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Abstract: Sparse tensor optimization has recently attracted much attention since it has many applications
in areas such as biology, computer vision and information science. In this paper, we focus on the application
of tensor optimization in surveillance video. Based on the static background of surveillance video, we
introduce the new definition of rank-min-one tensor. Then we consider a rank-min-one and sparse tensor
decomposition model for surveillance video. We establish the modified iterative reweighted ¢; algorithm
(MIRL1), and give its convergence analysis. For synthetic and real surveillance data, numerical experiments
are also presented to illustrate the efficiency of our proposed MIRL1.
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Introduction

In surveillance video, video signals are usually captured by fixed cameras and transferred
to a data processing center. The number of cameras available worldwide has increased
dramatically over the decade, which results in a huge amount of data. Therefore, how
to detect the moving objects and anomalies in surveillance video quickly has become a
significant problem.

Moving objects are detected by background subtraction, which is important in surveil-
lance video, see, e.g., [17, 22, 23] and references therein. All methods for background sub-
traction to detect foreground are applied with the help of establishing the frame difference
[16]. Subsequent approaches aimed to model the variations and uncertainties in background
appearance, such as the mixture of Gaussian [11], the kernel density estimation [10]. These
traditional methods cost plentiful time due to excessive management for all pixels of surveil-
lance video. Note that Compressed Sensing states that if a signal has a sparse representation
in some basis then it can be reconstructed from a small set of linear measurements, which
was introduced by Donoho [9], Candeés and Tao [5] and has been widely studied in various
areas. Based on this idea, Hale et al. [14] and Cevher et al. [7] modeled the background
subtraction in surveillance video as a sparse approximation problem and solved it via con-
vex optimization. In the literature, each frame is stacked as a column of a matrix. The
background component has relatively small changes over a short period, so the background
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matrix can be denoted by a low-rank matrix. The foreground component consists of mov-
ing objects, so the foreground matrix can be seen as a sparse one with most of its entries
being zero or nearly zero. Thus, the low-rank matrix can be used to capture the global
structure of the surveillance video, while the sparse matrix can capture the local structure.
Many authors began to take advantage of low-rank and sparse model to solve background
subtraction problem, see, e.g., [4, 8, 26, 3].

With the development of modern computer, multi-dimensional data is becoming more
and more prevalent in many areas, which results that large researchers have concentrated
on tensor study. Tensors, which emerged as a generalization of vectors and matrices, make
it possible to deal with data that has intrinsically many dimensions. However, traditional
matrix-based data analysis is inherently two-dimensional, which limits its usefulness in ex-
tracting information from a multidimensional perspective. On the other hand, tensor-based
multilinear data analysis has shown that tensor models are capable of taking full advantage
of the multilinear structures to provide better understanding and more precision. Many
authors have made great effort, including computer vision and information science, see
[20, 12, 25, 13, 15] for example. Liu et al. [20] was the first to study on the tensor com-
pletion problem and laid the theoretical foundation of low-rank tensor completion. Gandy
et al. [12] paid attention to the low n-rank tensor recovery problem. They introduced its
convex relaxation of the n-rank, and proposed two algorithms to solve the low n-rank tensor
recovery problem. Yang et al. [25] proposed a fixed point iterative method for low n-rank
tensor pursuit and proved the convergence of the method under some assumptions. Recently,
Goldfarb et al. [13] drew on recent advances in robust Principal Component Analysis, then
proposed tailored optimization algorithms with global convergence guarantees. More re-
cently, Huang et al. [15] proposed a class of convex recovery models that can be proved to
guarantee exact recovery under certain conditions.

