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AN EXISTENCE THEOREM FOR A VARIATIONAL
RELATION PROBLEM WITH APPLICATIONS TO MINIMAX
INEQUALITIES
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Abstract: Variational relation problems, a recent concept introduced by Luc, are general models for a large
class of problems in optimization and nonlinear analysis. In this paper we establish an existence theorem
for the solution of the following variational relation problem: Find z* € X such that (z*,y) € R for every
y € Y, where X is a nonempty convex subset of a vector topological space, Y is a compact convex subset of a
Hausdorff topological vector space and R is a relation between the elements of the two sets. As applications,
we obtain an intersection theorem, a fixed point theorem and several minimax inequalities.

Key words: variational relation problem, almost convex set-valued mapping, maximal element, minimaz
inequality, saddle point

Mathematics Subject Classification: 47H10, 49J53

Introduction and preliminaries

In 2008, Luc [26] introduced and studied an abstract problem in variational analysis, called
by him, variational relation problem. If X and Y are two given sets, a nonempty subset
R of X XY determines a relation between the elements of X and Y in a natural manner:
we say that x is in relation R with y, if (z,y) € R. When Y is a parameter set, then
R is called a variational relation. Luc’s approach offers a unifying treatment for a wide
class of problems in diverse fields of pure and applied mathematics and for this reason, in
the last years, the variational relation problems have attracted increasingly the attention of
researchers. Various types of variational relation problems or systems of variational relation
problems have been investigated in many recent papers (see [1,6,8-10,18,20-24,27,32,34]).
In these papers, as for other mathematical models, the main focus has been on sufficient
conditions for the existence of solutions.

Having in mind the well-known Ky Fan’s section theorem ( [14]) the following problem,
studied in this paper, arises in a natural manner:

Find 2* € X such that (z*,y) € R for every y € Y,
where X is a convex subset of a vector topological space, Y is a compact convex subset of
a Hausdorff topological vector space and R is a nonempty subset of X x Y.

To the best of our knowledge, though very simple and natural, so far, this variational
relation problem has been studied just in the case when X =Y (see [7] and [32]). Never-
theless, it can be regarded as a particular case of some variational relation problems studied
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472 M. BALAJ AND L.-J. LIN

in various recent papers. For exemplification let us compare our problem to that studied by
Luc in [26].

If X,Y and Z are nonempty sets, 51 : X = X, S0 : X 3 Y, T: X XY == Z are
set-valued mappings and R is a relation between elements of the sets X,Y and Z, Luc’s
variational relation problem can be formulated as follows:

Find z* € X such that z* € S;(z*), and (z*,y,2) € R holds for every y € So(x*) and
z e T(z*,y).

One can observe that if S; = 1x (the identity map on X), Sa(x) =Y for all z € X,
and the variable z is missing, Luc’s problem reduces to the one studied in this paper. Thus,
existence theorems for solutions can be derived from more general results, but we will not
use this method. For bringing our investigations closer to some recent research, we could
compare our problem with another one, recently studied in [12] and [20]:

Find z* € X such that (z*,y) € R for every y € T'(z*),
where T is a set-valued mapping from X to Y.

Though, more general as our problem, the above problem is studied in the mention
papers only in the case when R is a linear relation (this means that R, regarded as a subset
of X xY, is defined by a system of linear inequalities).

As we shall see in the obtained applications, for special relations R, a solution z* of
the above problem can be seen as a common point for the family of values of a set-valued
mapping, a maximal element, a solution for a generalized Ky Fan inequality, a saddle point
or others.

Further we fix the used terminology and some notations. A set-valued mapping F :
X =3 Y is a function from a set X into the power set 2¥, that is a function with the values
F(z) CY forz € X. To aset-valued mapping F' : X = Y we associate two other set- valued
mappings F°: X =Y (called the complementary of F) and F : Y = X (called the lower
inverse of F) defined by F¢(z) =Y \ F(x), and respectively F' (y) = {x € X : y € F(z)}.
The values of F are called the fibers of F. As usual, the set Gr(F) = {(z,y) € X x Y :
y € F(x)} is called the graph of F. For A C X, set F(A) = |J F(z).

z€A

If X and Y are topological spaces, a set-valued mapping F': X = Y is said to be: (i)
lower semicontinuous, if for every open subset G of Y the set {x € X : F(z) N G # 0} is
open; (ii) upper semicontinuous, if for every open subset G of Y the set {x € X : F(x) C G}
is open.

