
2015

386 X. GAO, B. JIANG AND S. TAO

generalization of the rank for matrix, is associated with the smallest CP decomposition and
is defined as follows.

rankCP (X) = min

{
R

∣∣∣∣ X =

R∑
r=1

a1,r ◦ a2,r ◦ · · · ◦ aN,r

}
(1.2)

The Tucker decomposition is a sort of compression of high-order tensor. It decomposes a
tensor into a core tensor multiplied by a matrix along each mode. For an N -way tensor
X ∈ RI1×I2×···×IN , we have the Tucker decomposition as follows

X = G ×1 A1 ×2 A2 · · · ×N AN

=

r1∑
i1=1

r2∑
i2=1

· · ·
rN∑

iN=1

Gi1i2···iNa
1,i1 ◦ a2,i2 ◦ · · · ◦ aN,iN := JG;A1, · · · , AN K, (1.3)

where G ∈ Rr1×r2×···×rN is the so-called core tensor, An = [an,1, an,2, · · · , an,rn] ∈ RIn×rn

and “×n” denotes the n-mode product of the tensor for 1 ≤ n ≤ N . The Tucker rank of a
tensor denoted by rankTK is a vector corresponding to the size of the core tensor associated
with the smallest Tucker decomposition. Typically, a Tucker rank (r1, r2, · · · , rN) means
that the size of the core tensor is r1×r2×· · ·×rN . It has been shown in the literature [16] that,
if A1, · · · , AN are all orthogonal, the smallest Tucker decomposition can be accomplished in
polynomial time.

However, to find the smallest CP decomposition of a given tensor is a very challenging
problem. Notice that the problem of determining the CP rank, i.e. the smallest number of
rank-one terms in CP decomposition, is already NP-complete [5]. Even for a specific 9×9×9
tensor, we only know its CP rank lies in between 18 and 23 (cf. [8]). That motivates people
to study the CP low-rank decomposition (also referred to as CP low-rank approximation in
this paper). Its goal is to factorize a tensor into a sum of rank-one tensors with as less terms
as possible, i.e. lower CP rank, that approximates the original tensor well.

In the past, people always try a brutal procedure to find a fairly good CP approximation
by repeating the decomposition with a fixed number of rank-one components until reach a
particular number which is satisfactory. When the number of components is fixed, there is
a well-known alternating least squares (ALS) algorithm to compute the CP decomposition,
and that is first proposed by Carroll and Chang [9] and Harshman [14]. Moreover, there
are several other algorithms regarding the CP decomposition which had also been compared
with ALS, including derivative-based method(dGN, PMF3) [13] and ASD [7]. Although
they perform better than ALS to some extent in term of convergence properties, much more
computational difficulties are involed. It should be noticed that among all these methods,
the number of components, R, of the CP decomposition (1.1) is always a prerequisite.

In this paper, we are trying to find a good CP approximation in one shot. As we
would show afterwards, obtaining the CP/Tucker low-rank decomposition of a tensor can
be transformed into the problem of finding the factor matrices with as many zero columns
as possible. Suggested by this observation, we can take advantage of the group sparsity
structure to achieve the low rank effect. The so-called group sparsity has been studied
widely in statistics and machine learning area. It is well known that L1 norm can promote
the sparsity solution. In recent years, techniques for incorporating group information using
mixed-norm regularization have been studied. Particularly, Yuan and Lin and others [11,12]
studied L1,2-norm regularization to promote group sparsity, known as the group LASSO
scheme. Since there is no evidence that shows the L2-norm is the only valid norm to be used
in the group sparsity scheme [4], we further study the possibility of using other Lp-norms

LOW CP/TUCKER RANKED TENSORS COMPLETION 387

(p > 2) in the group sparsity framework which will in fact lead to a L1,p regularization. In
our method, if the columns of the factor matrices are treated as the groups, then we are
able to acquire low rank effect by utilizing the group sparsity structure.