For surveillance video, the underlying low-dimensional structure and the irregular sparse
patterns of the tensor data can be considered as the semantic features. How to detect the
irregular sparse patterns of the tensor data? We utilize the low-rank and sparse tensor de-
composition model to distinguish the irregular sparse patterns. In practice, the background
part varies a little in a short time, so it can be approximately seen as a rank-min-one tensor
(see Definition 2.1), which is not the usual rank-one tensor. Meanwhile, the foreground part
records the dynamic contents, hence the foreground can be regarded as a sparse tensor. In
this paper, we propose a rank-min-one and sparse tensor decomposition model to extract
the moving part in surveillance video. We make use of favorable structure, and develop the
modified iterative reweighted ¢, algorithm. Instead of directly computing tensors, we sug-
gest to transform tensors into matrices via unfolding operation. After calculation, we fold
those matrices to acquire the desired tensors. To illustrate the efficiency of our proposed
algorithm, we conduct numerical experiments including synthetic and real surveillance data.

This paper is organized as follows. In Section 2, we review some notations and present
rank-min-one and sparse tensor decomposition model. We establish the modified iterative
reweighted ¢; algorithm and its convergence result in Section 3. Section 4 reports experi-
mental results. Some final remarks are given in the last section.

Rank-min-one and Sparse Tensor Decomposition
In this section, we review some notations and tensor basic results, and propose the rank-

min-one and sparse tensor decomposition. We begin with some basic facts about tensor
which will be used in subsequent analysis. More details can be found in [18].
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Notations and tensor basics

Throughout this paper we denote tensors by boldface Euler script letters, e.g., X. Matrices
are denoted by capital letters, e.g., X; vectors are denoted by boldface lowercase letters,
e.g., x; and scalars are denoted by lowercase letters, e.g., x.

Matricization and tensorization For the K-way tensor X € R™X"2X X"k " its mode-i
fiber is a n;-dimensional column vector defined by fixing every index but the i-th of X. The
mode-i un folding (matricization) of the tensor X" is the matrix denoted by 7;(X) := X(;) €
R™*IL%m that is obtained by concatenating all the mode-i fibers of X as column vectors.
The opposite operation folding (tensorization) is defined as fold;(X ;) := X

Inner product and norms The inner product of two tensors X,) € Rm1*n2xXnK jg
defined as (X,)) = vec(X)Tvec(Y), and the Frobenius norm of & is denoted by ||X|| :=
VX, X). || - |lo counts the number of nonzero entries, and || - ||; is defined as the sum of
absolute of all entries. The nuclear norm || X, of a matrix X is the sum of all its singular
values, i.e. || X|. := Y. oy, where the SVD of X = UDiag(c)VZ. For vector x, Diag(x)
denotes a diagonal matrix with i-th diagonal element being x;.

Tucker decomposition and rank-min-one tensor The Tucker decomposition approx-
imates X as X := C X1 Ay X9 Ay X -+ Xg Ak, where C € R™*72X"XTK ig called the
core tensor, and the factor matrices A; € R"*"i are columnwise orthonormal. The Tucker
rank of X is a K-dimensional vector whose i-th entry is the (matrix) rank of the mode-i
unfolding X;), i.e., rank;.(X) := (rank(X(y)), rank(X(q)), - - - , rank(X(x))).

Definition 2.1. We call the tensor X is rank-min-one if
rank, i, (X') := min{rank (X)), rank(X(g)), - - - ,rank(X(g))} = 1.

For example, surveillance video can be described as a 3-way tensor, which consists of
background part and foreground part. If we stack the background part frame by frame,
then we get a rank-one matrix since the background is relatively static, which shows that
the background part can be represented by a rank-min-one tensor.

At the end of this subsection, for each entry z;; in X, we define

sgn(wi;) = { 21w <0,

For two matrices X,Y € R™*", the Hadmard product is defined by (X oY);; = x;;yi;.

