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based on an iterative shrinkage-thresholding algorithm and used the continuation technique
together with an approximate singular value decomposition procedure to accelerate the algo-
rithm. [13] proposed an accelerated proximal gradient singular value thresholding algorithm.
A completely different model was developed in LMaFit [15], which was a nonlinear succes-
sive over-relaxation algorithm that only requires solving a linear least squares problem per
iteration. More details on LRMC can be found in [2, 3, 5, 7] and references therein.

In practice, the completed matrix is often required to be nonnegative. For example,
the utility matrix of recommendation systems is nonnegative. If we ignore the minor by-
product issue in life-cycle assessment and input-output analysis, the technology matrix is also
nonnegative. They all motivate the development of nonnegative matrix completion (NMC).
[17] considered the model in LMaFit with nonnegative constraints and used the alternating
direction method of multipliers (ADMM) [4, 6, 9, 14] to solve the model. [16] considered
the nuclear norm regularized linear least squares model with nonnegative constraints and
also applied ADMM to solve the model. However, they replaced the quadratic term of a
sub-problem by its first-order Taylor expansion and only obtained an approximate solution.

Our main contribution in this work is the development of two efficient algorithms of
NMC. First of all, we present the nuclear norm regularized linear least squares model with
nonnegative constraints. Because of its robustness, we choose it as the model of NMC in this
paper. The structure of the model suggests an alternating minimization scheme, which is
very suitable for solving large-scale problems. We give two exact ADMM-based algorithms,
whose subproblems are solved exactly. We test new ADMM-based algorithms on two kinds
of problems: random matrix completion problems and random low-rank approximation
problems. Numerical experiments show that all our proposed algorithms output satisfactory
results. The paper is organized as follows. Section 2 presents models and algorithms of NMC.
Some numerical results are given in section 3.

The following notations will be used throughout this paper. Upper (lower) face letters
are used for matrices (column vectors). All vectors are column vectors, the subscript (·)T
denotes matrix and vector transposition. Diag(x) denotes a diagonal matrix with x on its
main diagonal. 0 is a matrix of all zeros of proper dimension, In stands for the n×n identity
matrix. The trace of X ∈ Rm×n, i.e., the sum of the diagonal elements of X, is denoted

by tr(X). The Frobenius norm of X ∈ Rm×n is defined as ∥X∥F =
√∑

i,j |Xi,j |2. The

Euclidean inner product between two matrices X ∈ Rm×n and Z ∈ Rm×n is defined as
⟨X,Z⟩ =

∑
i,j(Xi,jZi,j) = tr(X⊤Z). The inequality X ≥ 0 is element-wise, which means

Xij ≥ 0 for all entries (i, j). Likewise, the equality X = Z means Xij = Zij for all entries
(i, j).

2 ADMM-Based Methods for NMC

2.1 The model of NMC

The matrix completion problem of recovering a nonnegative low-rank matrix from a subset
of its entries is:

min rank(X)

s.t. Xij = Mij , ∀(i, j) ∈ Ω

X ≥ 0,

(2.1)

where X ∈ Rm×n is the decision variable, Ω is the index set of p known elements of X.

Let P be the projection onto the subspace of sparse matrices with non-zeros restricted
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to the index set Ω, i.e.,

PΩ(X)ij =

{
Xij , if (i, j) ∈ Ω,

0, otherwise.

From the definition of PΩ, we can reformulate the equality constrain in Model (2.1) in
terms of PΩ(X) = PΩ(M). Due to the combinational property of the objective function
rank(·), Model (2.1) is NP-hard in general. Inspired by the success of matrix completion
under nuclear norm in [2, 3, 12], we use the nuclear norm as an approximation to rank(X)
to estimate the optimal solution X∗ of Model (2.1) from the following model:

min ∥X∥∗
s.t. PΩ(X) = PΩ(M)

X ≥ 0,

(2.2)

where the nuclear norm ∥X∥∗ of X is defined as the summation of the singular values of X,
i.e.,

