conditions (RC) when they have to be
fulfilled by both the objective and the constraints. Regularity conditions are essential in
deriving the Kuhn-Tucker necessary optimality conditions of multiobjective optimization
problems.

Maeda [14] was the first to introduce a generalized Guignard regularity condition and
established strong Kuhn-Tucker necessary optimality conditions for a differentiable multiob-
jective optimization problem with inequality constraints. Afterwards, researchers proposed
various regularity conditions to derive Kuhn-Tucker necessary optimality conditions of mul-
tiobjective optimization problems. Especially, by using some nonsmooth analysis tools such
as Clarke generalized gradients, Mordukhovich subdifferentials, etc, these regularity condi-
tions were generalized to the nonsmooth case (see [9,11,12,16]). How to propose weaker
regularity condition and obtain the strong Kuhn-Tucker optimality conditions becomes one
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of the interesting topics. Recently, Burachik and Rizvi [2] proposed two types of new regu-
larity conditions and established strong Kuhn-Tucker necessary optimality conditions for a
smooth multiobjective optimization problem with inequality constraints.

Motivated by the works of [2,8,9,12], this paper aims at a nonsmooth multiobjective
optimization problem with inequality constraints. We propose two types of regularity con-
ditions in terms of Clarke derivative and discuss relations with other regularity conditions.
Furthermore, we apply one regularity condition to establish a strong Kuhn-Tucker necessary
optimality condition.

Preliminaries

Let R™ be the n-dimensional Euclidean space, R be the points in R™ with all coordinates
positive or null. For z,y € R", we use the following notations:

$§y¢>$zZyu Vi:]-aQa"'anv

r>y<sx2yand x £y,
x>y >y, Vi=1,2,....n.

Let A C RP. convA and clA represent the convex hull and the closure of A, respectively. The
generated cone of A is defined by coned = {Aa|] A = 0,a € A}. In this paper, we consider
the following nonsmooth multiobjective optimization problem (P):

(P) min f(z) = (fi(x), f2(x), -, fi2))
st.gj(z) =0, j=1,2,---,m,
where f; :R* - R, i€ I ={1,2,--- I} and g; : R" = R, j € J={1,2,--- ,m} are locally
Lipschitz. Let S = {z € R"|g;(z) £0,5 € J} and J(Z) = {j € J|g;(Z) = 0}.
Definition 2.1 ([5]). Let C C R™ and Ry = Ry \ {0}. The contingent cone to C' at
Z € clC is defined by
T(C,z) ={d € R"|3H{(zn,tn)} C (C x Ryy) such that z,, — Z and ¢, (z, — T) — d}.
Definition 2.2 ([5]). & € S is said to be efficient for (P) if there is no x € S such that
f(x) < f(2).

Definition 2.3 ([7]). T € S is said to be Geoffrion properly efficient for (P) if it is efficient
and there exists M > 0 such that, for each i,

fi({f) - [i(2) < M,
i) = fi(x)
for some j such that f;(Z) < f;(x) whenever z € S and f;(Z) > fi(x).
Definition 2.4 ([4]). Let f : R™ — R be locally Lipschitz and Z,v € R™. The Clarke

derivative of f at T in the direction v is

fly+tv) - fly)

f°(z,v) = limsup ;

y—z,t—01

The Clarke subdifferential of f at Z is 0.f(z) = {¢€ € R"|({,v) < f°(z,v), Vv € R"}.
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Lemma 2.5 ([4]). Let f : R™ — R be locally Lipschitz at x € R™. Then,
(i) The function v — f°(z,v) is finite, positively homogeneous and subadditive;
(ii) f°(=x,v) is upper semicontinuous as a function of (z,v);
(iii) For every v € R™, one has f°(x,v) = max {(,v)|§ € O.f(x)}.

Lemma 2.6 ([4]). Let z,y € R"™, and suppose that f is Lipschitz on an open set containing
the line segment [x,y]. Then there exists a point u in the line segment (x,y) such that

fy) = f(x) € (Ocf(u),y — ).
Lemma 2.7. Let h: R™ — R be locally Lipschitz. Assume that
(i) zn — Z,
(i) R(zn) 2 h(2),
(iii) v = nh_}n@lo $n(2n — Z) with s, > 0, for all n.

Then
he(z,v) 2 0.