Let U and V be two vector spaces and X C U, Y C V be two convex sets. A set-valued
mapping F': X = Y is said to be convex, if AF'(z1)+ (1 —\)F(z2) C F(Az1+ (1 —A)ze), for
every z1,22 € X and every A € [0,1]. Clearly, a set-valued mapping F': X = Y is convex
if and only if its graph is a convex subset of X x Y.

The rest of the paper is structured as follows. In Section 2, by means of a lower semi-
continuous set-valued mapping, we establish an existence theorem for the solution of the
considered variational relation problem. Further, our main result is reformulated as an
intersection theorem, from which we then obtain a fixed point theorem for a composed
set-valued mapping. In Section 3, as applications, we obtain several minimax theorems.
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Main result

Theorem 2.1. Let X be a nonempty convez set in a topological vector space, Y be a compact
convez set in a Hausdorff topological vector space and R be a nonempty subset of X x Y.
Assume that:

(i) {(z,y) € X XY : (z,y) ¢ R} is convex;
(i) for eachy €Y, the set {x € X : (x,y) € R} is closed in X;

(iii) there exists a lower semicontinuous set-valued mapping with nonempty convex values

F:Y =2 X such that Gr(F' ) C R.

Then, there exists x* € X such that (z*,y) € R for everyy € Y.

Proof. Suppose that for each z € X there exists y € Y such that (x,y) ¢ R. Then X is
covered by the sets
G, ={z€X:(a.y)¢R).

Since F has nonempty values, Y = F (X). Then, Y = F (J G)) = U F (Gy).
yeyY yeyYy
Denote by

H,=F (G))={u€Y :3r € X such that u € F' (z) and (z,y) ¢ R}.

By (ii) and (iii) we infer that the sets H, are open in Y. Since Y is compact it can be covered
by a finite number of subsets {Hy,,...,H,,}. Consider a continuous partition of unity
{aq,...,a,} associated to this finite covering. Let K := co{y1,...,y,} and L := span(K).
Consider on L the topology induced by the one on Y, then one obtains the (unique) separated
locally convex topology on L.

Define the following function:

n
p:K =K ply) =) aiy)y:
1=1

The function p is a continuous self mapping of the compact convex K and then, by Brouwer’s
fixed point theorem, there exists §y € K such that

y=rp(y) = Z o (9)Yi-
i=1

Let I = {i € {1,...,n} : a;(g) > 0}. Then § = > «a;(y)y;. For every i € I, §y € Hy,,
i€l
hence there exists z; € X such that § € F (x;) and (z;,y;) ¢ R. Set 7 = Y a;(y)x;.
i€l
By (i), it follows that (Z,5) ¢ R. As, {z; : i € I} C F(y) and F(§) is a convex set,

z € F(y). Hence (z,5) € Gr (F ), and in view of (iii), (Z,y) € R. Thus we have arrived
at a contradiction. O

Remark 2.2. Theorem 2.1 has the same conclusion as Theorem 2.1 in [32], but the hypothe-
ses in the mentioned theorem are more restrictive. First, there the relation R is between
elements of the same set X. Then, the set X is assumed to have the fixed point property but,
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as Park showed in [30], this condition is redundant. Finally, instead of condition (iii), there
appears an abstract condition, which in Park’s terminology [29], means that, in a suitable
® 4-space, the set-valued mapping T : X =2 X defined by T'(z) = {u € X : (u,x) € R} is a
KK M-map.

When Y = X and F is the identity map on Y, Theorem 2.1 reduces to the following
corollary:

Corollary 2.3. Let Y be a compact convez set in a Hausdorff topological vector space and
R(z,y) be a relation linking elements x,y € Y. Assume that:

(i) {(z,y) €Y xY : (z,y) & R} is convex;
(i) for eachy €Y, the set {x € Y : (z,y) € R} is closed in Y;
(iii) for eachy €Y, (y,y) € R.

Then, there exists x* € Y such that (z*,y) € R holds for every y € Y.

As any continuous function f : Y — X, regarded as a set-valued mapping, is lower
semicontinuous, with nonempty convex values, we infer that:

Corollary 2.4. The conclusion of Theorem 2.1 remains true if condition (iii) is replaced
with the following:

(i41)’ there exists a continuous function f:Y — X such that (f(y),y) € R for ally €Y.