∥X∥∗ =

min(m,n)∑
i=1

σi(X),

where σi(X) is the ith largest singular value.
If the known elements of the matrix X are noise free, that is to say PΩ(M) is reliable, we

will directly solve Model (2.2) to conduct NMC. On the contrary, if the vector of known ele-
ments PΩ(M) are contaminated by noise, the constrains PΩ(X) = PΩ(M) must be relaxed,
resulting in the following problem:

min
X

∥X∥∗, s.t. ∥PΩ(X)−PΩ(M)∥F ⩽ δ, X ≥ 0, (2.3)

or the nuclear norm regularized linear least squares model with nonnegative constraints:

min
X

µ∥X∥∗ +
1

2
∥PΩ(X)− PΩ(M)∥2F , s.t. X ≥ 0. (2.4)

Here, δ and µ are given parameter, whose values should be set according to the noise level.
When the values of µ and δ are set properly, (2.3) and (2.4) are equivalent. Model (2.4)
is usually preferred over (2.3) for the case of noisy observations. Our algorithms can be
extended to treat (2.3) with minor modifications.

Actually, Model (2.4) is especially useful in practice. The reason is that the known infor-
mation is usually gotten from large surveys and contaminated by sampling error inevitably.
In this paper, we choose Model (2.4) as the model to conduct NMC.

2.2 An ADMM-based method for Model (2.4)

In this subsection, we present an algorithm developed for Model (2.4). To facilitate an
efficient use of ADMM, we introduce two new matrix (splitting) variables Y and Z, and
consider an equivalent form of Model (2.4):

min
X,Y,Z

µ∥Y ∥∗ +
1

2
∥PΩ(Z)− PΩ(M)∥2F ,

s.t. X ≥ 0,

Y = X,

Z = X,

(2.5)
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where X, Y , Z ∈ Rm×n. The augmented Lagrangian function of Model (2.5) is:

L(X,Y, Z,Π,Λ) = µ∥Y ∥∗ +
1

2
∥PΩ(Z)− PΩ(M)∥2F + ⟨Π, Y −X⟩

+ ⟨Λ, Z −X⟩+ α

2
∥Y −X∥2F +

β

2
∥Z −X∥2F ,

(2.6)

where Π, Λ ∈ Rm×n are both Lagrangian multipliers. α, β > 0 are both penalty parameters.
The alternating direction method of multipliers for Model (2.5) is derived by successively

minimizing L with respect to X, Y and Z in an alternating fashion, namely,

Xk+1 := arg min
X≥0

L(X,Yk, Zk,Πk,Λk), (2.7a)

Yk+1 := argmin
Y

L(Xk+1, Y, Zk,Πk,Λk), (2.7b)

Zk+1 := argmin
Z

L(Xk+1, Yk+1, Z,Πk,Λk), (2.7c)

Πk+1 := Πk + γα (Yk+1 −Xk+1) , (2.7d)

Λk+1 := Λk + γβ (Zk+1 −Xk+1) , (2.7e)

where γ ∈ (0, 1.618). By rearranging the terms of (2.7a), it is equivalent to

min
X≥0

∥X − αYk + βZk +Πk + Λk

α+ β
∥2F ,

whose solution is

Xk+1 = P+(
αYk + βZk +Πk + Λk

α+ β
),

where P+ is the projection onto the nonnegative matrix subspace, i.e.,

P+(X)ij =

{
Xij , if Xij > 0,

0, otherwise.

By deleting the constant terms of problem (2.7b), we can get a more concise form:

min
Y

µ∥Y ∥∗ + ⟨Πk, Y −Xk+1⟩+
α

2
∥Y −Xk+1∥2F ,

which is equivalent to

min
Y

µ∥Y ∥∗ +
α

2
∥Y − (Xk+1 −Πk/α)∥2F . (2.8)

Lemma 2.1. (Theorem 3 in [11]) Given a matrix Y ∈ Rm×n with rank(Y ) = t, let its
Singular Value Decomposition (SVD) be Y = UY Diag(w)V T

Y , where UY ∈ Rm×t, w ∈ Rt
+,

VY ∈ Rn×t, and ν ≥ 0. Define the shrinkage operator sν(·) as

sν(w) = w̄, with w̄i =

{
wi − ν, if wi − ν > 0,

0, otherwise.