Proof. From (ii) and Lemma 2.6, it follows that there exist u,, in the line segment (Z, z,)
and &, € O.h(uy) such that
(&ny2n —Z) 20, (2.1)

where u, = Z + A\, (2, — Z) for some A, € (0,1). From (2.1) and Lemma 2.5 (iii), we have
h®(tn, 2, — Z) 2 0. By Lemma 2.5 (i), for s, > 0,

he (tn, $p(2n — 2)) = $ph°(Un, 2n, — Z) 2 0. (2.2)

From (i) and (iii), we can obtain wu, = Z + A\, (2, — 2) — Z and s,(2, — Z) — v. Hence, by
Lemma 2.5 (ii) and from (2.2), it follows that 0 < lim h°(uy, sp(2zn — 2)) < h°(Z,v). O
n— o0

Remark 2.8. Clearly, Lemma 2.7 generalizes Lemma 3.1 in [2] to the nonsmooth case.

Regularity Conditions

In this section, we generalize the regularity conditions in [2] to the nonsmooth case in terms
of Clarke derivative and address some relations with other regularity conditions.

Maeda [14] and Burachik and Rizvi [2] introduced the following sets. For Z € S, for i € I,

Q'(7) = {z e R"|g(z) £ 0, fi(z) < fu(Z),k € I and k # i},
Q@) ={z eR"|g(x) =0, f(z) = f(2)},

M*'(z) = {z € R"|g(x) £0, fi(x) < fi(2)},

M(z) = ﬂMZ

Definition 3.1. The linearizing cone to M*(Z) at # is the set defined by
L(M'(z),7) = {d € R"|f(z,d) £ 0,95(z,d) £0,j € J(2)},i € ]
and L(M (). %) = {d € R"|[7(2.d) £ 0.i € 1.g3(z.d) £0.j € J(@)}.
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We propose the following two types of regularity conditions for (P).

L(M*(z),z) C cleonvT(M*(z), ), for at least one i, (3.1)
L(M(z),z) C ﬂ T(M'(z),z). (3.2)

We call (3.1) a generalized Guignard regularity condition(GGRC) and (3.2) an extended gen-
eralized Abadie regularity condition(EGARC). Next, we discuss relations among (GGRC),
(EGARC) and some other regularity conditions.
(GARC) Generalized Abadie Regularity Condition: L(Q(z),z) C () T(Q*(Z), Z).
iel
(GCRC) Generalized Cottle Regularity Condition: for each i € I, the system

f2(z,d) <0,k e I\{i},
g5(%,d) <0,j € J(z),

has a solution d¢ € R".

Remark 3.2. It is clear that (GARC) and (GCRC) generalize (ACQ) and (CCQ) in [14]
to the nonsmooth case, respectively.

Theorem 3.3. (GARC) implies (EGARC).
Proof. Since M (Z) = Q(), we have L(Q(Z),z) = L(M(Z), ). For any fixed ¢ € I, it follows
from Q*(z) = (| M7(z) that Q*(z) C M7 (z),Vj € I\{i}. Hence,

jel

J#i

T(Q'(z),7) € T(M?(z),7),¥j € I\{i}.

Therefore,
T(Q'(z),7) C (| T(M(z), ).
i
Thus,
N T@@),2) C ([ T(M(2),) = (| T(M'(z),2).
iel iel jel iel
JFi

Theorem 3.4. (GCRC) implies (GGRC).

Proof. Since (GCRC) holds, then for any fixed i € I, there exists d* € R" such that

{flg(x7dl) < O’ ke I\ {’L}a
gjo(‘iadl) < 07 j S J(:f)

If (GGRC) does not hold, then for given k € I\{i}, there exists v* € L(M*(z),Z) such that

V¥ ¢ cleonvT (M*(z), 7). (3.3)
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From v* € L(M*(z), z), we have fg(z,v*) <0 and g;?(a?,yk) < 0(j € J(x)). For any t, > 0,
tn — 0(n — o0), define d*¥ = v* + t,d*. From Lemma 2.5 (i), for small ¢,

fo(@.db) < (@ 0F) + tafR(2,d") <O, (3.4)
95(2,d8) < g2(3,0F) + tng3(3,d") < 0,5 € J(2). (3.5)

For each d* and any positive sequence {uF, }°_, converging to 0, define z¥, =z +puk d~.
Hence from (3.4)-(3.5) and the continuity of g;(j ¢ J(Z)) it follows that there exists Ny € N
such that for m > Ng,

Hence, =&, € M*(z )form>N0 and

lim zF =7 € cdM"(z).

m— oo

Moreover, lim (wl:”g;i) = d* implies d¥ € T(M*(z),z). Hence,
m—r o0

nm

lim df = lim (V% +t,d") =% € T(M*(2), 7).

n—o0 n—o0
Hence for any i € I, v* € T(M*(z),z) C cleconvT(M%(Z),Z) which contradicts to (3.3). O
Theorem 3.5. (GCRC) implies (GARC).
Proof. The proof is similar with the proof of Theorem 3.4 and is omitted. O
We summarize the relations of the regularity conditions as follows:

EGARC <= GARC <= GCRC = GGRC

Remark 3.6. (GGRC) is different from (GARC) and the following example can illustrate
this point.