Theorem 2.1 can be reformulated as an intersection theorem as follows.

Theorem 2.5. Let X be a nonempty convex set in a topological vector space, Y be a compact
convex set in a Hausdorff topological vector space and T :' Y = X be a set-valued mapping.
Assume that the following conditions are satisfied:

(i) the values of T' are closed in X and the set-valued mapping T" is conves;

(ii) there exists a lower semicontinuous set-valued mapping with nonempty convex values

F:Y =2 X such that F(y) CT(y) forally €Y.

Then, ( T(y) # 0.

yey
Proof. We apply Theorem 2.1 when the relation R is defined by

(z,y) € Rholds iff x € T(y).

Since T° is a convex set-valued mapping, its graph is a convex set, so condition (i) in
Theorem 2.1 is satisfied. As T is closed-valued, condition (ii) in Theorem 2.1 is fulfilled. If

(z,y) € Gr(F ), then z € F(y) C T(y), hence (z,y) € R. Tt follows that condition (iii) in
Theorem 2.1 holds.
Applying Theorem 2.1 we get a point z* € X satisfying 2* € () T(y). O
yey
As we already said, Theorems 2.1, and 2.5 are actually equivalent. If the assumptions

of Theorem 2.1 are satisfied, its conclusion follows applying Theorem 2.5 to the set-valued
mapping T : Y = X defined by T'(y) = {z € X : (z,y) € R}.
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Theorem 2.6. Let X be a nonempty conver set in a topological vector space, Y be a compact
convez set in a Hausdorff topological vector space and S : X =Y, F:Y = X be two set-
valued mappings. Assume that the following conditions are satisfied:

(i) S has nonempty values and the set-valued mapping S is convexr and has open values
mn X;

(ii) F is lower semicontinuous with nonempty convex values.

Then, the set-valued mapping S o F has a fived point,that is, there exists §y € Y such that
y e S(F(®©).

Proof. Suppose that for all y € Y, y ¢ S(F(y)). This means that for every y € Y, F(y) C
X\S (y). Consider the set-valued mapping T : Y = X defined by T'(y) :== X\ S (y) (that
is, T'= (S )°). One can easily check that condition (i) implies the condition similarly noted
in Theorem 2.5. By Theorem 2.5, there exists z* € () (X \ S (y)). Then, S(z*) = 0; a

yeyY
contradiction. O

Remark 2.7. Since the set-valued mapping S has open fibers, one can easily prove that it is
lower semicontinuous. Consequently, the set-valued mapping S o F' in Theorem 2.6 is lower
semicontinuous as a compsition of lower semicontinuous mappings. In contrast to upper
semicontinuous set-valued mappings, for which there exists an important literature dealing
with the existence of fixed points, for lower semicontinuous set-valued mappings, fixed point
theorems are much less numerous (see, for instance, [19,31,33,35]). In general, their proofs
rely on the existence of a continuous selection for a lower semicontinuous mapping and on
Brouwer or Tychonoff fixed point theorem. Such an argument does not work in the case of
Theorem 2.6.

Minimax theorems

Recall that a real-valued function g defined on a topological space X is lower (resp. upper)
semicontinuous if the set {x € X : g(x) < r} (resp. {x € X : g(x) > r}) is closed for each
r € R. If X is a convex set in a vector space, then g is quasiconvex (resp. quasiconcave) if
{zx € X :g(x) <r} (resp. {x € X : g(x) >r}) is a convex set for every r € R.

Theorem 3.1. Let X be a nonempty convexr set in a topological vector space and Y be a
compact convex set in a Hausdorff topological vector space. Let f : X xY — R be a real
function and F : Y = X be a set-valued mapping satisfying the following conditions:

(i) f is quasiconcave on X X Y;

(ii) for each y € Y, the function © — f(x,y) is lower semicontinuous on X ;

(iii) F is lower semicontinuous with nonempty convex values.

Then,

inf sup f(z,y) < sup f(z,y).
z€X yey (y,x)€ Gr(F)
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Proof. We may assume that

r:= sup f(z,y) < 0.
(y,x)e Gr(F)

We show that the assumptions of Theorem 2.1 are satisfied, if the relation R is defined by
(z,y) € R iff f(x,y) <r.

