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simulation. They may exhibit characteristics that present unique optimization challenges,
such as costly evaluations, noise, many local optima, and hidden constraints, which occur
when the blackbox fails to evaluate, even at an a priori feasible point in Ω. As a consequence,
and most importantly, derivative information is not present and impossible, and possibly
even unhelpful, to approximate. This precludes the use of derivative-based optimization
methods. Therefore derivative-free optimization (DFO) algorithms must be considered. A
complete review of DFO methods is the subject of the recent book [21], in which DFO
methods are classified as (quadratic) model-based methods and directional direct search
methods, including the mesh adaptive direct search (MADS) algorithm [6] considered in
the present study. The operations research community also considers mixing direct search
methods and heuristics such as in [4,36,39,61]. Stochastic Nelder-Mead has also been studied
in [15].

One advantage of directional direct search methods is that they allow the integration of
secondary information and/or strategies in order to help diversify the search. One example
involves the use of quadratic models to help accelerate the search [20, 23]. A disadvantage
of this approach stems from the fact that quadratic models are local, which relegates their
usefulness to smoother functions. In a way, the incorporation of quadratic models may be
tantamount to estimating derivative information (at least to a second order), and as a result
the final hybrid procedure may be more aggressive, i.e., less diversified, than a DFO-only
method. A strategy more global and more robust to nonsmoothness and noise is desired in
the context of blackbox optimization.

The surrogate management framework (SMF) [12] introduces the use of surrogates within
directional direct search methods. Surrogates are global models such as Gaussian processes
(GPs) [52], better known in the optimization community as kriging [41]. The idea is to
fit a statistical model, and use its mean predictive surface as a surrogate for the actual
evaluation of the blackbox. Traditional optimization methods can be used to find solutions
to the surrogate optimization problem, in place of actual, expensive, blackbox evaluation(s).
These optima are in turn taken as good candidates for the true functions. In order to
simplify the presentation we use the term surrogate for the more longwinded “predictive
mean surface of a fitted model”. See Chapter 12 of [21] for a recent review of surrogates
within DFO. One of many examples of a recent application using the SMF for a real-life
application can be consulted in [45]. Other examples in [13, 53] respectively include the
use of local linear models, for the constrained case, using a filter-like approach, and radial
basis functions are considered for global optimization for bound-constrained problems with
several local optima.

A criticism of these approaches echoes that for quadratic models. Although more sophis-
ticated than quadratics, without the incorporation of the full predictive surface uncertainty,
the search of the surrogate surface is bound to take on a local and greedy flavor. A fully sta-
tistical, and global, approach to optimization would leverage a probabilistic quantification
of uncertainty about the potential for newly polled points to provide an improvement over
the current best guess of the location of optima. We posit that using a full characterization
of a fitted model’s predictive surface to inform the search, not just the mean, represents a
more conservative and therefore reliable approach. Relevant optimization statistics derived
from the full predictive distribution include the expected improvement (EI) [40], on which
we shall say more in due course.

One of the aims of this paper is to explore how such statistics can be used within a
hybrid optimization scheme involving direct searches, surrogates model fits, and statistical

The statistics community also uses the term kriging, but to refer (again) to the predictive equations
from the fitted model, not to the underlying probabilistic (Gaussian) process—a subtle distinction.
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search criteria derived from the predictive distribution (in lieu of, or in addition to, surrogate
optimization subroutines). In particular, we illustrate how aspects of the predictive variance
(through EI or on its own), which is known to be well-estimated by GP surrogates (e.g.,
see [37]), can be at least as useful as the traditionally utilized predictive mean. Another is to
propose the use treed Gaussian process (TGP) surrogates [28], which offer attractive benefits
over the traditional GP ones, on which we shall elaborate further shortly. TGP has been
used fruitfully in conjunction with the asynchronous parallel pattern search (APPS) [34]
direct search method in an unconstrained optimization setting [57], and with generalized
pattern search (GPS) [59] for a particular application [16]. This shows promise for the
present paper, where (as a final layer in the contribution) we promote using MADS instead
of APPS or GPS, for three main reasons: First, MADS offers a more diversified set of
search directions resulting in a more efficient method as already demonstrated for example
in [3]. Second, MADS deals natively with general constraints using the progressive barrier
technique of [7], and most engineering applications have such constraints. Finally, to our
knowledge, our hybrid approach (MADS with TGP) is the only one supported by publicly
available software (see NOMAD v.3.6.2 [2, 42], and Appendix C of the NOMAD documentation).

The paper is organized as follows. Section 2 describes the MADS algorithm and TGP.
Section 3 presents the new algorithm, called MADS–TGP, which integrates TGP as a sur-
rogate, and thereby derived statistical search criterion, into the MADS framework. Finally,
Section 4 gives numerical results on a synthetic problem with many local optima, and also
on two realistic blackbox applications. We conclude with a discussion in Section 5.

2 MADS and TGP

This section independently presents the MADS algorithm and the treed Gaussian processes.
Emphasis is put on the flexibility of MADS allowing a convenient integration of TGP.

2.1 Mesh adaptive direct search (MADS)

The MADS algorithm is a directional direct search method introduced in [5, 6], which gen-
eralizes the GPS method. The main advantage of MADS over GPS is the use of dense sets
of directions instead of a finite number of fixed directions. As it is detailed below, this is
possible thanks to the use of two different kinds of mesh size parameters ∆m

k and ∆p
k instead

of the GPS single ∆k mesh size parameter.
At the kth iteration of the algorithm, each trial point lies on the mesh

Mk = {x+∆m
k Dz : x ∈ Vk, z ∈ NnD} ⊂ Rn (2.1)

where Vk ⊂ Rn, or the cache, is the set of all points evaluated by the start of the iteration,
∆m

k ∈ R+ is the mesh size parameter, and D is a fixed matrix in Rn×nD composed of nD

columns representing directions. D must satisfy some conditions but typically corresponds
to [In − In] with In the identity matrix in dimension n, and nD = 2n.

Each iteration is divided into two major steps, called search and poll. The search step
allows for great flexibility and enhancements to the algorithm. It allows the generation of
a finite number of trial points and the convergence, discussed at the end of the section,
is ensured (i.e., unchanged) as long as these points lie on the mesh. The search can be
problem-specific: a user with some insight about good designs can inject this knowledge
with an appropriate search procedure. It may also be generic, for example a latin hypercube
(LH) design [48] may be used in order to encourage exploration. More sophisticated examples
include particle swarm [61], variable neighborhood search [4], and quadratic models [20,23].
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The present work concerns the development of a search scheme based on TGP surrogates,
and accompanying improvement and exploration oriented statistics.

The poll step ensures theoretical convergence. It constructs a set of candidates, Pk,
called the poll set, defined as

Pk = {xk +∆m
k d : d ∈ Dk} ⊆ Mk,

where Dk is the set of polling directions constructed by taking combinations of the set of
directions D. The way the set Dk is chosen depends on the MADS implementation. With
OrthoMADS [3], for example, large angles between poll directions are avoided.

The poll size parameter ∆p
k defines the maximum distance at which poll trial points are

generated from the current iterate xk, which is also called the poll center. In practice, ∆p
k

is of the same order as ∆m
k ||d|| for d ∈ Dk. As the algorithm proceeds, the independent

evolution of the mesh and poll size parameters is designed so that the set of poll directions
becomes dense in the unit sphere, once normalized, meaning that potentially every direction
can be explored. See Figure 1 for a simple example of trial points that could be generated
during the search and poll steps.