The completion problem is a missing value estimation problem. The so-called low-rank
tensor completion is to recover a low-rank tensor from partial information. As we have
already seen at the very beginning, there are multiple ways to define the tensor rank. The
current literatures are mainly devoted to the low-n-rank completion [10,15]. Another focus
of this paper is CP/Tucker low-rank completion problem. Actually, one may find out that
completion problems are natural applications of the decomposition.

Essentially, we can obtain the low rank decomposition and completion of a tensor via
solving a multi-block optimization problem. Accordingly, the objective function consists of
two parts. One is the least square term for the traditional tensor decomposition, while the
other one is the group sparse regularization term that would lead to a low rank solution.
On the computational perspective, due to the embedded block structure of the problem, the
block updating strategy is naturally considered. Specifically, we adopt the Block Coordinate
Descent (BCD) method in our computation, which updates blocks cyclically. For effective
implementation of the BCD algorithm, we adopt the so-called prox-linear update rule which
is efficient for this particular regularized multi-convex problems [17]. Our numerical results
show that, by incorporating our new idea of group sparsity, the low rank decomposition can
be obtained.

Throughout, we denote Rn to be the n-dimensional Euclidean space. We denote the
high order tensor by calligraphic letters, e.g. X . The order N of a tensor is the number
of dimensions, also known as ways. Matrices, vectors and scalars are denoted by capital
letters, boldface lowercase letters and non-bold lowercase letters respectively. The Frobenius
norm of a tensor X ∈ RI1×I2×···×IN , by notation ∥·∥, is the square root of the sum of the
squares of all its elements, i.e.,

∥X∥ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2i1i2···iN

The following products of vectors or matrices will be very useful in our discussion. The
outer product of vectors a1, a2, · · · , aN with an ∈ RIn is denoted by a1 ◦a2 ◦ · · · aN such that

(a1 ◦ a2 ◦ · · · ◦ aN)i1i2···iN = a1i1a
2
i2 · · · a

N
iN .

We call tensor X is rank-one, if it is the outer product of some vectors. The n-mode (matrix)
product of a tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In is denoted by X ×n U and
is of size I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementwise, we have

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNujin

The symbol “⊗” denotes the standard Kronecker product of matrices. The Khatri-Rao
product of matrices A ∈ RI×K and B ∈ RJ×K , is denoted by A⊙B. The result is a matrix
of size (IJ) × (K) defined by

A⊙B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK]

The remainder of the paper is organized as follows. Section 2 describes the relationship
between the low-rank decomposition of a tensor and the group sparsity property of its factor

388 X. GAO, B. JIANG AND S. TAO

matrices. In Section 3, we discuss the problem formulation and solution methods of CP low
rank decomposition. Section 4 is devoted to CP/Tucker low rank completion. In Section
5, we provide some numerical results to justify our algorithms. Finally, we summarize our
research in Section 6.

2 Sufficient Conditions for Low-Rank Decomposition

In this section, we show how the low-rank decomposition in the sense of CP/Tucker relates
to the group sparsity property of certain matrices. In fact, our research is motivated by the
following key observations.

Proposition 2.1.

(i) In CP decomposition (1.1), suppose there is a zero colume of matrix An for some
1 ≤ n ≤ N , then this decomposition actually admits at most R − 1 rank-one terms.
Therefore, obtaining a low-rank CP decomposition can be achieved by generating a
decomposition with as many zero column vectors as possible in either A1, A2, · · · , AN .

(ii) In Tucker decompostion (1.3), suppose there is a zero colume of matrix An for some 1 ≤
n ≤ N , then this decomposition actually admits a core with size at most (r1, · · · , rn−1,
rn − 1, rn+1, · · · ,N). Therefore, obtaining a low-rank Tucker decomposition can be
achieved by generating a decomposition with all the matrices A1, A2, · · · , AN have as
many zero columns as possible.