As the function f is quasiconcave, the set {(z,y) € X x Y : f(x,y) > r} is convex. By
(i), for each y € Y, the set {x € X : f(z,y) < r} is closed in X. If (z,y) € Gr(F ),
taking into consideration the the choice of r, it follows that f(z,y) < r, hence (z,y) € R.
According to Theorem 3.1, there exists * € X such that sup f(z*,y) < r. Consequently,

yey
inf sup f(z,y) <sup f(z*,y) <r=  sup  f(z,y).
zeX yey yey (y,x)€ Gr(F)

O

Remark 3.2. The origin of the above corollary goes back to the famous Ky Fan minimax
inequality [15]. The conclusion of our theorem is the same as that of Theorem 1 in [17]. But
the assumptions are different, because in the mentioned theorem the set-valued mapping F'
is assumed upper semicontinuous with nonempty closed convex values and the function f is
quasiconcave only in the first variable.

The following numerical example provides a case when Theorem 3.1 is applicable, while
Theorem 1 in [17] is not.

Example 3.3 ([17]). Let X =] —2,2[ and Y = [-1,1]. Let f :] —2,2[x[-1,1] — R and
F:[-1,1) =] — 2, 2[ be defined by

flxy) =14y —a® —y? F(y) =lz — 1,z +1[.

One can easily verify that all requirements of Theorem 3.1 are satisfied. The set-valued
mapping F' is not upper semicontinuous (since the set {y € Y : F((y) C ] —11[} = {0} is not
open in X) and its values are not closed. Hence, Theorem 1 in [17] can not be applied. By
direct checking, one can see that

inf sup f(z,y)=-2<1= sup f(z,y)
z€X yey (y,z)€ Gr(F)

For X,Y topological spaces a function g : X x Y — R is said to be marginally upper
semicontinuos in the second variable [5] if for every open subset G of X the function y —
ing g(z,y) is upper semicontnuous on Y. Obviously, every function upper semicontinuous
xre

in y is marginally upper semicontinuous in y. The example given in [11, p. 249] shows that

the converse is not true.

Theorem 3.4. Let X be a nonempty convex set in a topological vector space, Y be a compact
convez set in a Hausdorff topological vector space and f,g : X xY — R be two functions
satisfying the following conditions:

(i) f(z,y) < g(z,y), for each (z,y) € X XY;
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(ii) f is quasiconcave on X XY and for each y € Y the function x — f(x,y) is lower
semicontinuous on X.

(i) g s marginally upper semicontinuos in the second variable and for each x € X the
function y — g(x,y) is quasiconvexr on X.

Then, inf sup f(z,y) < sup 1nf g(z,y).
ze€X yey yey T€X

Proof. Without loss of generality, assume that s := sup mf g(x,y) < co. For € > 0 arbitrar-
yey =€
ily fixed, we intend to apply Theorem 2.1, when the relatlon R and the set-valued mapping

F :Y = X are defined as follows:
(z,y) € Rif f(z,y) <s+e,

Fly)={z e X :g(x,y) <s+e}.

By (ii), it readily follows that the first two requirements of Theorem 2.1 are fulfilled. For
each y € Y, since in)f(g(x, y) < s—+e¢, there exists x € X such that x € F(y), hence F(y) # 0.
zE

Let x1, 29 € F(y). As g is quasiconvex in z, for each A € [0, 1],
g()‘xl + (1 - )\)1‘2,y) < max{g(xl,y), (1‘27 )} <s+e,

hence A\xy + (1 — N)zg € F(y). Consequently F has convex values.
For each open subset G of X, F' (G) = {y €Y : ingg(x,y) < s+e¢e}isopenin?Y,
(S

because ¢ is marginally upper semicontinuous in the second variable. Consequently, F' is
lower semicontinuous. By (i), it follows that f(z,y) < s+¢, for every y € Y and z € F(y),
hence Gr F'~ C R.

From Theorem 2.1, there is * € X such that f(z*,y) < s+ ¢ for every y € Y. Then

inf sup f(z,y) < sup f(z",y) < sup inf g(z,y) +e.
zeX yey yeY yeya?