After the search and the poll steps, a final update step is performed. It first determines
if the iteration is a success or a failure and it updates the mesh and poll sizes accordingly. In
the case of success, these sizes are potentially increased, and they are decreased otherwise.
This decrease is not of the same rate for the two parameters: the mesh size is reduced faster
than the poll size, which allows more and more possible directions as the mesh becomes
thinner. In the unconstrained case, a success occurs when the objective is improved (via a
simple decrease condition on the objective). With constraints, a filter-type algorithm called
the progressive barrier (PB) [7] is used. It is based on the following constraint violation
function inspired by the filter method of [25]:

h(x) =


∑
j∈J

(max{cj(x), 0})2 if x ∈ X ,

∞ otherwise.
(2.2)

The function h is nonnegative and x ∈ Ω if and only if h(x) = 0. Moreover, x is in X \Ω
if 0 < h(x) < ∞. Note that this definition does not take into account hidden constraints.
In practice, when such a constraint is met, h is put to ∞. During the update step, success
or failure is determined by the f and h values of the evaluated points, and by considering
the following dominance relation between two arbitrary points x, y in X : y dominates x if
and only if h(y) ≤ h(x) and f(y) ≤ f(x) with at least one of the inequalities being strict.
Basically, an iteration is declared successful if a new non-dominated point is found.

Many stopping criteria may be considered to terminate the algorithm, such as a threshold
on the mesh size parameter ∆m

k , or, as dictated by many hard applied problems, one can
stop the procedure when a budget of evaluations has been exhausted.

The MADS algorithm is presented schematically in Figure 2. Perhaps the most attractive
feature of the algorithm is that it can be shown to globally converge to a solution satisfying
local optimality conditions. The proof, which depends on the degree of smoothness of the
objective and of the constraints, relies on the Clarke nonsmooth calculus [19]. The interested
reader can consult [6] for details on the MADS convergence analysis. The convergence results
hold for any custom search strategy, including the one presented here, as long as it generates
a finite number of trial points on the mesh. Furthermore, since convergence is robust to the
choice of optional searches [Step 1.1 in Figure 2], they can lend convergence to the otherwise
heuristic searches of a more global flavor, e.g., using TGP and EI which we discuss in the
following subsection.
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Finally, note that with MADS, parallelization is possible and can be achieved by per-
forming concurrent blackbox evaluations [43] or more sophistically by decomposition [8].
However since the focus of this work is the use of TGP surrogates inside the search step,
parallelism is not discussed further.

Figure 1: Example of MADS directions consistent with the ones defined in [3], in the case
n = 2 and at iteration k of the algorithm. Thin lines represent the mesh of size ∆m

k , and
thick lines the points at distance ∆p

k from xk in the infinity norm. The poll trial points
Pk = {t4, t5, t6, t7} lie at the intersection of the thick and thin lines. After an iteration fails,
∆m

k is reduced faster than ∆p
k, and the number of possible locations grows larger. Some

possible search set Sk = {t1, t2, t3} is also illustrated. Search points can be anywhere on the
mesh as long as their number remains finite.

[0] Initialization
starting point: x0 ∈ X
initial mesh and poll size parameters: ∆m

0 , ∆p
0 > 0

k ← 0

[1] Iteration k
[1.1] SEARCH (optional)

evaluate f and h on a finite set Sk ⊂Mk

[1.2] POLL (optional if SEARCH was successful)
compute poll directions and trial points set Pk

evaluate f and h on Pk

[2] Updates
determine success or failure of iteration k
update incumbent xk+1

update mesh and poll size parameters
(reduce after failures)

k ← k + 1
goto [1] if no stopping condition is met

Figure 2: A simplified version of the MADS algorithm. See Figure 1 for some examples of
search and poll points.
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2.2 Treed Gaussian processes

One can view blackbox optimization as an example of sequential design of a computer exper-
iment. In computer experiments, the “data” arise from expensive computer simulation, as
realizations of the output of those simulations for a set of input configurations. Sometimes
one assumes some limited knowledge of how the simulations work, but often the code exe-
cution remains opaque. The design and analysis of computer experiments is a rich field, see,
e.g., [54]. However, their design for optimization (finding inputs that yield optimal/small
outputs) has received rather less attention, until recently.

A stationary Gaussian process (GP) regression is the canonical statistical model for data
arising from computer experiments. GPs represent one way of nonparametrically charac-
terizing a zero-mean random process Z(x) via its covariance C(x, x′) = σ2K(x, x′). Let
Zp = (z1 z2 . . . zp)T be observed responses (for one of the blackbox outputs, say f) at
inputs x1, x2, . . . , xp. Conditional on this data, the (posterior) predictive distribution of
Z(x) at a new input x is normal with

mean ẑp(x) = kTp (x)K
−1
p Zp,

and variance σ̂2
p(x) = σ2[K(x, x)− kTp (x)K

−1
p kp(x)],

(2.3)

where kTp (x) is the p–vector whose i
th component is K(x, xi), and Kp is the p×p matrix with

i, j element K(xi, xj). These are sometimes called the kriging equations. The mean ẑp(x)
can be used as an emulator or surrogate for the expensive blackbox evaluations. Observe
that a p×p inverse for K−1

p is required, making the scheme require at least O(p3) computing
time. Once K−1

p is obtained, each prediction at a new x requires O(p2) time.
It is typical to specify K(·, ·) parametrically, e.g.,:

Kd,g(x, x
′) = exp

{
−||x− x′||

d

}
+ g1x=x′

or Kd1,...,dn,g(x, x
′) = exp

−
n∑

j=1

(xj − x′
j)

2

dj

+ g1x=x′ ,

which are known as the isotropic and separable nugget-augmented correlation functions,
respectively. Both are supported by TGP, with the latter separable option as the default
and posterior inference (given y-values) for the unknown parameters being carried out by
Monte Carlo, again requiring O(p3) time [more details below]. The d parameter(s), called
the characteristic lengthscale(s), govern the rate of decay of spatial correlation radially, or in
each input direction. The nugget parameter, g, allows for measurement error or noise in the
stochastic process. This causes the emulator to smooth rather than interpolate the responses,
which is becoming widely recognized as a superior emulation tactic even when the outputs
are observed deterministically, i.e., without noise [31]. For more examples of correlation
functions popular in the spatial and computer experiments literatures, see, e.g., [1, 52].

Given a GP surrogate, a step in a search for the minimum of f may consider the im-
provement I(x) = max {fmin − Z(x), 0}. Here, fmin is either the smallest (valid) objective
value found so far, or the global minimum of a GP surrogate predictive mean surface fit
to the current cache of data. For a discussion of tradeoffs of these and other choices, see
e.g., [30]. In particular, the next location can be chosen as xp+1 ∈ argmaxx∈X E{I(x)},
where X is the search domain of interest, often a bounding rectangle, but in the present
work it is the set used in the definition of Ω in Problem (1.1). The expectation is over Z(x),
via Equation (2.3), and here we use fmin ≡ minx∈X ẑp(x). This expected improvement (EI)
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is available analytically [40]:

E{I(x)} = (fmin − ẑp(x))Φ

(
fmin − ẑp(x)

σ̂p(x)

)
+ σ̂p(x)ϕ

(
fmin − ẑp(x)

σ̂p(x)

)
, (2.4)

where Φ and ϕ are the cumulative distribution and probability density functions of a stan-
dard normal distribution, respectively. Basically, EI is the cumulative distribution of the
predictive density that lies “underneath” fmin. After (xp+1, zp+1 = f(xp+1)) is added into
the design, and the surrogate model fit is updated based on all p+ 1 points, the procedure
repeats. Given a fixed GP parameterization, the resulting iterative procedure is known to
converge to a global minimum of f under certain conditions. For a review of related results
for a family of similar methods, see [14].