Model analysis

We introduce the low n-rank and sparse tensor decomposition for surveillance video

3
. 1
min 3 ;rank(L(i)) + |IS|lo

st. L+S=M, (2.1)

where M, L, S € R™*"2X"3 are 3-way tensors with identical size in each mode. M, L
and S represent the observed tensor data, the correspondent structured part and irregular
sparse part, respectively. In the special case for matrix, model (2.1) reduces to the following
low-rank and sparse matrix decomposition problem

min rank(L) + ||S|lo
s.t. L+S=M, (2.2)
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where M € R™*™ is the given measurement matrix of surveillance video, L € R™*" is
the background matrix, S € R™*" is the foreground matrix. m denotes the number of
pixels, n denotes the number of frames. However, (2.2) is NP-hard due to the discontinuity
and nonconvexity of rank(L) and ||S]|p. Chandrasekaran et al. [8] suggested the convex
relaxation of (2.2) by replacing rank with nuclear norm and £yp-norm with ¢;-norm, that is

min || L]} + [[S]
st.  L+S=M. (2.3)

They also gave sufficient conditions for (2.3) to exactly recover (2.2) by introducing the
notation of rank-sparsity incoherence, which expressed the uncertainty principle between
the sparsity pattern and its row and column spaces. Candes et al. [4] put forward that
under rather weak assumptions, they can recover the real L and S exactly via solving (2.3).

For low n-rank and sparse tensor decomposition problem (2.1), it is also NP-hard. It is
natural to surrogate Tucker vector of ranks with a weighted sum of norms, thus a tractable
convex optimization problem can be obtained

3
. 1
min 33 ALl + ISk
i=1
st. L+S=M, (2.4)

where (; is a positive weighted to balance the weights of rank and sparsity. As we know,
in surveillance video, the background component has relative small changes over a short
period. If we stack the background tensor properly, then background part can be seen as
a rank-min-one tensor, that is, rank,,;,(£) = 1. While, the foreground component consists
of moving objects, so the foreground part can be regarded as a sparse tensor. For matrix
case, Li et al. [19] proposed to substitute low-rank matrix for rank-one matrix. Then, Ma
et al. [21] and Xiu et al. [24] extended it to the application of medical imaging, and shown
it works well. Therefore, the low n-rank and sparse tensor decomposition problem (2.1) can
be reformulated to

min IS]lo
s.t. L+S=M, (2.5)
rank,,;, (£) = 1.

We denote the mode-3 unfolding of the tensors £, S, M as T3(L), T3(S), Ts(M) € Rmsx(mixn2)
Notice that rank,,;,(£) = 1 and we can set 73(£) := 1u”, where 1 is a column vector in
R"™ u is also a column vector in R™™2. Therefore, by replacing £p-norm with ¢;-norm, the
unfolding relaxation of (2.5) can be rewritten as

min || 73(S)[lx
st.  1ul + T(S) = Ts(M). (2.6)

Much of the recent work focuses on the reweighted ¢; minimization [1, 6, 27] for matrix
case, and shows that it performs better than classical #; minimization in recovering sparse
signal. We define some necessary notations for ease of presentation

A = [1 ] e Rrex(atl)

X — |: uT :| € R(ng-i-l)xnlnz
' T3(S) ’
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where [ is the identity matrix. It then follows that,
AX = 1" + T3(S) = Tz(M).
Furthermore, combining with the above equality, problem (2.6) becomes

min (W o X1

s.t. AX = Tz(M), (2.7)
where o denotes the Hadamard product, and W is the reweighted matrix defined as
W .= i c R(n3+l)><n1n2
: W ,

where W € R"*™72_ In order to solve (2.7), we get the following unconstrained optimiza-
tion problem by putting the constraint into the objective function

1
min >\||WoX||1+§||AX—7§,(M)H2 (2.8)

with A > 0 being a penalty parameter.

Modified Iterative Reweighted ¢; Algorithm and Convergence

This section will consider the modified iterative reweighted ¢; algorithm for rank-min-one
and sparse tensor decomposition, then establish its global convergence.
Before presenting the algorithm, we first describe the idea of majorization,

1
FX) = AW o X[+ 5[|AX = Ts(M)]?
1 L
< AWo X[l + S AY = Ta(M) || + (AT(AY = Tg(M)), X = Y) + S [|X — Y|?
= F(X,Y),

where L > Apax(ATA). Indeed, F(X,Y) is a majorization function of f(X), because of the
fact that for any X # Y,