Proof. We assume that the j-th column of An is a zero vector for some 1 ≤ j ≤ R and
1 ≤ n ≤ N in CP decomposition (1.1), namely an,j = 0. Then

X =
R∑

r=1

a1,r ◦ a2,r ◦ · · · ◦ aN,r =
R∑

r=1,r ̸=j

a1,r ◦ a2,r ◦ · · · ◦ aN,r,

where the number of rank-one terms is at most R − 1. Therefore, if there are many zero
columns in either A1, A2, · · · , AN , then X is of low CP rank.

In Tucker decomposition (1.3), without loss of generality, we assume a1,1 = 0, which
means the first column of A1 is a zero vector. Then

X =

r1∑
i1=1

r2∑
i2=1

· · ·
rN∑

iN=1

Gi1i2···iNa
1,i1 ◦ a2,i2 ◦ · · · ◦ aN,iN

=

r1∑
i1=2

r2∑
i2=1

· · ·
rN∑

iN=1

Gi1i2···iNa
1,i1 ◦ a2,i2 ◦ · · · ◦ aN,iN .

By constructing Ĝ ∈ R(r1−1)×r2×···×rN and Â1 ∈ RI1×(r1−1) such that

Ĝi1,i2,··· ,iN = Gi1+1,i2,··· ,iN and (Â1)j1,j2 = (A1)j1+1,j2 ,

we have that [Ĝ; Â1, · · · , AN] is a valid Tucker decomposition of X with core size (r1 −
1, r2, · · · , rN). Therefore, if all A1, A2, · · · , AN have many zero column vectors, then X is
of low Tucker rank.

Now let’s recall the concept of group sparsity. That is the target candidate has natural
grouping of its elements, and the elements within each group are likely to be either all zeros

LOW CP/TUCKER RANKED TENSORS COMPLETION 389

or all nonzeros. In our case, the matrix An in either CP decomposition (1.1) or Tucker
Decomposition (1.3) is the target candidate, and we treat each column of this matrix as a
group. Thus, from Proposition 2.1, we conclude that the group sparsity of A1, A2, · · · , AN

implies the CP low-rank decomposition and the Tucker low-rank decomposition respectively.
To further take advantage of the group sparsity structure, we wish to write the CP low-

rank decomposition or the Tucker low-rank decomposition explicitly in terms of matrices
A1, A2, · · · , AN . To this end, we introduce the so-called matricization technique, also known
as unfolding or flattening, which is the process of reordering the elements of an N -way array
into a matrix. For instance, a 2 × 3 × 4 tensor can be arranged as a 6 × 4 matrix or a 3 × 8
matrix, and so on. The mode-n matricization of a tensor X ∈ RI1×I2×···×IN is denoted by
X(n) and arranges the mode-n fibers to be the columns of the resulting matrix. Though
conceptually simple, the formal notation is complicated. Tensor element (i1, i2, · · · , iN)
maps to matrix element (in, j), where

j = 1 +
N∑

k=1
k ̸=n

(ik − 1)Jk with Jk =
k−1∏
m=1
m ̸=n

Im

Using this notation as well as the Khatri-Rao product “⊙” of matrices, we manage to rewrite
the CP decomposition (1.1) equivalently as:

X(n) = An(AN ⊙ · · ·An+1 ⊙An−1 · · ·A1)⊤, ∀n = 1, 2, . . . , N. (2.1)

Similarly, we can also rewrite the Tucker decomposition (1.3) in a matricized form like below:

X(n) = AnG(n)(AN ⊗ · · ·An+1 ⊗An−1 · · ·A1)⊤, ∀n = 1, 2, . . . , N, (2.2)

where “⊗” is the standard Kronecker product of matrices.
Consequently, we are able to show later that the problems of tensor low-rank decom-

position and the tensor completion can both be casted as matrix optimization problems.
As mentioned that the smallest Tucker decomposition could be accomplished in polynomial
time, we here focus on the CP low-rank approximation.

3 Tensor CP Low-Rank Approximation

In this section, we shall present how to obtain a tensor low-rank approximation in the sense
of CP via optimization scheme. As illustrated in last section, our method is motivated by
the group sparsity framework. From the most general perspective, here we provide the idea
and formulation to find the CP low-rank approximation of a N -way tensor. Particularly,
suppose we are given a tensor X ∈ RI1×···×IN and we do not know its exact rank, what we
would do is to start with a relatively large rank and implement our new approach of group
sparsity to decompose X .

