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Unfortunately, the statement that the surjectivity-type condition G(A) + G(−∂f) =
X × X∗ implies maximality of A is not true under the hypotheses of this corollary. The
wrong conclusion is due to a slight but improper extension of the domain of a quantifier at
the end of the proof. At first sight, one could hope to fix this problem quite easily, without
introducing further assumptions, but this turns out not to be the case. Indeed, in Section 3
we provide a counterexample to the incorrect implication of [8, Corollary 2.5]. Moreover, we
propose new formulations, adding sufficient hypotheses for this implication to hold, while
refining the existing assumptions. In particular, the reflexivity assumption will be dropped,
unless otherwise specified.

2 Notation

In the present note we will consider a Banach space X and denote by X∗ its topological
dual. For ease of notation, we will identify X with its image in the bidual X∗∗ via the
natural injection.

An operator A : X ⇒ X∗ is a set-valued mapping and its domain, range and graph are
respectively defined as

D(T ) = {x ∈ X : T (x) ̸= ∅}, R(T ) = {x∗ ∈ X∗ : ∃x ∈ X (x∗ ∈ T (x))};

G(T ) = {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)}.
Given two points (x, x∗), (y, y∗) ∈ X ×X∗, we say that they are monotonically related if

⟨x− y, x∗ − y∗⟩ ≥ 0,

while (x, x∗) is monotonically related to a set S ⊆ X ×X∗ if it is monotonically related to
any point of S. An operator A : X ⇒ X∗ is monotone if any point of G(A) is monoton-
ically related to G(A) and it is maximal monotone if any point (x, x∗) ∈ X × X∗ that is
monotonically related to G(A) belongs to G(A).

An important class of maximal monotone operators is given by the subdifferentials of
lower semicontinuous proper convex functions. Given a function f : X → R ∪ {+∞}, the
subdifferential of f is the operator ∂f : X ⇒ X∗ defined as

∂f(x) =

{
{x∗ ∈ X∗ : f(y) ≥ f(x) + ⟨y − x, x∗⟩, ∀y ∈ X}, if f(x) ∈ R
∅, if f(x) /∈ R,

or, equivalently,

∂f(x) =

{
{x∗ ∈ X∗ : f(x) + f∗(x∗) = ⟨x, x∗⟩}, if f(x) ∈ R
∅, if f(x) /∈ R,

where f∗ : X∗ → R is the Fenchel conjugate of f , i.e. the function that maps each x∗ ∈ X∗

to
f∗(x∗) = sup

x∈X
{⟨x, x∗⟩ − f(x)}.

It is easy to check that the subdifferential is a monotone operator. If f is lower semicontin-
uous proper convex, then ∂f is maximal monotone [6, 12, 15].

In the case when the proper convex function f : X → R∪{+∞} is Gâteaux differentiable
at x ∈ X, we have ∂f(x) = {∇f(x)}, where ∇f(x) ∈ X∗ is such that, for all d ∈ X,

lim
t→0

f(x+ td)− f(x)

t
= ⟨d,∇f(x)⟩.
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A sufficient condition for the converse implication to hold, i.e. for the function f to be
Gâteaux differentiable at x, given that ∂f(x) is a singleton, is that f be continuous at x [19,
Corollary 2.4.10].

Recall that a function f : X → R∪ {+∞} is cofinite if its Fenchel conjugate f∗ is finite.
Finally, in the following section we will denote by ⌊ · ⌋ : R → Z the function that maps

each real number to its integer part.

3 A Counterexample and Some New Generalizations

We first show, by means of an example, that the surjectivity-type condition G(A)+G(−∂f) =
X ×X∗ does not imply maximality of the monotone operator A, in general.

Example 3.1. Consider the monotone operator A : R ⇒ R defined by

A(x) =

{
{0} , x ∈ ]−∞, 0[

]0,+∞[, x = 0.

Clearly A is monotone, though not maximal monotone, since (0, 0) is monotonically related
to G(A) but does not belong to it. Moreover, consider the piece-wise affine and continuous
function that interpolates j : R → R, x 7→ 1

2x
2, in its points with abscissa z+ 1

2 for all z ∈ Z,
namely f : R → R such that, for all x ∈ R,

f(x) = x

⌊
x+

1

2

⌋
− 1

2

⌊
x+

1

2

⌋2

+
1

8
.

It is easy to check that this function is continuous (hence, lower semicontinuous), proper,
convex and finite-valued; it is also cofinite, since j is cofinite and f ≥ j, so that f∗ ≤ j∗ <
+∞.