Example 3.7. Consider the following problem:

mlnf(x) = (fl(!L‘),fg(fL'),fg(l‘))
st. gi(z) £0,92(z) £0,2 € R?,

where fi(z) = (z1 — 1), fo(z) =[ 22 |, fa(z) = —z1, g1(2) = =¥, ga(x) = —a3.
Here, z = (0,0) is a feasible solution. Furthermore,

Mz

={z € RY|0 < 21 <2}, M?*(z) = {x € R% |20 = 0}, M?(2) = RY;

)
QY (Z) ={r € R% |z, = 0},Q*(7) = {zx e RL|0 S 1 <2},
Q*(7) = {z € R0 S a1 = 2,02 = 0}
T(M'(z),7) = T(M*(7),7) = R}, T(M*(7),7) = {d € R} |dy = 0};
T(Q!(2), ) = T(Q¥(x), %) = {d € B:|d; = 0}, T(Q(), ) = 2
z)

L(M' (), L(M?(z),z) = {d € R?|d, = 0}, L(M?*(z),7) = {d € R?|d» = 0}.

We can verify that

3
L(M(z),7) = L(Q(%),T) = ﬂ T(Q'(z),z) = {d € R |dz = 0},

1=1
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i.e.,, (GARC) holds at z. However,

L(M'(2),7) = {d € R2|d; 2 0} ¢ cleomT(M"(z), ) = R2,
L(M?*(z),z) = {d € R*|dy = 0} € cleonvT(M?*(z),z) = {d € R |d> = 0},
L(M3(2),7) = {d € B2|d, 2 0} € cleonvT(M?(z),7) = R2,

i.e., (GGRC) does not hold.

Example 3.8. Consider the problem in Example 4.1 in [2]. Clearly, Z = (2,0) is a feasible
solution. Moreover,

)
)
T(M"(z),z) = {d € R?*|dy = 0}, T(M?(z),z
T(Q'(z),z)
)

We can verify that
L(M*(z),z) C cleonvT(M*(z),7) = {d € R?|dy = 0},
i.e., (GGRC) holds at z. However,

3
L(Q(x),7) = {d € R?|d>y = 0} ¢ () T(Q'(2),7) = {(0,0)},

i=1
i.e., (GARC) does not hold.

Remark 3.9. It is well known that (ACQ) always implies that (GACQ) for a nonlinear
optimization problem, see Proposition 2.8 in [6]. Furthermore, Maeda first proposed some
constraint qualifications including as (ACQ) and (GACQ) based on the sets Q and Q° for a
multiobjective optimization problem with inequality constraints and obtained some relations
among them, see Figure 1 in [14]. It is clear that constraint qualifications of multiobjective
case inherits those relations of a single objective optimization problem. However, Burachik
and Rizvi proposed Guignard regularity condition (GRC) based on the sets M and M* in [2]
(see [14] and [3] for a similar type of condition, where M? is replaced by Q). It is because
of the different definitions and therefore some relations may not be true. In consequence,
some relations also may not be true for the nonsmooth case. In fact, Remark 3.6 has shown
it.

Strong Kuhn-Tucker Conditions

By means of some scalarization methods, some scholars have studied some characteriza-
tions of Geoffrion properly efficient solution of multiobjective optimization problems. The
following result is one of the classic results, see [1].

If f;,g; are convex, then Z is a Geoffrion properly efficient solution of (P) if and only if
there exist A; > 0,7 € I such that Z is an optimal solution of the problem

!
min {Z /\lfl(x)'g](x) <0,Yj € J} .

i=1
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Moreover, by making use of the nonlinear version of the weighted sum method, Zarepisheh
et al. also obtained some characterizations of Geoffrion properly efficient solution under some
suitable generalized convexity in [17].

In the following, without any convexity, we establish a strong Kuhn-Tucker necessary
optimality condition of Geoffrion properly efficient solution for (P) under (EGARC).

Theorem 4.1. Let T € S. Assume that (EGARC) holds at T and T is a Geoffrion properly
efficient solution of (P), then for each i € I, the following system has no solution d € R™.
fz’o (i‘7 d) < Oa
fo(@,d) <0,k € I\{i}, (4.1)
62(z,d) < 0,Yj € J(2).