With the help of majorization, we can give the following lemma.
Lemma 3.1. For

Xk —  argmin F(X, X%)

argmin \|W o X||; + gux - X", (3.1)
where
Xk = x*F — AT(AXF — T3(M))/L.
The (k 4 1)-th iteration has a closed form solution
XF+ = max {)?k — (A\/ L)W, O} o sgn()?k),

where sgn is defined in subsection 2.1.
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Proof. X**! is an optimal solution if and only if

0 € MW oXFr |y + L(xFtt — X¥)
= AW o d| X |y + L(X* — X, (3.2)

where 9|| X**1||; is the subgradients of ||-||; at X**1. Tt is easy to see that (3.2) is equivalent
to

0e XF — XF 4 (\/L)W 0 || X ;.
Then it demonstrates that the optimal solution can be described as
X"+ = max {X’k — (\/ D)W, o} o sgn(X").
The lemma holds immediately. O

Based on the above argument, we have derived the following majorized weighted ¢;
algorithm (MWL1) for (2.8).

Table 1: The framework of the MWL1.

Algorithm 1: Majorized Weighted ¢; Algorithm (MWL1)
Input: the observed data M, compute 7T3(M);
Initialize: A, g9 >0, L, and X°, W;
While || XF1 — X*||2 > ¢

Compute X* = X*¥ — AT(AX* — T3(M))/L;

Compute X* 1 = max {)?k — (\/L)W, O} o sgn(X*);
End
Output: X, compute £ = folds(1u*T), S = foldz(T3(S*)).

Lemma 3.2. For given A > 0 and L > )\maAX(ATA), if X is a global minimizer of f(X),
then X is also the global minimizer of F(X,X).

Proof. Since F(X, - ) is a majorization of f(X), we have
F(X,X) > f(X) > f(X) = F(X, X).
This completes the proof. O

Theorem 3.3. For given A >0 and L > Amax (AT A), X is the global minimizer of (2.8) if
and only if X satisfies the following fixed point equation

X = max{fc — (L)W, o} o sgn(X), (3.3)

where X = X — AT(AX — T3(M))/L.
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Proof. Necessity: Since X is a global minimizer of f(X), by Lemma 3.2, X is also a
global minimizer of F (X,X ). From Lemma 3.1, one can check that X = maX{X —
(A/L)W, 0}sgn(X).

Sufficiency: (2.8) is a convex optimization and thus its global minimizer is its stationary
point X* which contents
(AT(AX™ = T3(M)) + AW, Y — X*) > 0.
If we have X = max{X — (\/L)W,0}sgn(X), one can check that

<AT(AX—7§(M))+AWY—X>
= L(X (X - (AT(AX = To(M)) + AW) /L)Y = X )

L(X - (X-/Lw),y-X)

> 0,
where the last inequality holds from the property of the projection. Therefore X is also a

stationary point, namely X is also a global minimizer of (2.8). O

Theorem 3.4. For given A > 0 and L > Apax(AT A), let {X*} be the sequence generated
by Algorithm 1, then

A. {f(X*)} is monotonically decreasing and converges to f(X) where X is any accumu-
lation point of {X*};

B. {X*} is asymptotically regular, that is, || X*+* — X*||2 — 0 when k — oo;

C. Any accumulation point of {X*} a global minimizer of (2.8).

Proof A. As F(X, - ) is the majorization of f(X), it holds
F(XF) = F(X*, X*) > F(XFH XP) > p(xh,

where the first inequality derives from Lemma 3.2. Therefore {f(X*)} is monotonically non-
increasing. As {f(X*)} is bounded from below, {f(X*)} converges to a constant f. From
{X*} c {X]f(X) < f(X°)} which is bounded, it yields that {X*} is also bounded, and
thus {X*} has at least one accumulation point. Let X be an accumulation point of {X* }

By the continuity of f(X) and the convergence of {f(X*)}, we get {f(X")} = f = f(X)
as k — oo.
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B. Through simply computing, we have

FIXE) = fXFH)