Then
A := Sν(Y ) = UY Diag(sν(w))V

T
Y

is an optimal solution of the problem

min
A∈Rm×n

f(A) := ν∥A∥∗ +
1

2
∥A− Y ∥2F .
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Based on Lemma 2.1, we can get the solution of the Model (2.8):

Yk+1 = S µ
α
(Xk+1 −Πk/α).

Note that Z∗ is an optimal solution to (2.7c):

min
Z

1

2
∥PΩ(Z)− PΩ(M)∥2F + ⟨Λ, Z −Xk+1⟩+

β

2
∥Z −Xk+1∥2F ,

if and only if
P∗
Ω(PΩ(Z∗)− PΩ(M)) + Λk + β(Z∗ −Xk+1) = 0,

therefore the closed solution of (2.7c) can be written as

Zk+1 = (P∗
ΩPΩ + βI)−1(PΩ(M)− Λk + βXk+1),

where I is the identity operator and P∗
Ω is the adjoint operator of PΩ.

In short, ADMM applied to Model (2.5) yields the iteration:

Xk+1 := P+(
αYk + βZk +Πk + Λk

α+ β
), (2.9a)

Yk+1 := S µ
α
(Xk+1 −Πk/α), (2.9b)

Zk+1 := (P∗
ΩPΩ + βI)−1(PΩ(M)− Λk + βXk+1), (2.9c)

Πk+1 := Πk + γα (Yk+1 −Xk+1) , (2.9d)

Λk+1 := Λk + γβ (Zk+1 −Xk+1) . (2.9e)

From the above considerations, we arrive at Algorithms 1 below.

Algorithm 1: An exact ADMM-based algorithm of NMC

1 Input PΩ(M), Im ≥ 0, and tol ≥ 0.
2 Set µ, γ, α, and β ≥ 0. Set X0, Y0 and Z0 as random matrices, and Π0 and Λ0 as
zero matrices of appropriate sizes.

3 while not converge do
4 update Xk, Yk, Zk,Πk,Λk by the formulas (2.9).

2.3 Another ADMM-based method for Model (2.4)

In this subsection, we develop another algorithm for Model (2.4), which is also based on
ADMM. Here, we only introduce a new matrix splitting variable Z and consider another
equivalent form of Model (2.4):

min
X,Z

µ∥Z∥∗ +
1

2
∥PΩ(X)− PΩ(M)∥2F

s.t. X = Z,

X ≥ 0,

(2.10)

where X,Z ∈ Rm×n. The augmented lagrangian of Model (2.10) is:

L(X,Z,Λ) = µ∥Z∥∗ +
1

2
∥PΩ(X)−PΩ(M)∥2F + ⟨Λ, X − Z⟩+ ρ

2
∥X − Z∥2F ,



464 F. XU AND G. HE

where Λ ∈ Rm×n is a lagrangian multiplier, ρ > 0 is a penalty parameter.

The alternating direction method of multipliers for Model (2.10) is derived by:

Xk+1 := arg min
X≥0

L(X,Zk,Λk), (2.11a)

Zk+1 := argmin L(Xk+1, Z,Λk), (2.11b)

Λk+1 := Λk + γρ(Xk+1 − Zk+1). (2.11c)

By rearranging the terms of (2.11a), it is equivalent to

min
X∈Rm×n

1

2
∥PΩ(X)− PΩ(M)∥2F +

ρ

2
∥X − (Zk − 1

ρ
Λk)∥2F

s.t. X ≥ 0.

(2.12)

Model (2.12) can be split into two subproblems:

min
1

2
∥PΩ(X)− PΩ(M)∥2F +

ρ

2
∥PΩ(X)− PΩ(Zk − 1

ρ
Λk)∥2F

s.t. PΩ(X) ≥ 0,

and

min ∥PΩ̂(X)− PΩ̂(Zk − 1

ρ
Λk)∥2F

s.t. PΩ̂(X) ≥ 0,

where Ω̂ is the complement of Ω. Finally, we can get the solution of (2.11a) by solving the
above two subproblems.