We will prove that G(A) + G(−∂f) = R2, though A is not maximal monotone. To this
end, note that the negative of the subdifferential of f is

−∂f(x) =

{
−
⌊
x+ 1

2

⌋
, x+ 1

2 /∈ Z[
−x− 1

2 ,−x+ 1
2

]
, x+ 1

2 ∈ Z,

for all x ∈ R. Given an arbitrary point (w,w∗) ∈ R2, we have to prove that (w,w∗) ∈
G(A) + G(−∂f). Consider three (non-disjoint) cases:

(a) if w∗ > −
⌊
w + 1

2

⌋
, then

(w,w∗) =

(
0,

⌊
w +

1

2

⌋
+ w∗

)
+

(
w,−

⌊
w +

1

2

⌋)
∈ G(A) + G(−∂f);

(b) if w < −
(
⌊w∗⌋+ 1

2

)
, then

(w,w∗) =

(
w + ⌊w∗⌋+ 1

2
, 0

)
+

(
−⌊w∗⌋ − 1

2
, w∗

)
∈ G(A) + G(−∂f);

(c) if w∗ = −
⌊
w + 1

2

⌋
, then

(w,w∗) =

(
w − 1

2
−

⌊
w +

1

2

⌋
, 0

)
+

(⌊
w +

1

2

⌋
+

1

2
, w∗

)
∈ G(A) + G(−∂f).
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To conclude, we finally show that the preceding three cases cover all possible cases.
Indeed, suppose by contradiction that (w,w∗) ∈ R2 does not satisfy any of (a)–(c), i.e.

w∗ < −
⌊
w +

1

2

⌋
and w ≥ −

(
⌊w∗⌋+ 1

2

)
. (3.1)

Then, taking the first inequality of (3.1) into account, we obtain

−⌊w∗⌋ ≥ −w∗ >

⌊
w +

1

2

⌋
,

that is

−⌊w∗⌋ ≥
⌊
w +

1

2

⌋
+ 1,

from which

−
(
⌊w∗⌋+ 1

2

)
≥

⌊
w +

1

2

⌋
+

1

2
> w,

a contradiction to the second inequality (3.1). Then we conclude that G(A)+G(−∂f) = R2.

In order for the incorrect implication in [8, Corollary 2.5] to hold, it is sufficient to assume
that there exists (p, p∗) ∈ X ×X∗ such that

∂f(p) = {p∗} and ∂f∗(p∗) ∩X = {p}. (3.2)

Notice that these equalities automatically hold if f and f∗ are Gâteaux differentiable at p
and p∗, respectively. The proof of the implication in [8, Corollary 2.5] that we are considering
uses the assumptions that X is reflexive and f is finite-valued and cofinite to prove that
f is Gâteaux differentiable at p. Therefore, the hypotheses of [8, Corollary 2.5] yield the
first equality of (3.2), by which they can thus be replaced; on the other hand, they have
to be complemented by the second equation of (3.2) in order to prove that A is maximal
monotone, given the surjectivity-type condition G(A)+G(−∂f) = X ×X∗, as shown by the
following result.

Proposition 3.2. Let X be a Banach space, A : X ⇒ X∗ be a monotone operator, f : X →
R ∪ {+∞} be a lower semicontinuous proper convex function and (p, p∗) ∈ X ×X∗ be such
that ∂f(p) = {p∗} and ∂f∗(p∗)∩X = {p}. If G(A)+G(−∂f) = X×X∗, then A is maximal
monotone.

Proof. The equality ∂f(p) = {p∗} yields

⟨p, p∗⟩ − f∗(p∗) = f(p) > ⟨p, y∗⟩ − f∗(y∗), ∀y∗ ∈ X∗\{p∗},

from which follows that

f∗(y∗) > f∗(p∗) + ⟨p, y∗ − p∗⟩, ∀y∗ ∈ X∗\{p∗}. (3.3)

In particular, (3.3) holds for all (y, y∗) ∈ G(∂f)\{(p, p∗)}, since y ̸= p implies y∗ ̸= p∗, as
otherwise

f∗∗(y) + f∗(p∗) = f(y) + f∗(p∗) = ⟨y, p∗⟩,

i.e. y ∈ ∂f∗(p∗) ∩X = {p}, a contradiction.
On the other hand, for all (y, y∗) ∈ G(∂f), one has (y∗, y) ∈ G(∂f∗); hence,

f∗(p∗) ≥ f∗(y∗) + ⟨y, p∗ − y∗⟩.
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The preceding inequality, along with (3.3), yields

⟨p− y, p∗ − y∗⟩ > 0, ∀(y, y∗) ∈ G(∂f)\{(p, p∗)}. (3.4)

Hence, assuming that G(A)+G(−∂f) = X×X∗ and reasoning as in the proof of implication
(3) =⇒ (1) of [8, Theorem 2.1] (see also [11, Remark 3.5]), we deduce that A is maximal
monotone. Indeed, for all (x, x∗) ∈ X ×X∗, we have

(x+ p, x∗ − p∗) ∈ X ×X∗ = G(A) + G(−∂f).