3.1 Problem formulation

In CP low-rank approximation, we want to factorize a tensor into a sum of rank-one tensors
with as less terms as possible, which approximates the original tensor well. Consequently,
we put both criteria in the objective and get the following formulation.

min
A1,A2,··· ,AN

1

2
∥X − JA1, A2, · · · , AN K∥2 + ρ rankCP (JA1, A2, · · · , AN K), (3.1)

390 X. GAO, B. JIANG AND S. TAO

where ρ is the parameter to control the degree of low-rank. From the discussion in Section 2,
we know that the group sparsity of matrices A1, A2, · · · , AN can imply the low-rank structure
of tensor JA1, A2, · · · , AN K.

It is well known that the L1-norm is a popular quantifying term for standard sparsity
structure. The techniques for incorporating group information using mixed-norm regular-
ization have been studied widely in machine learning and statistics. In particular, Yuan and
Lin [12] proposes L1,2-norm regularization term and name it group LASSO, which can lead
to group sparsity effect if data are organized as groups. The group LASSO proposed by
Yuan and Lin solves the convex problems that have the following form:

min
β

(∥y −
R∑
i=1

Xiβi∥2 + ρ
R∑
i=1

∥βi∥2)

where y is the given data, Xi represents the predictor corresponding to the ith group and
βi is the corresponding vector.

In our model, we treat each column as a group and attempt to take the advantage of the
group LASSO to achieve the low rank effect. By replacing the rank function in (3.1) with
L1,2-norm regularization, we formulate our CP low-rank decomposition problem as below:

min
A1,A2,··· ,AN

1

2
∥X − JA1, A2, · · · , AN K∥2 + ρ

(
R∑

t=1

N∑
i=1

∥ai,t∥2

)
(3.2)

where ai,t is the t-th column of matrix Ai for 1 ≤ i ≤ N and 1 ≤ t ≤ R.
Besides the L1,2-norm regularization, there is a natural consideration arises from the

question about whether the L1,2-norm can be replaced by some other L1,p-norms for which
p > 2. Since it is the L1-norm that really promotes the sparsity structure, the choice of the
L2-norm in the group LASSO might not be necessarily unchangeable. In practice, another
popular choice is the L1,∞-norm regularization [4]. If this regularization is applied, our CP
low-rank decomposition problem can be formulated as below

min
A1,A2,··· ,AN

1

2
∥X − JA1, A2, · · · , AN K∥2 + ρ

(
R∑

t=1

N∑
i=1

∥ai,t∥∞

)
(3.3)

where ai,t is the t-th column of matrix Ai for 1 ≤ i ≤ N and 1 ≤ t ≤ R.
Note that once the t-th column ai,t of matrix Ai is zero, then whether the t-th column

ak,t of any Ak with k ̸= i is zero or not will not make any difference on the approximation
in (3.2). This fact can be easily seen from the proof of Proposition 2.1. As shown in the
proof, if ai,t = 0, then the term a1,t ◦ a2,t ◦ · · · ◦ aN,t in JA1, A2, · · · , AN K will always be zero
whatever the other ak,t (k ̸= i) is. However, we enforce the t-th column of every Ak in (3.2)
to be zero, to make the shrinkage effect of the regularization more balanced among different
modes. The same logic is also applied to tensor low rank completion problem in Section 4.

3.2 Regularized multiconvex optimization framework

Notice that the objective in either (3.2) or (3.3) has multiple block variables A1, A2, · · · , AN .
This multi-block structure can be really helpful in the algorithm design, and the multi-block
optimization problem has been carefully studied. For instance, recently, Xu and Yin [17]
considered the following regularized multiconvex optimization.

min
x
f(x1, · · · , xN) +

N∑
i=1

ri(xi),

LOW CP/TUCKER RANKED TENSORS COMPLETION 391

where x1, · · · , xN is the decision variables, f is assumed to be a differentiable and block
multiconvex function, that is f is a convex function of xi while all the other blocks are fixed,
and ri, i = 1, · · · , N are convex functions.