(Xk+1)Ω =P+(
1

ρ+ 1
PΩ(M + ρEk)),

(Xk+1)Ω̂ =P+(PΩ̂(Ek)),

where Ek = Zk − 1
ρΛk.

By deleting the constant terms of (2.11b), we can get a more concise form:

Zk+1 := argmin µ∥Z∥∗ +
ρ

2
∥Z − (Xk+1 +

1

ρ
Λk)∥2F ,

whose solution is

Zk+1 = Sµ
ρ
(Xk+1 +

1

ρ
Λk).

In short, ADMM applied to Model (2.10) produces the iteration:

(Xk+1)Ω := P+(
1

ρ+ 1
PΩ(M + ρEk)), (Xk+1)Ω̂ := P+(PΩ̂(Ek)), (2.13a)

Zk+1 := Sµ
ρ
(Xk+1 +

1

ρ
Λk), (2.13b)

Λk+1 := Λk + γρ(Xk+1 − Zk+1). (2.13c)

From the above considerations, we arrive at Algorithms 2 below.
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Algorithm 2: Another exact ADMM-based algorithm of NMC

1 Input PΩ(M), Im ≥ 0, and tol ≥ 0.
2 Set µ, γ, ρ ≥ 0. Set X0 and Z0 as random matrices, Λ0 as zero matrices of
appropriate sizes.

3 while not converge do
4 update Xk, Zk,Λk by the formulas (2.13).

3 Numerical Results

In this section, we report on the application of our proposed ADMM-based algorithms to
a series of matrix problems to demonstrate their ability. To illustrate the performance of
our algorithmic approaches combined with different procedures, we test the following three
solvers.

1. ADMM-TayA. Algorithm 2 in [16].
2. ADMM-TwoV. Algorithm 1, the exact ADMM-based method for Model (2.4) with

two new matrix splitting variables.
3. ADMM-OneV. Algorithm 2, the exact ADMM-based method for Model (2.4) with

only one new matrix splitting variable.
We implement our algorithms in MATLAB. All the experiments are performed on a Dell

Precision T5500 workstation with Intel Xenon(R) E5620 CPU at 2.40GHz (×4) and 12G of
memory running Ubuntu 12.04 and MATLAB 2011b.

3.1 Implementation, parameters of the three solvers

We test the above three solvers on random nonnegative matrix problems. We do numerical
experiments by the following procedure: firstly, we create a low-rank or approximately low-
rank nonnegative matrix M ∈ Rm×n

+ , with i.i.d. Gaussian entries. Secondly, we select a
subset of p elements uniformly at random from the m× n elements of M and denote their
index set as Ω. The index set of unknown elements is denoted as Ω̂. The ratio p/(mn)
between the number of measurements and the number of entries in the matrix is denoted as
“SR” (sampling ratio). We use PΩ(M) to complete X, the result is denoted as X̂. Finally,
we will check the differences between X̂ with its actual value M .

err1 = ∥PΩ(X̂)− PΩ(M)∥F /|Ω|, (3.1a)

err2 = ∥PΩ̂(X̂)− PΩ̂(M)∥F /| Ω̂|, (3.1b)

err = err1 + err2, (3.1c)

where |Ω| and |Ω̂| are the cardinality of Ω and Ω̂, respectively.
The most important algorithmic parameters in Algorithm 1-2 are µ, γ, tol, α, β, ρ, and

the maximal number of iterations Im. In our implementation, we set γ = 1.618, tol = 10−4,
α = β = ρ = 0.1, and Im = 105. However, the value of µ is very difficult to set since it can
be neither too large nor too small. µ is usually chosen to be a moderate value. Three sets
of results are computed when µ is equal to three different values. They are shown in Table
1.