There are many variations on this setup, particularly when the goal is exploration rather
than optimization. The predictive variance σ̂2

p(x) is a good heuristic for exploration. An-
other, more global, heuristic involves computing the average global (over the entire input
space) reduction in predictive variance ∆σ2(x) provided by the addition of a new input point
x. This averaging requires (numerical) integration over the input space

∆σ2(x) =

∫
X

(
σ2
p(y)− σ2

p,x(y)
)
dy. (2.5)

The integrand calculates the reduction in variance at each point y in the input space after
x is added in as the (p + 1)st point in the design. Here, σ2

p(y) represents the variance at y
before x, and σp,x(y) afterwards. The former follows Equation (2.3), and the latter requires
an adjustment for the correlation between x and y. Crucially, this calculation is analytic
for GP (and linear) models, e.g., [29, 55, 56]. As so-called active learning heuristics for GP
models, their first use was [55]; in the statistics community these are more generically labeled
as sequential design heuristics.

GPs are popular for such tasks because they enjoy theoretical properties which allow
for proofs about convergence of the sequential procedure (solving certain optimization prob-
lems), and because they show favorable out-of-sample predictive performance relative to
other modern nonparametric regression methods. But they are not without disadvantages.
The most important practical problem is that GP inference requires O(p3) computation.
Another problem is the typical simplifying stationary assumption, which asserts that the
covariance structure has the same properties throughout the entire input space. A con-
sequence of this is that predictive uncertainty exhibits the same characteristics uniformly
over the input space. This is most readily appreciated through Equation (2.3), where we
see that σ̂2

p(x) does not depend on the responses Zp. In many real-world applications, like
optimization, such a uniform modeling of uncertainty will not be desirable. Instead, some
regions of the input space may exhibit larger predictive uncertainty than others.

These shortcomings, in whole or in part, can be addressed by techniques such as the
ones described in [10, 11, 51]. In the present paper we consider a surrogate model which
can overcome these limitations by partitioning the input space into disjoint regions, wherein
independent stationary GP models are fit. Partitioning represents a straightforward mech-
anism for creating a nonstationary model, and a computationally thrifty one by taking a
divide-and-conquer approach. The most tractable partitioning scheme is recursive axis-
aligned splits as provided by trees, leading to the so-called treed GP (TGP) model [28].
TGP is basically a generalization of the Bayesian CART (classification and regression tree)
model [17], using GPs at the leaves of the tree instead of the usual constant values or linear
regressions [18]. A concern about trees is that they lead to discontinuous surrogate model
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fits. However, Bayesian model averaging over the joint tree and leaf-model (GP) posterior
distribution by Markov chain Monte Carlo (MCMC) tends to yield mean fitted functions that
are quite smooth in practice, especially when GPs are used at the leaves, giving fits that are
indistinguishable from continuous functions except when the data call for the contrary [28].

Beyond computational and modeling flexibility, two key aspects of the TGP model are
attractive in the direct optimization context. One is software. Its optimized C implementa-
tion is easily extracted from the open source tgp package [27] for R [58]. The other is that
this implementation includes EI calculations for optimization, and ∆σ2(x) calculations for
exploration, as well as other active learning heuristics. As the GP and CART models are
special cases of the TGP model (i.e., with no treed partitioning, or with constant/linear leaf
models, respectively) the package represents an omnibus toolset for statistical optimization,
and thus is ripe for pairing with a direct optimization method, like MADS. In the Bayesian
model averaging setup, it is harder to get convergence guarantees for optimization. But
with an appropriate pairing with a direct blackbox optimizer [as we describe], its conver-
gence properties can be borrowed for the whole procedure. This approach has been taken
to combine TGP/EI with direct search [57] via the APPS optimizer [34] which leveraged
a generalized exponentiated improvement statistic to obtain a more global search. It also
employed a thrifty algorithm for ordering the candidates which was crucial to synchronizing
the two methods while minimizing computational effort. Both are supported by the tgp

software (see [33], Section 4).

3 Incorporation of TGP into the MADS framework

TGP is used twice in the MADS framework of Figure 2. The augmented algorithm is called
MADS–TGP, featuring TGP search and TGP ordering stages. A series of short sections
(from 3.1 to 3.5) covers the specifics, and Figure 3 gives a high- level description. One of the
key points of the TGP search is the combined use of several techniques in order to generate
candidates, comprised of classical oracle points provided by surrogate optimization, and
points identified by statistical criteria. This is detailed in Section 3.4. The TGP ordering,
occurring during the poll step, is described in Section 3.5. Note that TGP is used inside
the MADS framework and it leaves the constraint handling to the progressive barrier. Since
this technique has been designed for general constraints, MADS–TGP automatically inherits
this robustness and should be unaffected by the kind of constraints that are used.

At each iteration k, separate TGP models are fit, independently, for the objective and
each constraint. These surrogates are denoted fs ≃ f and csj ≃ cj , j ∈ J . A single,
combined, surrogate for the constraint violations, denoted hs ≃ h, is then obtained using
Equation (2.2) by replacing cj with their surrogates csj , j ∈ J . Once the surrogates have
been fit to the data, their predictive distributions may be used in a variety of ways. They
can be used in the traditional way: as an emulation or replacement for expensive black-
box evaluations of the objective and/or the constraints. Or, they can be used to extract
active learning statistics like the expected improvement (for optimization), or the expected
reduction in variance (for exploration).

The TGP models must be refit from scratch at the beginning of each iteration, assuming
that new data has been added to the cache. Unfortunately, the implementation (in tgp)
does not allow for a fast update of the fits in light of the new data. This is because the tree
aspect requires MCMC inference which is not easily updated when the data are augmented.
If only GP surrogates are used, then it may be possible to obtain a thrifty update in light of
new data [32], but we do not consider that here because we find that partitioning is essential
for many real-world applications including the ones we discuss in Section 4.
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The implication is that the construction of (possibly several) surrogate TGP models
may be computationally demanding, and thus time consuming. This is not an issue when
dealing with costly blackbox simulations, that can take hours or even days to complete, as
for example in [12,46]. By comparison, TGP fits will be relatively swift.