Proof. On the contrary, assume that there exists ¢ € I such that the system (4.1) has a
solution d € R™. Without loss of generality one may assume

f1(Z,d) <0,
fo(z,d) £0,k e I\{1}, (4.2)
95(z,d) = 0,Vj € J(2).

From (4.2), it is clear that d € L(M(Z),z). Since (EGARC) holds, it shows that d €
L(M%(z),%),Vi € I. For any k € I\{1}, we have

d e T(M*z),z).

This means that there exist a sequence {2, }nen C M’“(:f) with lim z, = Z and ¢,, > 0 for

n—o0
all n, such that

lim t,(z, — %) = d.
n—oo

Fix ko € {2,3,---,1} and for this kg, take the corresponding sequence {z, }neny C M*(Z).
It is clear that for all n, fi,(2n) — fi,(Z) < 0. For any n € N, consider the set

Lo ={k 2 2[fu(zn) > fi(2)}.

Clearly, I, # @ for all n € N and we can assume I, is constant for all n. By Lemma 2.7,
we can obtain that
fe(z,d) 2 0,Vk € T,,.

From (4.2) it must be that f2(Z,d) =0,Vk € T',,.

On the other hand, by Lemma 2.6, there exist v} in line segment (Z,z,) and & €
dcf1(v}) such that

fl(mn) - fl(f) = <£71171'n - i'>7 (43)

where v} = Z + A\l (z,, — Z) for some A} € (0,1). Clearly, fi(z,) < f1(Z). Otherwise, it
contradicts to f{(Z,d) < 0. Hence from (4.3), we obtain that

—({&n>2n — ) > 0. (4.4)
Again by Lemma 2.6, there exist v¥ in line segment (z,,) and &¢ € dcfi(vF) such that

fulzy) — fr(@) = (€8, x, — T),Vk €T, (4.5)
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where v =z + \f(z,, — 7) for some \E € (0,1). Hence, from Lemma 2.5 (iii) and combine
with (4.3) and (4.5), we have

fi(@n = Z,0y) Z (&, 0 — T)

and

fo(xn —z,08) 2 (€8x, — %) > 0,Vk €T,,. (4.6)
Therefore, from (4.4) and (4.6), for any k € 'y,
lon) ~16) _ (o) A2 _ ~(Ehro =)
Jie(@) = fr(@n) Ji(@n) = fi(Z) (& zn — )
—fi(@n — ?VTIL) — [P (tn(zn — T), 05,
fi(@n —2,08) fetn(zn — 2), 1)
Since, v} — 7, v¥ — , and t,(x, — T) — d when n tends to oo, from Lemma 2.5 (ii) and
(4.6), we can obtain

fEW an — 2)
)

1\

1\

(4.7)

T/ (0 — 7),01) £ 170 ) <0, (148)
0= Ef}?(tn(mn - j)) Vn) < f}j(fad) =0,
ie.,
T (tn 0 — 2), ) = £2 (@) = 0. (19)

By (4.8), fix r < 0 such that
fi(@,d)y<r<o.

Then again from (4.8) that there exists a positive integer Ny such that
—fL(tn(2n — Z), 1) > —1r > 0.
Hence from (4.7), it follows that for any k € T';, and n > N,

fe(@) = fulwn) o JR(ta(zn — 7))
filzn) = f1(Z) = =P (ta(2n — @), 1) (4.10)
< f]g(tn(-rn _'f)7y7]§).

0<

Therefore, from (4.9)-(4.10), we have

0< lim M < i lim f;;(tn(xn—j;) Vk) =0,

oo fi(w,) — f1(Z) T —rnooo o
ie.,
lim —fl (Ufn) —h(@) = +o00,
n—oo fi(Z) — fe(zn)
which contradicts to Geoffrion properly efficiency. O

Theorem 4.2. Let T € S. Assume that (EGARC) holds at T and for each i € I, the cones

D; = coneconv U 0.f;(Z) | + coneconv U 0095 (%)
J#i JjEJI(T)
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are closed. Furthermore, if T € S is a Geoffrion properly efficient solution to (P), then there
exist A € R! and u € R™ such that

0> XN0efi(Z) + Y u;deg;(2), (4.11)
i€l j=1
ujgj(i)zo,j=1,2,-~-,m,)\>0,u20. (412)

Proof. Let T be a Geoffrion properly efficient solution to (P). Then from Theorem 4.1, we
have for each i € I, none of the [ systems

f2(z,d) <0,

fR(2,d) = 0,Vk € I\{i},
g9;(%,d) = 0,5 € J(z),

has a solution d € R™. By generalized Tucker alternative Theorem in [8] and Lemma 5.2.7
in [15], there exist A € R\, \; > 0 and u; = 0,5 € J(Z) such that

0e Z Alacfz(i') + Z ujﬁcgj (i‘)

iel JEI(T)
By setting u; = 0,5 ¢ J(Z), we arrive at (4.11)-(4.12). O

Remark 4.3. Theorem 4.1 and Theorem 4.2 generalize Theorem 4.3 and Theorem 4.4 in [2]
to the nonsmooth case, respectively.