> F(XM XN - f(xH
1
= pl|WoX*F + §||AX’“ — T3 (M)|? + (AT (AXF — T3(M)), X+ — XH)
L 1
+§||X’“+1 — XFIIP = \[W o XFH |y — §||AX’“ — Ts(M)|?
1
—(AT(AX® = Ty(M)), XFF = XF) = S (XPF1 = XH)TATA(XE - XP)
—o(|| X" = X*|1?)
1
Z i(Xk+1 o Xk:)T(LI o ATA)(XkJrl 7Xk) o O(HXkJrl 7 XkH2)
> SR X2 o)X - X)),
2
> §||Xk+1 7Xk||2’

where € > Apin(LI — AT A) > 0 and [ is the identity matrix. The first inequality derives from
the proof in A, the second equality is from the Taylor expansion of £||AX* ! — T3(M)]?
at point X* | and the fourth inequality holds due to L > Apax (AT A).

Henceforth, for € and anypositive integer N,

N

N
SOl - xHP < 23000 - fx) < 2p(x0),

k=0 k=0

which implies that Y po | X** — X*||2 < 0o and thus limy_, [|[X*T! — X*||? = 0, that is
{X*} is asymptotically regular.

C. Let {X*i} be a convergent subsequence of {X*} and X be its limit point, that is to say,
Xk — X* as k — oo.

Combining with the limitation above, one can immediately derive

XFi = XF — AT(AXF — T3(M))/L — X — AT(AX — T3(M))/L =: X,
as k; — oo. From B, the following inequality holds
X — X2 < X X2 — X2 o,

as k; — oo, which guarantees that {X*i*1} also converges to X. On the other side, by
utilizing Lemma 3.1, we have

Xkt — max {)Z'kj — (A\/L)W, 0} ) Sgn()?kf) — max {XV - ()\/L)VVvO} © sgn()?),

as k;j — 0o, which manifests X = max {)Z' — (A L)W, 0}osgn()?). Therefore, from Theorem

3.3, any accumulation point of {X*} is a global minimizer of problem (2.8). O
According to the above conclusions, one can easily get the following corollary.

Corollary 3.5. The sequence {S*} generated by Algorithm 1 from any initial point S°
converges to S.
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Since numerical experiments in literature [6, 28], particularly in compressed sensing,
have indicated that the reweighted ¢; minimization performs exceptionally well in recover-
ing sparse structured solutions, we modify Algorithm 1 (MWL1) as MIRL1 (i.e., Modified
Iterative Reweighted ¢; Algorithm), whose framework is written as the following table.

Table 2: The framework of the MIRL1.

Algorithm 2: Modified Iterative Reweighted ¢; Algorithm (MIRL1)
Input: the observed data M, compute T3(M)T;
Initialize: M, \, o >0, L, X°, and W9;
For 7=1: M
Initialize X7! = X7~ 1,
While || X7k — X7F|2 > ¢
Compute X™F = X7+ — AT(AX™* — T3(M))/L;
Compute X™F1 = max {X7F — (u/L)W™,0} o sgn(X™*);
End
Update X7 = X7F+1
Update W7+ from X7~ X7;
End
Output: X, compute £ = fold3(1u*T), S = folds(T3(S*)).

By exploiting the method from Literature [28] to update the weight, which is different
from classic iterative reweighted ¢; algorithm [6], we take W7 as (for any ¢ # 1)

= ije(Qm)C

H)T q-1 . .
WT = { |:max‘,.( - H_\EHITJ| ) (713.7) €N ;
ol (i,5) € (Q7)°,

and W7 ; =0, where
HT = (T3(8))" — (B(S)™", k7 = [supp(73(S))7)|,

Q7 denotes the indices of the k7 largest entries (in absolute) of H™ and (Q7)¢ denotes its
complementary set; (73(S))7, (7T5(S))™ ! are part of X" =1, X7 respectively; and 0 < p < 1,
€ > 0 is sufficiently small.