[0] Initialization
[1] Iteration k

[1.1] TGP SEARCH
select data points X and Y from Vk (Section 3.1)
choose prediction points X̃ ⊆Mk (Section 3.2)
for each output j ∈ {1, 2, . . . ,m+ 1}(

Ṽ j , Ẽj , Ỹ j
)
← construct(X,Y j , X̃)

surrogate available: fs, csj (j ∈ J), and hs can be
computed with the predict function

surrogate optimization (Section 3.3)
solve minx∈Ωs fs(x)
with Ωs = {x ∈ X : csj(x) ≤ 0, j ∈ J}
denote xF and xI the solutions
project xF and xI to Mk

construct Sk ⊆ {x̃1, x̃2, . . . , x̃p̃, xF , xI} (Section 3.4)
evaluate opportunistically f and h on Sk

[1.2] POLL (optional if the SEARCH was successful)
compute Pk

sort points of Pk accordingly to fs and hs (Section 3.5)
evaluate opportunistically f and h on Pk

[2] Updates

Figure 3: High level description of the MADS–TGP algorithm. Only the differences com-
pared to the algorithm from Figure 2 are reported. The construct and predict functions
symbolize the calls to the tgp package necessary to construct the models and to obtain the
predictions at some given locations. In particular, the predict function evaluates Equa-
tions (2.3–2.5) for each MCMC sample from the TGP model. Other details, definitions and
use of X, Y , X̃, Ṽ , Ẽ, and Ỹ , are given in Sections 3.1 to 3.5. This version only includes
the TGP search but other types of searches may still be integrated.

3.1 Data points

The data points that are used for the surrogate model (TGP) fitting are selected from the
cache Vk introduced with the mesh definition of Equation (2.1). This mathematical set
only describes the evaluated points, not the corresponding blackbox output values, but, in
a practical implementation, these are available from the cache data structure. Only points
in X that do not violate a hidden constraint are considered, as these are the only ones for
which output values are available. In the present version of the method, no mechanism is
used in order to measure the probability that a trial point violates a hidden constraint or
is outside X in the case where X is not just defined by bounds. In future work, we plan to
explore the use of an additional surrogate model to estimate the probability of the violation
of this type of constraint [30].
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Data points are denoted by X =
[
x1 x2 . . . xp

]T ∈ Rp×n. The corresponding output

values are represented by Y ∈ Rp×(m+1). The first m columns of this matrix correspond to
the constraints and the last column to the objective:

Y =


c1(x

1) c2(x
1) . . . cm(x1) f(x1)

c1(x
2) c2(x

2) . . . cm(x2) f(x2)
...

...
...

...
...

c1(x
p) c2(x

p) . . . cm(xp) f(xp)

 ∈ Rp×(m+1).

The number of data points must be at least n + 1, otherwise the TGP model cannot be
fit as there will be more degrees of freedom than the number of data points [28]. If this
number cannot be reached, then no surrogate is constructed at iteration k, i.e., the search
is aborted.

A limit pmax > n + 1 on the maximum number of data points is also considered. If
more than pmax cache candidates are available, then the pmax candidates that lie closest in
norm to the current iterate xk are selected to build the surrogates. The following heuristic
is applied for choosing this limit in practice:

pmax = max
{
30,min

{
100, ⌊

√
180n⌋

}}
=


30 if 1 ≤ n ≤ 5,

⌊
√
180n⌋ if 6 ≤ n ≤ 56,

100 otherwise.

Although superficially arbitrary, these choices have been carefully made in order to strike
a balance between computational time and model quality, especially regarding the local
v.s. global nature of the model. For example, when p ≫ pmax the TGP model could take
on a more local flavor if the most recent pmax points are heavily concentrated in one part of
the input space. Note that cases with n > 50 are suggested by our rule but that in practice
we rarely consider such situations in DFO.

3.2 Prediction points

Prediction points are denoted by X̃ =
[
x̃1 x̃2 . . . x̃p̃

]T ∈ Rp̃×n and correspond to the lo-
cations where tgp, during the surrogate construction for an output j ∈ J ∪ {m + 1}, will
simultaneously provide samples from the full (model-averaged) posterior predictive distri-
bution. In turn, these samples can be used to calculate the active learning heuristics: the
expected reduction in variance ∆σ2(x) of Equation (2.5), denoted by Ṽ j ∈ Rp̃, and the EI
of Equation (2.4), denoted by Ẽj ∈ Rp̃.

As described in Section 3.4, these points are entertained as candidates for true blackbox
function evaluations which are chosen on the basis of the active learning heuristics, on which
we shall say more in Section 3.5. In addition, the surrogate values (i.e., predictive means) for
the objective and the constraints are predicted at each of the prediction points. The result
of these predictions is stored in the matrix Ỹ ∈ Rp̃×(m+1) which shares the same structure as
the Y matrix: the first m columns represent the constraints, and the last column represents
the objective.

In order to ensure convergence, the prediction points must lie on the meshMk established
at iteration k. Therefore, projections of LH samples onto the mesh are used to generate X̃.
We impose a limit of 500 such points. This limit may not be reached because there may be
fewer than 500 mesh locations inside the bounds in the initial stages of the algorithm, and
in that case we consider all of the mesh points.
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3.3 Optimization with the surrogate

When the TGP surrogate requires optimizing, i.e., as per the traditional use of a surrogate
model, we use MADS. Since TGP predictive surfaces are smooth, other optimization meth-
ods may be similarly well-suited to this task, and these may yield a faster convergence rate.
However, it seems simplest to stay within the MADS framework from an implementation
perspective (i.e., not incorporating yet another method). Since MADS theory ensures con-
vergence to a solution satisfying some local conditions, this step is not the computational
bottleneck of the method. So the replacement of MADS by a derivative-based algorithm,
say, is not expected to yield dramatic improvements.

The optimization domain for the surrogate is defined by the smallest rectangle containing
all of the data points of X. The starting point of the optimization is one of the prediction
points, i.e., one of the rows of X̃. This point, denoted by x̃i, i ∈ {1, 2, . . . , p̃}, is chosen
so that it is predicted to be the best feasible point. More precisely, the index i satisfies
i ∈ argmin

k∈{1,2,...,p̃}
Ỹ m+1
k subject to Ỹ j

k ≤ 0, for all j ∈ J . If the index i is impossible to

determine because there is no row in Ỹ with all first m components being negative, then i

is chosen so that i ∈ argmin
k∈{1,2,...,p̃}

m∑
j=1

(
Ỹ j
k

)2

.

We allow the optimization of the TGP surrogate to consider locations outside the mesh.
If the optimization completes, the solutions xF and xI are gathered. These points correspond
to the feasible point with the smallest f value and the infeasible point with the smallest h
value, respectively. Before being proposed as candidates for the true functions, xF and xI

are projected to the mesh and we call them the oracle points.

3.4 Selection of the search points

The TGP search generates mesh candidates to be evaluated. The present section explains
how to pick a limited number of candidates, and how to determine the priority in which
they should be evaluated by the blackbox and subsequently added to the cache.

Each search step populates three lists of potential candidates for blackbox evaluations
based on information provided by the TGP model predictive distribution. Two of the three
lists involve the prediction points of X̃. The first one is derived from EI calculations (see
Equation (2.4)), which are provided by tgp (via the argument improv=TRUE) as the matrix
Ẽ ∈ Np̃×(m+1) including ranking information for serial inclusion. The ranking is related
to, but not identical to, the ordering of EI values at the candidates. Rather, the ordering
considers how the EI calculations update in light of the inclusion of higher ranked points,
therefore emphasizing exploration as the list is considered in rank order. For more details,
see Section 3 of [33]. The list of potential candidates is constructed by first filtering the
points that are predicted to be infeasible using the first m columns of Ỹ , and then by
considering the rankings for the objective function in the (m+1)th column of Ẽ. Note that
in practice the generation of the expected improvement is disabled for the first m outputs
and the corresponding columns of Ẽ are ignored.