We can use continuation technique employed in [8, 11, 13] to accelerate the convergence
of ADMM-TwoV, ADMM-OneV, and ADMM-FBS. If Model (2.4) is to be solved with the
target parameter value µ = µ̄, we propose solving a sequence of Model (2.4) by a decreasing
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Table 1: Numerical Results of different values of µ (p=100,n=100,r=3)

Problems ADMM-TwoV ADMM-OneV
SR err1 err2 err r err1 err2 err r

µ = 10
0.30 6.44e-03 4.50e-03 1.09e-02 88 6.43e-03 4.50e-03 1.09e-02 1
0.40 4.31e-03 3.65e-03 7.96e-03 31 4.31e-03 3.65e-03 7.96e-03 1
0.50 3.20e-03 3.31e-03 6.51e-03 1 3.20e-03 3.31e-03 6.51e-03 1
0.60 2.55e-03 3.20e-03 5.75e-03 1 2.55e-03 3.20e-03 5.75e-03 1
0.70 2.13e-03 3.36e-03 5.49e-03 1 2.13e-03 3.36e-03 5.49e-03 1
0.80 1.84e-03 3.75e-03 5.59e-03 1 1.84e-03 3.75e-03 5.59e-03 1
0.90 1.63e-03 5.01e-03 6.64e-03 1 1.63e-03 5.01e-03 6.64e-03 1

µ = 1
0.30 1.52e-03 1.76e-03 3.28e-03 100 1.08e-03 8.47e-04 1.93e-03 3
0.40 7.47e-04 7.08e-04 1.46e-03 100 7.02e-04 6.54e-04 1.36e-03 3
0.50 5.05e-04 5.78e-04 1.08e-03 96 5.03e-04 5.76e-04 1.08e-03 3
0.60 3.79e-04 5.16e-04 8.95e-04 62 3.79e-04 5.16e-04 8.95e-04 3
0.70 3.00e-04 5.10e-04 8.11e-04 5 3.00e-04 5.10e-04 8.11e-04 3
0.80 2.43e-04 5.22e-04 7.66e-04 3 2.43e-04 5.22e-04 7.66e-04 3
0.90 2.03e-04 6.53e-04 8.57e-04 3 2.03e-04 6.53e-04 8.57e-04 3

µ = 10−1

0.30 2.55e-04 8.76e-03 9.02e-03 100 1.17e-04 1.05e-04 2.21e-04 3
0.40 1.88e-04 9.03e-03 9.22e-03 99 7.25e-05 7.19e-05 1.44e-04 3
0.50 1.48e-04 9.29e-03 9.44e-03 100 5.13e-05 6.13e-05 1.13e-04 3
0.60 1.21e-04 9.63e-03 9.75e-03 100 3.83e-05 5.35e-05 9.17e-05 3
0.70 1.00e-04 1.01e-02 1.02e-02 100 3.02e-05 5.23e-05 8.25e-05 3
0.80 8.37e-05 1.03e-02 1.04e-02 100 2.44e-05 5.29e-05 7.73e-05 3
0.90 6.00e-05 9.79e-03 9.85e-03 100 2.04e-05 6.60e-05 8.63e-05 3

sequence {µ0, µ1, . . .}. When a new problem, associated with µj+1 is to be solved, the
approximate solution for the current problem with µ = µj is used as the starting point. In
our numerical experiments in Sections 3.2 and 3.3, we set the initial µ0 = 1, and update
µk = µk−1/1.001 at iteration k. A stopping criterion of Algorithm 1 is met as long as all
the following four conditions are satisfied:

∥Xk −Xk−1∥F ≤ tol, (3.2a)

∥Xk − Yk∥F ≤ tol, (3.2b)

∥Xk − Zk∥F ≤ tol, (3.2c)

∥PΩ(Xk)− PΩ(M)∥F ≤ tol. (3.2d)

A stopping criterion of Algorithm 2 is met as long as all the following three conditions are
satisfied:

∥Xk −Xk−1∥F ≤ tol, (3.3a)

∥Xk − Zk∥F ≤ tol, (3.3b)

∥PΩ(Xk)− PΩ(M)∥F ≤ tol. (3.3c)