Example 4.4. Consider the following problem:

min f(z) = (f1(z), f2())
st. gi(z) £0,i=1,2,2 € R?,

where fi(z1,22) = 21, fo(@1,22) = |22], gi(w1,22) = 1 — €™, go(w1,22) = —x3. Let
Z = (0,0). It is clear that Z is a Geoffrion properly efficient solution and

MY (z) = {z € R?|z; = 0}, M?(z) = {x € R?*|z; = 0,25 = 0};
T(MY(z),z) = {d € R*d, =0}, T(M?(z),z) = {d € R*|d; = 0,dy = 0};
2

L(M(z),7) = {(0,0)} = () T(M'(z),2).

i=1
That is, (EGARC) holds at z. Furthermore,

2
Dy = coneconv, f2(Z) + coneconv U 0cgi(z) | ={z € R?|z; <0} and
j=1
2
Dy = coneconv, f1(Z) + coneconv U 0:9;(%) | = {z € R?|zy = 0},
j=1

are closed. Hence, strong Kuhn-Tucker conditions hold for Ay = Ao = u; = us = 1.
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Remark 4.5. The closedness of D;(i € I') could not be removed in Theorem 4.2.

Example 4.6. Consider the following problem:

min f(z) = (fi(x), f2(z))
s.t. g(z) £ 0,2 € R?
where fi(z1,22) = x1, fo(z1,20) = x1, B = {x € R*2? + (22 + 1) < 1,27 £ 0} and g be

the support function of the compact convex set B, i.e.,

g(x) = sup(b, ),z € R?.
beB
Let z = (0,0). We can verify that Z = (0, 0) is a Geoffrion properly efficient solution. Clearly,
S =R3. ¢°(z,v) = g(v) and dg(z) = B, since g is convex and positively homogeneous.
Furthermore,

MY (z) = M?(z) = {z € R?*|z; = 0,22 = 0},
T(M*(z),z) = T(M*(z),7) = {d € R?|d; = 0,d> = 0},
L(M(z),7) = {d € R*|dy = 0,dy 2 0} = [ | L(M'(z),2).

i=1
That is, (EGARC) holds at Z = (0,0). But the cones
Dl = DQ = {.’t € R2|£L'1 z 0,1’2 = O}U{l' S R2|CE2 < O}
are not closed. Now, we can verify that the strong Kuhn-Tucker conditions do not hold.

Remark 4.7. Burachik and Rizvi proposed a Guignard regularity condition (GRC) for a
differentiable multiobjective optimization problem and then obtained weak Kuhn-Tucker
condition of efficient solution in [2]. However, in the sense of Clarke derivative and Clarke
differential, we could not expect that the corresponding results are true. The following
example shows that Theorem 4.1 in [2] may not be true in the sense of Clarke derivative.

Example 4.8. Consider the following problem:

min f(z) = (f1(z), f2(z))
st. g(z) £0,z € R?,

where fi(21,22) = —x1, fa(x1,22) = 2|x2|—21, g(21, 22) = (v1+22)(x1—22). Let Z = (0,0).
We can verify that Z is an efficient solution to problem (P). It is clear that

2z, d) = —dy, f5(z,d) = 2|dy| — d1,¢°(z,d) = 0, for all d € R?,
MY (z) = {z € R?| —z; £ 0} N X, cleonvT (M (z),z) = {d € R?|d; = 0},
L(MY(z),z) = {d € R*|d; = 0}.

In consequence, (GGRC) is satisfied for ¢ = 1. However, the following system

f(z,d) <0,iel,
9°(z,d) =0,

has a solution d = (1, 0).
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Concluding Remarks

We generalize the regularity conditions in [2] to the nonsmooth case in terms of Clarke
derivative and investigate the relations with other regularity conditions. We also derive
a strong Kuhn-Tucker necessary optimality condition. It is meaningful that how to pro-
pose weaker regularity conditions than (EGARC) to ensure strong Kuhn-Tucker optimality
conditions.
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