The second list is populated by evaluations of the expected reduction in variance from
Equation (2.5) at the X̃ locations, obtained when providing the argument ds2x=TRUE to
tgp. This yields the matrix Ṽ ∈ Rp̃×(m+1). For each output j ∈ J ∪{m+1}, the prediction
point with the greatest value in Ṽ j is selected. The second list of candidates contains then at
most m+1 points that are expected to be good locations in order to improve the surrogate
quality.

Finally, the third list of potential candidates is the list of oracle points xF and xI obtained
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from the surrogate optimization described in Section 3.3. The feasible oracle point xF is
given priority over the infeasible oracle point xI .

Obtaining the final subset of candidates Sk ⊆ X̃ for blackbox evaluation—the list of
TGP search points for iteration k—proceeds by round-robin selection from each of the three
lists in turn, Since we believe that the three lists are complementary and that no one should
be preferred to the other. First, the highest ranked candidate is taken from the expected
improvement list, then the oracle list, and finally from the expected reduction in variance
list. This is repeated until a limit on the maximum number of trial points is reached. This
limit is fixed to 10 points for most of the numerical tests of Section 4, and is compared with
the values 2 and 5 in the same section (see Table 10 and Figure 12).

3.5 TGP ordering for a list of evaluations

This section relates to the second use of TGP, the TGP ordering strategy, which is not
related to the TGP search described in Sections 3.3 and 3.4. The ordering occurs during
the poll step of the MADS–TGP algorithm [Step 1.2 in Figure 3] while the search occurs
during the search step [Step 1.1 in Figure 3]. Ordering consists of using surrogates to give
a priority to the candidates before their “true” evaluation. It takes place during the poll,
but it could also be used for any sequence of evaluations, for example, from an additional
search step. It exploits the opportunistic strategy which consists of interrupting a sequence
of evaluations as soon as a success has been achieved. Our experience in DFO as well as a
recent study [50] indicate that in general the opportunistic strategy performs better than
the complete strategy, which consists of waiting for all evaluations to terminate.

TGP ordering consists of sorting the poll points according to their predictive f and h
values, as provided by the predict.tgp function. More specifically, points are compared in
a filter-type manner: if a point has better values for both f and h, then it is given priority. If
that is not the case, we consider the last successful direction defined by the last two iterates
of the algorithm. We then give priority to the candidates having the smallest angles with the
last successful direction. The ordering strategy is comparable to the ones based on quadratic
models in [20, 23] or simplex gradients in [24], except that TGP surrogates are used, and
last successful directions are considered instead of simplex gradients.

Finally note that, for the sake of a simpler implementation, the surrogate used is the
one created during the search step, and that this surrogate does not include the evaluations
that occurred after the surrogate construction. These evaluations will be included in the
surrogate models of the next iteration.

4 Numerical results

The implementation for our numerical tests is based on the NOMAD software [2, 42] for the
MADS part and on the tgp package [27] for the TGP surrogates. The MADS–TGP algorithm
is compared with MADS alone and MADS with the quadratic models [20]. Five test cases are
considered. Two synthetic problems and three realistic blackbox applications representing
the main class of problems for which MADS–TGP is designed. The objective of these tests
is to measure the impact of TGP as a “copilot” for MADS. For this reason, no tuning is
performed on the NOMAD parameters which are left at their recommended default values –
except for the model search and the evaluation ordering strategies which are being tested
here.

Both features are included in the December 2013 release of NOMAD, version 3.6.2.
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For the five problems and the three methods, ten independent runs were made, each with
a different random seed. For each execution, the stopping criteria are a maximum of 1,000
blackbox evaluations and a minimum mesh size of 1E-13 (this the NOMAD precision).

The starting point x0 ∈ X is taken as the best solution from a LH sampling of 20 points,
except for STYRENE for which 10 more LH points are used for a total of 30, to account
for its larger dimension. These LH evaluations are included in the total account of blackbox
evaluations.

Tables and graphs summarize all these executions. In the different tables, the columns
“MADS alone” and “Quadratic” correspond to the algorithms that are not using TGP, while
the “TGP” column indicates the new method MADS–TGP. The “start” column contains
the best value achieved after the initial LH evaluations. Sometimes, this initial sampling
was unable to provide a feasible solution. In these cases, the “−” mark is used. For the
analytic problems, convergence is often reached before 1,000 evaluations. In this case, the
“eval.” columns indicates the numbers of evaluations used in total. Otherwise, the limit
of 1,000 evaluations was always reached before convergence and thus the “eval.” column
is not reported. We show instead a column labeled as “impr.” which shows the relative
improvement compared to the initial solution, in %, when this initial solution is feasible.
Finally, the “obj.” column shows the value of the objective function when the algorithm
stopped. For each row, the entries in bold correspond to the best objective values, and the
last row of the table indicates the average values over the ten runs.

The graphs used to illustrate the comparisons are performance and data profiles for the
ten executions from different starting points. These profiles were first introduced in the
DFO context in [49]. In these figures, each curve corresponds to one method: MADS alone,
Quadratic, and TGP. The y-axis is the same for the two types of profiles and it indicates
the proportion of problems solved. Here, the term “solved” means that the different solution
values are compared against the best values obtained amongst all executions, not necessarily
the optimal or the best known values. In addition, each comparison is a relative one,
with reference to a certain precision, except for the first analytic problem (GRIEWANK),
because the optimal value of zero has been obtained by several executions. The x-axis of the
performance profiles specifies that precision, and only the final solutions of each executions
are considered. For the data profiles, the precision is typically set to 0.1, and the x-axis
corresponds to the number of evaluations. To summarize, performance profiles illustrate the
quality of solution of the methods for different precision values, and data profiles illustrate
the convergence for given a fixed precision.

4.1 Analytic problems

This first part of the numerical tests focuses on two analytic problems. One small, bound-
constrained problem with many local optima, and one that can be considered a hybrid
between an academic and a realistic application.

4.1.1 Synthetic data with many local optima

We consider the GRIEWANK function [35] as a typical example of a simple function ex-
hibiting many local optima, which is one of the targeted application of the MADS–TGP
method. It has n = 2 variables and is expressed by:

f(x1, x2) = 1 +

2∑
i=1

x2
i

4000
−

2∏
i=1

cos

(
xi√
i

)
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with −600 ≤ x1, x2 ≤ 600. The true global optimum is located at (0, 0)T with f(0, 0) = 0.
Note that this function is not a blackbox but is used here anyway in order to illustrate the
global optimization capabilities of the MADS–TGP algorithm. A graphical representation
of the function showing its many local optima is given in Figure 4.

Figure 4: Representation of the GRIEWANK function in which many local optima appear.

Results for the GRIEWANK function are summarized in Table 1. The first thing that
we notice is that convergence was always reached before 1,000 evaluations and that the
executions stopped earlier for the runs without TGP. However, this does not mean that
using TGP required more evaluations in order to achieve the same quality of solution.
Rather, using surrogates generally yielded better solutions sooner. The fact that MADS
without TGP stopped sooner is indicative of the fact that it was easily becoming stuck at
local minima.