Proposition 3.6. For given A > 0, L > Apax (AT A), and W7, the inter loops of Algorithm 2
have the global convergence, namely, any accumulation point of { X"} is a global minimizer
of {min p[|[W7 o X |1 + 3[|AX — T3(M)|*}.

Numerical Experiments

In this section, we conduct numerical experiments on gray and color data to demon-
strate the efficiency of the proposed algorithm. The experiments are conducted in Matlab
version 8.2 with Intel Core I5 2.60GHz CPU and 8GB of RAM, and the data is
available at the web site http://perception.i2r.astar.edu.sg/bk_model/bk_index.html and
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http://homepages.inf.ed.ac.uk/-rbf/CAVIAR/, respectively. There exists noise in surveil-
lance video in reality, hence we add Gaussian white noise to test our algorithm. We compare
our algorithm with ADM [17] and FISTA [2].

Synthetic data

In Figure 1, we show some frames of the test gray surveillance video. This database has 80
sequences, each of which has 256-by-256 pixels. The background is a relatively static bench-
mark image, then we add some significant variations as foregrounds to those backgrounds.

Figure 1: Some frames of the cameraman video.

We set the stopping criterion as RelErr < 1073, where

L% — £*|f? IIS’“—S*IIQ}
7 R N

RelErr := max{

where £* and §* are ground-truths of background and foreground respectively. We also
choose = 0.01, 9 = le — 3 as suggested in [26].

Figure 2 — Figure 4 show the computational results for ADM, FISTA and MIRL1. The
first row is some frames of the cameraman video, the second row is some frames of the
extracted background, and the third row is some frames of the extracted foreground. From
Figure 2 — Figure 4, we know that the extracted backgrounds and foregrounds by ADM,
FISTA and MIRLI for the cameraman video are about the same. In Table 3, we report the
computational results for the cameraman video. “Iteration”, “Time” and “RelErr” represent
the number of iterations, computing time in seconds, and relative error, respectively. The
“RelErr” of MIRL1 is lower than that of ADM and FISTA, even though it costs more time.

Table 3: Computational results for cameraman video.

Algorithm Iteration Time RelErr
ADM 16 10.74 1.56E-02
FISTA 13 12.69 6.41E-03
MIRL1 13 13.25 3.81E-03

Real data

Some example frames of the test real color surveillance video can be found in Figure 5. We
extract 160 sequences, each of which has 288-by-384 pixels. The video has a relatively static
background, and a relatively moving parts.
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Figure 3: Computational results of FISTA for cameraman video.



414 X XIU AND L. KONG

Figure 5: Some frames of the walk video.

For real color data, there don’t exist ground-truths, so we choose the stopping criterion
as

RelErr = max{ ”LkH _ ck”? HSkH _ SkHQ }

(7o S

where £F Sk £Fk+1 Sk+1 are k-th and (k + 1)-th iteration value, respectively. Here, we also
choose p = 0.01, and g9 = le — 3.

The computational results are established in Figure 6-Figure 8. The first row is some
frames of the walk video, the second row is some frames of the extracted background, and
the third row is some frames of the extracted foreground. From Figure 6-Figure 8 and
computational results, we find that MIRL1 gets a higher precision than ADM and FISTA.
That is to say, MIRL1 extracts less artifacts, which is summarized in Table 4.
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Figure 6: Computational results of ADM for walk video.

Figure 7: Computational results of FISTA for walk video.
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Figure 8: Computational results of MIRL1 for walk video.

Table 4: Computational results for walk video.

Algorithm Iteration Time RelErr
ADM 25 24.83 2.54E-02
FISTA 19 30.29 8.35E-03
MIRL1 16 32.62 1.38E-03

Conclusions

In this paper, we focused on the application of tensor optimization in surveillance video.
Since the background part was static, we introduced the definition of rank-min-one ten-
sor, and proposed rank-min-one and sparse tensor decomposition for detecting the moving
objects in surveillance video. Then, we established the modified iterative reweighted ¢; al-
gorithm for our model and gave its convergence analysis. Finally, numerical experiments,
including synthetic and real data, illustrated the efficiency of our proposed algorithm.
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