In our formulation (3.2) and (3.3) , we let f(A1, A2, · · · , AN) := 1
2∥X−JA1, A2, · · · , AN K∥2,

ri(Ai) = ρ
R∑

t=1
∥ai,t∥p for 1 ≤ i ≤ N , p ∈ {2,∞} and consider the problem:

min
A1,A2,··· ,AN

f(A1, A2, · · · , AN) +
N∑
i=1

ri(Ai). (3.4)

Obviously ri(Ai) is convex with respect to Ai. Moreover, from (2.1), we can see that

f(A1, A2, · · · , AN) =
1

2
∥X(i) −Ai(AN ⊙ · · ·Ai+1 ⊙Ai−1 · · ·A1)⊤∥2

:= fi(A1, A2, · · · , AN), ∀ 1 ≤ i ≤ N,

implying that f(A1, A2, · · · , AN) is a differentiable and block multiconvex function. More-
over, the i-th block-partial gradient of f is given by

∇Aif = ∇Aifi = (Ai(AN ⊙ · · ·Ai+1 ⊙Ai−1 · · ·A1)⊤ −X(i))(AN ⊙ · · ·Ai+1 ⊙Ai−1 · · ·A1),
(3.5)

and the partial gradient function ∇Aif is Lipschitz continuous. In conclusion, the prob-
lem (3.4) can fit into the regularized multiconvex optimization framework in [17] and the
algorithms therein can be applied.

Moreover, note that the convergence results of the algorithm in [17] still holds here,
as long as the objective function in (3.4) satisfies the so-called Kurdyka- Lojasiewicz (KL)
property, which is defined as follows.

Definition 3.1. A function ψ(x) satisfies the Kurdyka- Lojasiewicz (KL) property at point
x̄ ∈dom(∂ψ) if there exist ϕ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1), and a certain
neighborhood U of x̄, such that the KL inequality holds

ϕ′(|ψ(x) − ψ(x̄)|)dist(0, ∂ψ(x)) ≥ 1, ∀x ∈ U ∩ dom(∂ψ) and ψ(x) ̸= ψ(x̄), (3.6)

where dom(∂ψ), {x : ∂ψ(x) ̸= ∅} and dist(0, ∂ψ(x)) , min{∥y∥ : y ∈ ∂ψ(x)}.

The functions which have the KL property contain a large amount of classes of functions
in applications, for instance, semi-algebraic, subanalytic and strongly convex functions all
have the KL property (see the discussion in Section 2.2 of [17] for more details). Our
objective function in (3.4) only contains three types of functions, namely, ∥ · ∥22, ∥ · ∥2 and
∥ · ∥∞. Notice that all those three functions are semi-algebraic function, and the function
in (3.4) are linear compositions of Ai, i = 1, 2 . . . , N or their components products, we readily
know that the objective function in (3.4) is also semi-algebraic, hence it has the KL property
and the convergence of the algorithm can be guaranteed.

For general multiblock optimization problems, a commonly used strategy is to update
the the block variables iteratively. Then, in each iteration, how to update the block variables
becomes a key issue. In the following we shall present the block updating rules which is
called block coordinate descent (BCD) method.

392 X. GAO, B. JIANG AND S. TAO

3.3 BCD updating rule of Gauss-Seidel type

The BCD of Gauss-Seidel type is to cyclically update each of A1, · · · , AN while fixing the
remaining blocks at their last updated values. To be more specific, in the k-th iteration,
updating scheme of BCD is described as follows:

A
(k)
i := argmin

Ai

gi(A
(k)
1 , · · · , A(k)

i−1, Ai, A
(k−1)
i+1 , · · · , A(k−1)

N), (3.7)

where gi is certain multiblock function for 1 ≤ i ≤ N , which will be specified later . For
example, a natural choice of gi is

gi(A
(k)
1 , · · · , A(k)

i−1, Ai, A
(k−1)
i+1 , · · · , A(k−1)

N) = f(A
(k)
1 , · · · , A(k)

i−1, Ai, A
(k−1)
i+1 , · · · , A(k−1)

N)+ri(Ai).