Now we focus on the quality of solution. Clear improvements were achieved by quadratic
models over MADS alone, probably due to the smoothness of the function. Using TGP
instead yields even better results. Figure 5 presents the performance (left part of the figure)
and data (right part) profiles for the ten executions from different starting points. Here,
because the optimal value of zero has been obtained by several executions, this precision
corresponds to the absolute values of the various solutions. The profiles show that MADS–
TGP and MADS with quadratic models could solve one instance out of 10 (x-axis for
a null precision), but that MADS–TGP always gave a solution strictly under 0.1 (x-axis
for precision ≥ 0.1). This can be also observed in Table 1. Finally, the left subfigure
shows that TGP clearly dominates the two other methods because the associated plot is
always on top of the two other plots. Similarly, the performance profile shows that MADS
with quadratic models performs better than MADS alone, probably due to the smooth
nature of the function. The data profile in the same figure shows that with fewer than 100
evaluations, MADS alone and MADS with quadratic models perform better. However, after
100 evaluations, MADS–TGP is much more efficient. Note that using other precisions for
the data profile does not change this hierarchy, but 0.1 allows a better representation.

We conclude our study of the GRIEWANK function by indicating that the MADS–

Note that although objective values have been rounded to 4 decimals for display reasons, the zero values
that may appear are the actual values displayed by NOMAD (with a precision of 1E-13). No value between 0
and 0.0074 was encountered.
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Table 1: Results for the GRIEWANK problem (n = 2, m = 0).

# start
MADS alone Quadratic TGP
eval. obj. eval. obj. eval. obj.

G01 147.45 366 2.4553 364 0.5598 693 0.0296
G02 63.85 341 0.1454 355 0 540 0
G03 79.43 429 1.4868 376 0.0666 598 0.0666
G04 81.88 385 0.3428 355 0.2663 615 0.0074
G05 148.78 371 0.0395 389 0.1183 580 0.0271
G06 12.87 382 0.7965 379 0.2367 564 0.0271
G07 9.95 407 0.1849 381 0.1849 603 0.0395
G08 102.19 418 1.3092 419 0.1257 614 0.0271
G09 58.48 443 0.0666 334 0.0074 642 0.0296
G10 38.61 388 0.2169 400 0.0197 651 0.0074

avg 74.35 393 0.7044 375 0.1586 610 0.0261

TGP version takes approximately 10 minutes to complete an optimization on a 2010 laptop
computer. While the executions of MADS alone and MADS with quadratic models are
almost instantaneous, the gain in terms of quality of the solution is worth the additional
cost of the TGP surrogates.

Figure 5: Performance (left) and data (right) profiles for the GRIEWANK problem (n = 2,
m = 0). In the data profile, the plots stop at 300 evaluations because there was no evolution
after that point.

4.1.2 Instance from the CUTEst library

This section considers an example taken from the CUTEst [26] library, often used in nonlinear
optimization. A few examples from this collection of analytic problems refer to real-world
applications and/or to irregular functions for which no derivatives are available. Amongst
these problems, we selected the HS67 instance as the only one implying a numerical method
and with a reasonable dimension for any currently available derivative-free solver, i.e. less
than 20 variables and 20 inequality constraints. The HS67 problem is described in [38]. It
has 3 variables, described in Table 2, and 14 constraints.
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Variable Lower bound Best known Upper bound

x1 1E-5 1,728 2,000
x2 1E-5 16,000 16,000
x3 1E-5 98.13 120

Objective value infeasible -1,162.036326 infeasible

Table 2: Description of the HS67 problem variables. The coordinates of the best known
solution have been rounded.

The objective function is f(x1, x2, x3) = −0.063y2y5 +5.04x1 +3.36y3 +0.035x2 +10x3,
in which the coupling variables y2, y3, . . . , y8 appear. These seven quantities are defined in
the following system:

0 ≤ y2 = 0.01x1(112 + 13.167y6 − 0.6667y26) ≤ 5,000
0 ≤ y3 = 1.22y2 − x1 ≤ 2,000
85 ≤ y4 = 98000x3

y2y7+1000x3
≤ 93

90 ≤ y5 = 86.35 + 1.098y6 − 0.038y26 + 0.325(y4 − 89) ≤ 95
3 ≤ y6 = x2+y3

x1 ≤ 12
0.01 ≤ y7 = 35.82− 0.222y8 ≤ 4
145 ≤ y8 = 3y5 − 133 ≤ 162

(4.1)

System (4.1) is solved using a numerical method based on two successive fixed-point
loops, as illustrated by the pseudocode of Figure 6. The bounds on the 7 coupling variables
define the 14 constraints of the problem.

1 y2 = 1.6 * x1;
2

3 do {
4 y3 = 1.22 * y2 - x1;
5 y6 = (x2+y3)/x1;
6 tmp = 0.01*x1*(112+13.167*y6-0.6667*y6*y6);
7 if ( abs(tmp-y2) <= 1E-4 )
8 break;
9 y2 = tmp;

10 }
11

12 y4 = 93.0;
13

14 do {
15 y5 = 86.35+1.098*y6-0.038*y6*y6+0.325*(y4-89);
16 y8 = 3*y5-133;
17 y7 = 35.82-0.222*y8;
18 tmp = 98000*x3/(y2*y7+1000*x3);
19 if ( abs(tmp-y4) <= 1E-4 )
20 break;
21 y4 = tmp;
22 }

Figure 6: Fixed-point numerical methods used to compute the coupling variables y2, y3, . . .,
y8 for the HS67 problem.

Results for the HS67 problem are presented in Table 3 and in Figure 7. Given a budget
of 1,000 evaluations, all three methods provided a solution close to the best known value
using a precision of 2.5E-3 For this reason, the values in Table 3 are shown with 6 decimals,
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Table 3: Results for the HS67 problem (n = 3, m = 14). The “−” marks are used when the
initial LH search could not find a feasible solution.

# start
MADS alone Quadratic TGP

eval. obj. eval. obj. eval. obj.

H01 − 843 -1,162.034269 1,000 -1,162.036273 1,000 -1,162.036326
H02 -243.627829 746 -1,162.035693 994 -1,162.036095 1,000 -1,162.036326
H03 -303.607164 893 -1,162.036200 991 -1,162.033948 1,000 -1,162.036326
H04 -1,111.032739 834 -1,162.036012 943 -1,162.036318 968 -1,162.036326
H05 -85.969838 713 -1,162.031528 901 -1,162.036291 1,000 -1,162.036326
H06 -688.425235 697 -1,162.035892 727 -1,162.035973 1,000 -1,162.036326
H07 − 797 -1,162.036104 1,000 -1,162.036325 1,000 -1,162.036326
H08 -541.370728 708 -1,162.035907 936 -1,162.035349 1,000 -1,162.036326
H09 − 894 -1,162.035889 928 -1,162.036307 1,000 -1,162.036326
H10 -623.856175 867 -1,162.035762 823 -1,162.036102 1,000 -1,162.036326

avg -513.984244 799 -1,162.035326 924 -1,162.035898 997 -1,162.036326

and the plots in Figure 7 do not include a performance profile but rather three data profiles
using the precisions 0.1, 1E-3, and 1E-7.

These profiles clearly show that, for precisions of 0.1 and 1E-3, the three methods behave
approximately the same, but the high-precision data profile clearly shows the MADS–TGP
dominance. It solved all instances while MADS alone and with quadratic models could only
solve half the instances and MADS alone was never able to give the best known solution.
In all cases, MADS–TGP took more evaluations than the other methods, but the data
profiles demonstrate that these additional evaluations are not the reason why MADS–TGP
dominates: after 800 evaluations, all the instances were solved by MADS-TGP, with a
precision of 1E-7.