3.2 Experiments on random matrix completion problems

The matrix M ∈ Rm×n
+ with rank r in this subsection is created randomly by the following

procedure (see also [11, 15]): two random nonnegative matrices ML ∈ Rm×r
+ , MR ∈ Rr×n

+

with i.i.d. standard Gaussian entries are first generated, then M = MLMR is assembled.
From the creation process of M , its rank is no larger than r.
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Table 2: Numerical results on medium randomly created matrix completion problems
(p=100, n=100, r=3)

ADMM-TayA ADMM-TwoV ADMM-OneV
SR err1 err2 err r err1 err2 err r err1 err2 err.X r
0.30 1.83e-03 1.37e-03 3.19e-03 100 1.63e-03 2.02e-03 3.65e-03 100 1.10e-03 8.63e-04 1.96e-03 3
0.40 1.20e-03 1.10e-03 2.30e-03 100 8.04e-04 7.94e-04 1.60e-03 100 7.10e-04 6.75e-04 1.39e-03 3
0.50 8.54e-04 9.50e-04 1.80e-03 100 5.07e-04 5.78e-04 1.09e-03 97 5.03e-04 5.71e-04 1.07e-03 3
0.60 6.47e-04 8.74e-04 1.52e-03 100 3.80e-04 5.21e-04 9.01e-04 73 3.80e-04 5.21e-04 9.01e-04 3
0.70 5.12e-04 8.58e-04 1.37e-03 100 3.00e-04 5.09e-04 8.08e-04 5 3.00e-04 5.09e-04 8.08e-04 3
0.80 4.17e-04 9.13e-04 1.33e-03 100 2.44e-04 5.40e-04 7.84e-04 3 2.44e-04 5.40e-04 7.84e-04 3
0.90 3.49e-04 1.15e-03 1.50e-03 100 2.04e-04 6.77e-04 8.81e-04 3 2.04e-04 6.77e-04 8.81e-04 3

The computational results of matrix completion are presented in Table 2. We can observe
that all our proposed solvers perform better than ADMM-TayA. ADMM-TwoV converges
more slowly than ADMM-OneV. The reason is that there are two unknown penalty parame-
ters α and β in ADMM-TwoV, whose values are difficult to set. When SR > 0.5, numerical
results of our proposed solvers are similar. All of them can output satisfactory results.

3.3 Experiments on random low-rank approximation problems

We next consider applying our proposed algorithms to randomly generated low-rank ap-
proximation problems. The goal is to find a low-rank approximation to a mathematically
full-rank matrix X0 whose singular values gradually tend to zero, though none is exactly
zero.

In this subsection, M ∈ Rm×n
+ with rank r is created as follows: two matricesML ∈ Rm×r

+

and MR ∈ Rr×n
+ with i.i.d. standard Gaussian entries are first generated randomly. Then

the matrix M = MLSMR is assembled, here S ∈ Rr×r is a diagonal matrix satisfying:
diag(S) = (1, 2, . . . , r)⊤. Some numerical results are gotten when SR increases from 0.3
to 0.9, they are shown in Table 3. From Table 3, we can get similar conclusion as above
subsection. In conclusion, recovering results show our proposed algorithms are helpful for
NMC.

Table 3: Numerical results on medium randomly created low-rank approximation problems
(p=100,n=100,r=5)

ADMM-TayA ADMM-TwoV ADMM-OneV
SR err1 err2 err r err1 err2 err r err1 err2 err.X r
0.30 2.47e-03 2.14e-03 4.61e-03 15 2.37e-03 3.09e-02 3.33e-02 100 1.49e-03 1.37e-03 2.87e-03 5
0.40 1.60e-03 1.69e-03 3.29e-03 94 1.78e-03 2.73e-02 2.91e-02 100 9.53e-04 1.05e-03 2.00e-03 5
0.50 1.12e-03 1.37e-03 2.49e-03 100 1.38e-03 2.18e-02 2.32e-02 100 6.63e-04 8.26e-04 1.49e-03 5
0.60 8.52e-04 1.25e-03 2.10e-03 100 1.05e-03 1.49e-02 1.60e-02 100 5.00e-04 7.42e-04 1.24e-03 5
0.70 6.71e-04 1.21e-03 1.88e-03 100 6.27e-04 5.51e-03 6.13e-03 100 3.93e-04 7.17e-04 1.11e-03 5
0.80 5.44e-04 1.26e-03 1.81e-03 100 3.23e-04 7.73e-04 1.10e-03 98 3.18e-04 7.43e-04 1.06e-03 5
0.90 4.54e-04 1.63e-03 2.08e-03 100 2.65e-04 9.59e-04 1.22e-03 6 2.65e-04 9.59e-04 1.22e-03 5