As a consequence, there exist (z, z∗) ∈ G(A) and (y, y∗) ∈ G(∂f) such that (x+p, x∗−p∗) =
(z, z∗) + (y,−y∗), i.e. x− z = y− p and x∗ − z∗ = p∗ − y∗. Thus, if (x, x∗) is monotonically
related to G(A), we conclude that

0 ≤ ⟨x− z, x∗ − z∗⟩ = −⟨y − p, y∗ − p∗⟩,

which, by (3.4), implies that (y, y∗) = (p, p∗), so that (x, x∗) = (z, z∗) ∈ G(A). This proves
that A is maximal monotone.

Remark 3.3. (a) Under the hypotheses of the preceding proposition, we do not need
to assume that X is reflexive to prove that A is maximal monotone. In [8] it is a
blanket assumption and is employed in [8, Corollary 2.5] to prove that f is Gâteaux
differentiable at p (furthermore, it is necessary to prove the opposite implication, which
we are ignoring here). Notice that, assuming reflexivity of X in Proposition 3.2, the
condition ∂f∗(p∗) ∩X = {p} simply reads ∂f∗(p∗) = {p}.

(b) It is easy to check that the condition G(A) + G(−∂f) = X × X∗ is equivalent to
R(A( · + w) + ∂ (f ◦ s)) = X∗ for all w ∈ X, denoting by s : X −→ X the change
of sign operator s (x) = −x. Notice that f is a lower semicontinuous proper convex
function if and only if f ◦ s is; moreover, ∂ (f ◦ s) = −∂f (− ·) (as a consequence,
∂ (f ◦ s) (x) does not coincide with ∂f(s(x)) = ∂f(−x), in general) and ∂ (f ◦ s)∗ =
−∂f∗ (− ·) , hence (p, p∗) ∈ X ×X∗ satisfies the assumptions of Proposition 3.2 if and
only if ∂ (f ◦ s) (−p) = {−p∗} and ∂ (f ◦ s)∗ (−p∗) ∩X = {−p}. Therefore, under the
assumptions of Proposition 3.2, one also has that if G(A) + G(−∂ (f ◦ s)) = X × X∗

or, equivalently (as s is idempotent), if

R(A( ·+ w) + ∂f) = X∗ for all w ∈ X, (3.5)

then A is maximal monotone. Using a similar argument one can also show that the
assumption G(A) + G(−∂f) = X × X∗ in corollaries 3.4, 3.6 and 3.8 below can be
replaced by the surjectivity condition (3.5).

Corollary 3.4. Let X be a Banach space, A : X ⇒ X∗ be a monotone operator and
f : X → R∪{+∞} be a lower semicontinuous proper convex function. Assume that G(A)+
G(−∂f) = X ×X∗, the subdifferential ∂f (p) is a singleton for some p ∈ X and one of the
following conditions holds:

(a) ∂f∗ is single valued on R(∂f);

(b) f is strictly convex.

Then A is maximal monotone.
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Proof. Let p∗ ∈ X∗ be such that ∂f(p) = {p∗}.

(a) Suppose that ∂f∗ is single valued on R(∂f). Then ∂f∗(p∗) = {p} and the result
follows from Proposition 3.2.

(b) Suppose that f is strictly convex and, towards a contradiction, that there exists
y ∈ X\{p} such that p∗ ∈ ∂f(y). Since f is strictly convex, then ∂f is strictly
monotone [19, Theorem 2.4.4]. Hence,

0 < ⟨y − p, p∗ − p∗⟩ = 0,

which is absurd. Therefore, ∂f∗(p∗) ∩ X = {p} and the result follows again from
Proposition 3.2. □

Remark 3.5. (a) Notice that R(∂f) ⊆ D(∂f∗), but the inclusion may be strict in non-

reflexive Banach spaces. Indeed, if f := 1
2 ∥·∥

2
then D (∂f∗) = X∗, and R (∂f) = X∗

if and only if X is reflexive (this assertion is equivalent to James’ theorem [5, Theorem
5], because R (∂f) is the set of continuous linear functionals x∗ ∈ X∗ that attain their
maxima over the closed unit ball of X); consequently, for any nonreflexive Banach

space and f := 1
2 ∥·∥

2
the inclusion R(∂f) ⊆ D(∂f∗) is strict. Thus, statement (a)

above is not equivalent to requiring ∂f∗ to be single valued on the whole of its domain.