4.2 Tests on three realistic blackbox applications

This section first describes the three realistic applications on which the new method has
been tested, and then presents the results. Note that the STYRENE and MDO applications
are publicly available at S. Le Digabel’s homepage [https://www.gerad.ca/Sebastien.
Le.Digabel/Publications].

4.2.1 Description of the STYRENE problem

We first consider a chemical engineering simulator for styrene production described in [4]
and studied in [9]. We refer to this application as the STYRENE problem. It has n =8
variables and m =11 constraints and the best known value is reported at -33,539,100 in [4],
Table 5.

The blackbox simulates the chemical process schematized in the flowsheet of Figure 8,
based on different logical blocks. Given the 8 input variables described in Table 4, it com-
putes the values necessary to express the objective function and the constraints, using the
following numerical methods: Runge-Kutta, Newton, fixed-point, secant, bisection, and
other chemical engineering related solvers.

The objective represents the Net Present Value (NPV) of the process:

f(x) =
Y∑

y=0

(Sy − Cy)(1− Ta)− Iy +Dy

(1 + Tr)y
,
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Figure 7: Data profiles for the HS67 problem (n = 3, m = 14), using three different
precisions. In the data profiles, the plots are stopped when there was no more evolution.

where y denotes a year between 0 and Y , and the sales Sy, the operating costs Cy, the
investment Iy, and the depreciation Dy, are direct outputs from the simulator. The con-
stants Ta =0.4 and Tr =0.1 correspond to the income tax rate and the actualization rate,
respectively.

The 11 constraints include requirements on the structural configuration of the columns
SEP-STY and SEP-BZ, conditions if the mixture in block FIRE can burn, regulations on
CO and NOX emissions, minimal purity of produced styrene and benzene, minimal overall
ethylbenzene conversion into styrene, maximal payout time, minimal discounted cash-flow
rate of return, maximal total investment, and maximal annual equivalent cost.

In STYRENE, hidden constraints are omnipresent: a representative 100 evaluations
made on randomly sampled points yielded 57 failures. We note, however, that during an
optimization process generating more physically realistic configurations, this rate drops to
approximately 20%. Since a hidden constraint violation usually occurs in the middle of the
simulation, it counts as one function evaluation in our results of Section 4.2.4.
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Figure 8: Flowsheet of the styrene production process. Taken from [4].

Variable description Lower bound Best known Upper bound

Outlet temperature in block HEATER (K) 600 1,100 1,100
Length of reactor in block PFR (m) 2 16.98 20
Light key fraction in block SEP-STY 1E-4 0.09683 0.1
Light key fraction in block SEP-BZ 1E-4 1E-4 0.1
Outlet pressure of block PUMP (atm) 2 2 20
Split fraction in block SPLITER 0.01 0.2247 0.5
Air excess fraction in block FIRE 0.1 1.963 5
Cooling temperature of block COOLER (K) 300 403.0 500

Objective value failure -33,539,100 failure

Table 4: Description of the STYRENE problem variables. The coordinates and the value of
the best known solution have been rounded.

4.2.2 Description of the LOCKWOOD problem

The second application is called the LOCKWOOD problem [47] and seeks the optimal
extraction rates for six (fixed-locale) decontamination wells at a polluted site in Montana.
This problem has n = 6 variables which represent the pumping rate for each well, in m3/day.
Their bounds and their best known values are described in Table 5. The best objective value
in [47] is 23,714. The present work reports a solution with value 22,807.10.

The function to minimize is linear. It is the total pumping required to run the system,

f(x) =
6∑

j=1

xj , which is proportional to the cost of operating the system. The linear form of

the objective is not exploited in this work.

The difficulty in this application is that the m = 2 constraints are two outputs c1 and
c2 given by the Bluebird simulator [22], based on an analytic element method groundwater
model. These outputs represent the amount of contaminant entering the Yellowstone river
at the western side of the site, and exiting at the southern and eastern boundaries. The
constraints are expressed as cj ≤ 1E-3 for j ∈ {1, 2}.
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Variable Lower bound Best known Upper bound

x1 (m3/day) 0 341.80 20,000
x2 (m3/day) 0 5,275.25 20,000
x3 (m3/day) 0 13,566.49 20,000
x4 (m3/day) 0 2,160.32 20,000
x5 (m3/day) 0 777.27 20,000
x6 (m3/day ) 0 685.98 20,000

Objective value infeasible 22,807.10 infeasible

Table 5: Description of the LOCKWOOD problem variables. The coordinates of the best
known solution have been rounded.

Variable description Lower bound Best known Upper bound

Wing span b (ft) 30.0 44.19 45.0
Root cord Cr (ft) 6.0 6.75 12.0
Taper ratio λ 0.28 0.28 0.50
Tube external diameter dr (ft) 1.6 4.03 5.0
Tube thickness tr (ft) 0.3 0.3 0.79
Angle of attack at root αr (deg) -1.0 3.0 3.0
Angle of attack at tip and at rest α0t (deg) -1.0 0.72 3.0

Objective value failure -16.6101 -8.0157

Table 6: Description of the MDO problem variables. The coordinates and the value of the
best known solution have been rounded.

4.2.3 Description of the MDO problem

The third and last application is a multidisciplinary design optimization (MDO) problem
taken from [60]. It simulates the shape and structural design of a conceptual wing design
built around a tube. For this, two disciplines are used, each of which focuses on a particular
aspect of the wing, namely the aerodynamic loading and the structural displacements. Since
a modification in one discipline impacts the other discipline, a coupling appears.

The current approach consists to solve this coupling as a separated and stand-alone anal-
ysis, called the multidisciplinary design analysis (MDA), based on the fixed-point method,
similarly to the HS67 problem studied in Section 4.1.2. The outputs of the MDA are the
lift L, the drag D, the weight of the fuel Wf , the structural weight of the wing Ws, and the
maximum shear and tensile stresses: σmax, τmax.

The problem has 7 optimization variables corresponding to the geometry of the wing.
They are described in Table 6, along with bound values and the best known design. This
table also gives some values of the objective function to minimize, which is defined by

f(x) = − L
D log

(
W0+Wf+Ws

W0+Ws

)
as an approximation of the range of the aircraft. The constant

W0 = 6, 000 lb corresponds to the airframe weight and payload.
Finally, we consider the three following constraints: L ≥ W0 +Wf +Ws (lift superior to

the total weight of the plane), σmax ≤ 73, 200 psi, and τmax ≤ 47, 900 psi (stress constraints).

4.2.4 Results

One evaluation takes about 4 seconds for STYRENE, and 2 seconds for both LOCKWOOD
and MDO, which makes these problems convenient candidates for benchmarks. Thus, for
these tests, a budget of 1,000 evaluations is considered and convergence to the minimal mesh
size is not required.
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Table 7: Results for the STYRENE problem (n = 8, m = 11). The “−” marks are used
when the initial LH search could not find a feasible solution.

# start
MADS alone Quadratic TGP

obj. impr. obj. impr. obj. impr.