Clearly this implies the desired inequality. O

Remark 3.5. The first minimax inequality for two functions f and g, satisfying f < g
on X x Y, has been obtained by Ky Fan [13] in 1964, motivated by Nash equilibrium and
the theory of non-cooperative games. Though the conclusion is the same, Theorem 2.5
differs from Fan’s result, as well as from other two-function minimax inequalities established
n [3,4,16], [25,28], by requirements imposed in hypothesis and by techniques of proof.
For instance, if we compare Theorem 2.5 with Theorem 1 in [25], we note first that some
assumptions are the same in the two theorems (f < g, f is lower semicontinuous in the
first variable, g is quasiconvex in the first variable). But, in the mentioned theorem, f is
assumed quasiconcave only in the second variable (a condition weaker than the one from
Theorem 2.5) and ¢ is assumed upper semcontinuous in the variable y (a condition stronger
than the corresponding condition in Theorem 2.5). It is worth also noting that in Theorem
3.2 in [3], Theorem 5.2 in [4] and Theorem 1 in [16], the minimax inequality is establish
assuming the existence of one or two real-valued functions which majorize the function f
and minorize the function g.

Recall that (z*,y*) € X x Y is a saddle point for a real function f defined on X x Y if
flz*,y) < f(z,y*) for all z € X, y € Y. This concept has been extended in [2] as follows:
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Definition 3.6. Given two functions f,g: X xY — R, we say that a point (z*,y*) € X xY
is a saddle point for the pair (f,g) if f(z*,y) < g(x,y*) forallz € X,y € Y.

Remark 3.7. It is clear that in the case f = g the concept above reduces to the classical
concept of saddle point. It is also worth mentioning that the existence of a saddle point for

the pair (f, g) implies the inequality inf sup f(z,y) < sup inf g(x,y).
zeX yey yey z€X

Example 3.8. Let X = R, Y = [0, 1] and for each (z,y) € X xY let f(z,y) = (z+1)(y—1)
and g(x,y) = e —x —y. For each z € X and y € Y we have

f(o,y):y—].SOS@‘T—{E—].:Q({E,].),
hence (0, 1) is a saddle point for the pair (f,g).

Theorem 3.9. Let X and Y be nonempty compact convex sets in two Hausdorff topological
vector spaces and f,g: X XY — R be two functions satisfying the following conditions:

(i) f is concave and g is convex on X xY;

(ii) for each y € Y, the function x — f(x,y) is lower semicontinuous on X and for each
x € X the function y — g(x,y) is upper semicontinuous on 'Y ;

(iii) there exists a lower semicontinuous set-valued mapping with nonempty convex values
F:XxY = X xY such that for each (x,y) € X xY and any (u,v) € F(z,y),
flz,v) < g(u,y).

Then, the pair (f,g) has a saddle point.
Proof. Let the relation R defined on (X xY) x (X xY) as follows:

((2,9), (u,v)) € R iff f(z,0) < g(u,y).

The set M := {((x,y), (u,v)) € (X xXY)x (X xY): ((z,y), (u,v)) ¢ R} is convex, that is,
condition (i) in Theorem 2.1 is satisfied. Indeed, if ((z1,¥1), (u1,v1)), ((z2,¥2), (u2,v2)) € M,
then f(z1,v1) > g(u1,y1), f(z2,v2) > g(ug,y2). Taking into account (i), for every A € [0, 1]
we have

fM(@1,01) + (1= A)(22,v2)) > Af(z1,01) + (1 = A) f(22,02) > Ag(ur,y1) + (1 — N)g(uz, y2)

> g(M(u1,y1) + (1 = A)(uz,y2))-

Therefore A((z1,y1), (u1,v1)) + (1 — A)((x2,y2), (u2,v2)) € M, hence M is convex.

We show that for each (u,v) € X xY the set N := {(z,y) € X XY : ((z,9), (u,v)) € R}
is closed. Let {(x¢,9:)} be a net in N converging to (x,y). Then for each index t, f(z:,v) <
g(u,y:). By (ii), we get

f(ac,v) < hﬂf('rtvv) < mg(uvyt) < g(uay)7

hence N is closed.
The existence of a saddle point (z*,y*) is now obtained applying Theorem 2.1. O

Note that, taking into account Remark 3.7, Theorem 3.9 supplies sufficient conditions,
different from those of Theorem 3.1, under which the inequality inf sup f(z,y) < sup inf g(z,y)
reX yey yey zeX

holds.
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