(b) The two assumptions in statements (a) and (b) above are closely related, since single
valuedness of the subdifferential of a lower semicontinuous proper convex function at
a point is implied by Gâteaux differentiability at that point and strict convexity and
differentiability are, in a certain sense, dual properties [2]. One can easily prove, for
instance, that if f∗∗ is strictly convex at every point in D(∂f) (in the sense that
f∗∗ ((1− λ)x+ λx∗∗) < (1− λ) f (x)+λf∗∗ (x∗∗) for all x ∈ D(∂f), x∗∗ ∈ (dom f∗∗)\
{x} and λ ∈ ]0, 1[) then ∂f∗ is single valued on R(∂f). Note that (a) and (b) in
the preceding corollary can be replaced by the following slightly weaker assumptions,
respectively: (a′) ∂f∗ is single valued if we take intersections of its images with X, i.e.
the operator T : R(∂f) ⇒ X that maps x∗ ∈ R(∂f) to T (x∗) = ∂f∗(x∗) ∩X is single
valued; (b′) f is strictly convex on D(∂f), in the sense that, for all λ ∈ ]0, 1[ and all
x, y ∈ D(∂f), with x ̸= y, f((1 − λ)x + λy) < (1 − λ)f(x) + λf(y). In this case, (a′)
implies (b′).

(c) If X is a weak Asplund space (in particular, if it is reflexive [17, Corollary 5]), the
Gâteaux differentiability of f at some point, and hence the single valuedness of ∂f at
that point, is automatically satisfied if dom f has a nonempty interior [10, Proposition
3.3].

As an immediate consequence of Proposition 3.2, we can also recover [11, Corollary 4.4
(b)], a refinement of [8, Proposition 2.9].

Corollary 3.6. Let X be a Banach space, A : X ⇒ X∗ be a monotone operator and
f : X → R ∪ {+∞} be a lower semicontinuous proper convex function that admits a unique
global minimizer p with ∂f(p) = {0X∗}. If G(A) + G(−∂f) = X ×X∗, then A is maximal
monotone.

Proof. Since p is the unique minimizer of f , then 0X∗ /∈ ∂f(y) for any y ∈ X\{p}, i.e.
∂f∗(0X∗) ∩X = {p}. Hence, the result follows from Proposition 3.2.
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Remark 3.7. The equality ∂f(p) = {0X∗} is automatically satisfied if f is Gâteaux differ-
entiable at its minimizer p. This latter assumption is used in [11, Corollary 4.4 (b)].

Our last result deals with functions defined on Banach spaces having the Radon-Nikodým
property, a large class of spaces which includes all reflexive spaces and, among other non-
reflexive spaces, ℓ1. A Banach space X is said to have the Radon-Nikodým property if
every nonempty bounded set B ⊆ X is dentable (that is, for all ϵ > 0 there exists an open
half-space in X the intersection of which with B is nonempty and has a diameter smaller
than ϵ). We refer to [18] for a detailed discussion on such spaces.

Corollary 3.8. Let X be a Banach space having the Radon-Nikodým property, A : X ⇒ X∗

be a monotone operator and f : X → R ∪ {+∞} be a lower semicontinuous proper convex
function such that its associated subdifferential mapping ∂f is single-valued on D(∂f) and
its conjugate function f∗ : X → R ∪ {+∞} is continuous. If G(A) + G(−∂f) = X × X∗,
then A is maximal monotone.

Proof. Since f∗ is weak*-lower semicontinuous, by [1, Theorem 1] it is Gâteaux differentiable
at some point p∗ of its domain with derivative p in the predual space X. Then, since the
pair (p, p∗) ∈ X ×X∗ satisfies the assumptions of Proposition 3.2, from this proposition we
conclude that A is maximal monotone.

Remark 3.9. The single valuedness assumption on ∂f will automatically hold if f is
Gâteaux differentiable on dom f. As for the continuity assumption on f∗, a sufficient condi-
tion for it to hold is the function f to be cofinite, that is, f∗ to be finite valued. Indeed, in
such a case f∗ will be continuous, since it is weak*-lower semicontinuous and hence lower
semicontinuous and every lower semicontinuous convex finite valued function is continuous.
On the other hand, a sufficient (and necessary in the finite dimensional case) condition for
f to be cofinite is it to be supercoercive [2, Theorem 3.4]:

lim
∥x∥−→+∞

f (x)

∥x∥
= +∞.
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