S01 -22,647,400 -24,175,200 6.32 -24,849,500 8.86 -33,339,800 32.07
S02 -19,251,700 -32,167,100 40.15 -32,124,300 40.07 -32,339,400 40.47
S03 -7,778,260 -32,891,000 76.35 -32,904,300 76.36 -32,891,900 76.35
S04 -14,257,400 -32,488,500 56.12 -32,444,000 56.06 -31,951,900 55.38
S05 -15,464,300 -30,218,200 48.82 -30,332,800 49.02 -32,516,400 52.44
S06 − -32,678,100 − -32,674,400 − -32,939,900 −
S07 − -24,566,800 − -25,885,000 − -32,230,900 −
S08 − -27,015,800 − -30,345,000 − -31,149,900 −
S09 − -23,897,200 − -23,362,300 − -32,276,300 −
S10 − -30,786,700 − -30,592,000 − -31,012,700 −
avg -15,879,812 -29,088,460 45.55 -29,551,360 46.07 -32,264,910 51.34

In the present context where n and m are relatively large, the computational cost of
TGP can become prohibitive compared to the blackbox cost. To give an idea, one entire
optimization performed by MADS–TGP takes approximately 3 hours. This computational
cost is mainly due to the use of 500 prediction points along with the computation of the
expected reduction in variance. One optimization with MADS alone or with quadratic
models takes around 30 minutes to complete.

Tables 7, 8, and 9 present the results on the STYRENE, LOCKWOOD, and MDO
problems, respectively, for MADS alone, and for MADS with quadratic and TGP surrogate
models. A total of 30 instances have been considered (S01 to S10, L01 to L10, and M01
to M10), with 30 LH points for STYRENE and 20 LH points for LOCKWOOD and MDO
as starting guesses. Since the limit of 1,000 evaluations was always reached before conver-
gence, we display the “impr.” column instead of “eval.” Quadratic models do not offer much
improvement over MADS for the STYRENE problem (≃0.5% on average), probably due to
the nonsmooth nature of the functions. TGP, however, shows consistent improvement. For
LOCKWOOD, quadratic models fared better. However TGP gave better solutions for six
instances out of ten. For MDO, using quadratic models or TGP is always preferable, and
MADS–TGP was better for nine instances out of 10.

Figures 9, 10, and 11 show the performance and data profiles for the 30 STYRENE,
LOCKWOOD, and MDO instances. There again, the TGP variant dominates the two other
methods. The profiles illustrate also that using quadratic models for STYRENE does not
improve the MADS alone version, and again, it is likely due to the nonsmoothness of the
problem.

Finally, Table 10 and Figure 12 illustrate the impact of the maximum number

of search points introduced in Section 3.4. In NOMAD, this corresponds to the

MODEL SEARCH MAX TRIAL PTS option. These results are given here for the MDO problem
only, but unreported empirical tests gave the same conclusion. We used the exact same 10
instances M01 to M10 as in Table 9 and Figure 11. Three values are compared: 2, 5, and
10 points. The results show that 10 points is generally better, and this is the reason why it
has been taken as the default value for all the other tests and in NOMAD.
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Table 8: Results for the LOCKWOOD problem (n = 6, m = 2).

# start
MADS alone Quadratic TGP

obj. impr. obj. impr. obj. impr.

L01 60,000.00 27,211.40 54.65 34,057.00 43.24 24,700.20 58.83
L02 39,593.60 24,881.80 37.16 25,961.60 34.43 22,807.10 42.40
L03 37,233.10 27,195.20 26.96 22,989.70 38.25 28,557.40 23.30
L04 44,566.50 25,674.30 42.39 26,259.40 41.08 25,037.60 43.82
L05 45,309.60 27,382.30 39.57 27,045.60 40.31 22,973.50 49.30
L06 60,000.00 28,467.20 52.55 23,336.00 61.11 25,161.50 58.06
L07 60,000.00 29,262.50 51.23 25,784.00 57.03 26,456.60 55.91
L08 47,228.20 23,834.00 49.53 23,293.20 50.68 22,880.40 51.55
L09 46,778.20 25,313.20 45.89 24,224.30 48.21 23,276.00 50.24
L10 51,490.20 26,642.70 48.26 23,287.00 54.77 25,618.90 50.25

avg 49,219.94 26,586.46 44.82 25,623.78 46.91 24,746.92 48.37

Table 9: Results for the MDO problem (n = 7, m = 3). The “−” marks are used when the
initial LH search could not find a feasible solution.

# start
MADS alone Quadratic TGP

obj. impr. obj. impr. obj. impr.

M01 − -16.1283 − -16.1069 − -16.2173 −
M02 -10.9119 -15.8245 45.02 -16.0678 47.25 -16.1118 47.65
M03 -12.2374 -16.3364 33.50 -16.2661 32.92 -16.5283 35.06
M04 − -15.9130 − -16.0973 − -15.9017 −
M05 − -16.3483 − -16.3389 − -16.5773 −
M06 -10.6734 -16.1393 51.21 -16.0301 50.19 -16.2588 52.33
M07 -12.3317 -15.9438 29.29 -16.5325 34.07 -16.5923 34.55
M08 − -16.1559 − -16.2779 − -16.5912 −
M09 − -16.1344 − -16.2095 − -16.6057 −
M10 -13.8869 -15.9013 14.51 -16.3043 17.41 -16.3361 17.64

avg -12.0082 -16.0825 34.70 -16.2231 36.37 -16.3721 37.45

Table 10: Impact of the number of search points for the MDO problem (n = 7, m = 3).
The “−” marks are used when the initial LH search could not find a feasible solution.

# start
TGP 2 TGP 5 TGP 10 (default)
obj. impr. obj. impr. obj. impr.

M01 − -15.9026 − -15.9707 − -16.2173 −
M02 -10.9119 -16.5429 51.60 -16.5684 51.84 -16.1118 47.65
M03 -12.2374 -16.6091 35.72 -16.3479 33.59 -16.5283 35.06
M04 − -16.4508 − -16.2709 − -15.9017 −
M05 − -16.4460 − -16.2199 − -16.5773 −
M06 -10.6734 -16.5986 55.51 -16.6018 55.54 -16.2588 52.33
M07 -12.3317 -16.4298 33.23 -16.4718 33.57 -16.5923 34.55
M08 − -16.6089 − -16.5851 − -16.5912 −
M09 − -16.5827 − -16.6019 − -16.6057 −
M10 -13.8869 -16.3049 17.41 -16.3849 17.99 -16.3361 17.64

avg -12.0082 -16.4476 38.70 -16.4023 38.51 -16.3721 37.45
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Figure 9: Performance (left) and data (right) profiles for the STYRENE problem (n = 8,
m = 11).

Figure 10: Performance (left) and data (right) profiles for the LOCKWOOD problem (n = 6,
m = 2).

5 Discussion

We have presented the use of TGP surrogates within the MADS framework in order to
improve the MADS algorithm for blackbox optimization. The efficiency of the new method
has been demonstrated for five test cases: one synthetic but with many local optima, another
synthetic but close to real-world, and three real-data applications.

Future projects include ways of address the issue of the TGP computing cost in the
context of fast blackbox simulations while keeping the best interpolation quality as possi-
ble. Future work also includes the use of classification tools for modeling the set of non-
quantifiable and/or unrelaxable constraints X [30, 44], the use of a derivative-based solver
for surrogate optimization, the study of a cooperative use of TGP surrogates and quadratic
models, and finally the application to other real-life problems.
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Figure 11: Performance (left) and data (right) profiles for the MDO problem (n = 7, m = 3).
In the data profile, the plots are stopped at 500 evaluations.

Figure 12: Impact of the number of search points for the MDO problem (n = 7, m = 3). In
the data profile, the plots are stopped at 400 evaluations.
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