Acknowledgements

We would like to thank Prof. Zaiwen Wen for the discussions on matrix completion. We
thank Prof. Bingsheng He for the discussions on the alternating direction method of multi-
pliers. The authors are grateful to two anonymous referees for their detailed and valuable
comments and suggestions, Algorithm 2 is suggested by one of the referees.



468 F. XU AND G. HE

References

[1] J. Cai, E.J. Candés and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optim. 20 (2010) 1956–1982.

[2] E.J. Candès and B. Recht, Exact matrix completion via convex optimization, Founda-
tions of Computational Mathematics 9 (2009) 717–772.

[3] E.J. Candès and T. Tao, The power of convex relaxation: near-optimal matrix com-
pletion, IEEE Trans. Inform. Theory 56 (2010) 2053–2080.

[4] W. Deng and W. Yin, On the global and linear convergence of the generalized al-
ternating direction method of multipliers, Technical report, Rice University CAAM,
2012.

[5] M. Fazel, Matrix rank minimization with application, PhD thesis, Stanford University,
2002.

[6] M. Fortin and R. Glowinski, Augmented Lagrangian Methods, volume 15 of Studies in
Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1983.
Applications to the numerical solution of boundary value problems, Translated from
the French by B. Hunt and D. C. Spicer.

[7] D. Goldfarb, S. Ma, and Z. Wen, Solving low-rank matrix completion problems ef-
ficiently, in Proceedings of the 47th annual Allerton conference on Communication,
control, and computing, Allerton’09, 2009, pp. 1013–1020.

[8] E.T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for l1-minimization:
methodology and convergence, SIAM J. Optim. 19 (2008) 1107–1130.

[9] B. He, H. Yang and S. Wang, Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities, J. Optim. Theory Appl. 106 (2000)
337–356.

[10] H. Ji, C. Liu, Z. Shen and Y. Xu, Robust video denoising using low rank matrix com-
pletion, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. IEEE, 2010, pp. 1791–1798.

[11] S. Ma, D. Goldfarb and L. Chen, Fixed point and bregman iterative methods for matrix
rank minimization, Mathematical Programming 128 (2011) 321–353.

[12] B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization, SIAM Rev. 52 (2010) 471–501.

[13] K.C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm
regularized least squares problems, Pacific J. Optim. 6 (2010) 615–640.

[14] Z. Wen, D. Goldfarb,and W. Yin, Alternating direction augmented lagrangian methods
for semidefinite programming, Math. Prog. Comp. 2 (2010) 203–230.

[15] Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix
completion by a nonlinear successive over-relaxation algorithm, Math. Prog. Comp. 4
(2012) 333–361.



NEW ALGORITHMS FOR NONNEGATIVE MATRIX COMPLETION 469

[16] F. Xu, C. Lin, G. He and Z. Wen, Nonnegative matrix completion for life-cycle assess-
ment and input-output analysis, Working paper of The Center for Economic Research
Shandong University, 2013.

[17] Y. Xu, W. Yin, Z. Wen and Y. Zhang, An alternating direction algorithm for matrix
completion with nonnegative factors, Frontiers of Mathematics in China 7 (2012) 365–
384.

Manuscript received 21 September 2013
revised 7 April 2014

accepted for publication 17 April 2014

Fangfang Xu
Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, China
E-mail address: xufangfang1984@sjtu.edu.cn

Guoping He
College of Mathematics and Systems Science
Shandong University of Science and Technology
Qingdao 266590, China
E-mail address: hegp@263.net