In [17], three alternative choices of gi were provided under the scheme of BCD, and the
authors proved that the sequence generated by BCD converges to critical point of (3.4)
under some mild conditions. For practical purpose, we adopt the following prox-linear
calculating rule:

A
(k)
i = argmin

Ai

⟨H(k)
i , Ai − Â

(k−1)
i ⟩ +

L
(k−1)
i

2
∥Ai − Â

(k−1)
i ∥2 + ρ

R∑
t=1

∥ai,t∥p (3.8)

where p ∈ {2,∞}, H
(k)
i = ∇fAi(A

(k)
1 , · · · , Â(k−1)

i , A
(k−1)
i+1 , · · · , A(k−1)

N) is the block-partial

gradient of f at Â
(k−1)
i and Â

(k−1)
i is given by the following formula:

Â
(k−1)
i = A

(k−1)
i + ω

(k−1)
i (A

(k−1)
i −A

(k−2)
i)

with ω
(k−1)
i ≥ 0 being the extrapolation weight. It is reported in [17] that this particular

calculating rule appears to be very efficient in many tests.

3.3.1 Specify the parameters

In the following, we illustrate how to set the parameters L
(k−1)
i and ω

(k−1)
i in order to satisfy

the conditions in [17]. For the i-th block, let

P
(k−1)
i = A

(k−1)
N ⊙ · · ·A(k−1)

i+1 ⊙A
(k)
i−1 · · ·A

(k)
1 , (3.9)

L
(k−1)
i = max

{
lk−2, ∥(P

(k−1)
i)⊤P

(k−1)
i ∥

}
for 1 ≤ i ≤ N, (3.10)

where lk−2 = min1≤i≤N L
(k−2)
i .

We take t0 = 1, tk = 1
2

(
1 +

√
(1 + 4t2k−1)

)
and ω̂k−1 = tk−1−1

tk
; then

ω
(k−1)
i = min

(
ω̂k−1, δω

√
lk−2

L
(k−1)
i

)
(3.11)

where δω < 1 is pre-selected. Therefore, under the current notation, Â
(k−1)
i = A

(k−1)
i +

ω
(k−1)
i (A

(k−1)
i −A

(k−2)
i) and

H
(k)
i =

(
Â

(k−1)
i (P

(k−1)
i)⊤ −X(i)

)
P

(k−1)
i , ∀1 ≤ i ≤ N. (3.12)

LOW CP/TUCKER RANKED TENSORS COMPLETION 393

3.3.2 Closed form solution for the subproblem

Now suppose H
(k)
i , L

(k−1)
i and Â

(k−1)
i are given, let’s investigate how to solve (3.8). We

first consider the case when p = 2. Notice that this problem is separable in columns, so it
can be transformed as

(at)(k) = argmin
at

⟨(ht)(k), at − (ât)(k−1)⟩ +
L
(k−1)
i

2
∥at − (ât)(k−1)∥2 + ρ∥at∥2

= argmin
at

L
(k−1)
i

2

∥∥∥∥at − (ât)(k−1) +
(ht)(k)

L
(k−1)
i

∥∥∥∥2 + ρ∥at∥2

where at, (at)(k), (ât)(k−1), (ht)(k) are the t-th column of Ai, A
(k)
i , Â

(k−1)
i ,H

(k)
i respectively.

This update can be calculated explicitly by using soft-thresholding operator [3]:

(at)(k) = max{∥(bt)(k)∥2 − ρ, 0} (bt)(k)

L
(k−1)
i ∥(bt)(k)∥2

, (3.13)

where
(bt)(k) = L

(k−1)
i (ât)(k−1) − (ht)(k).

Now let’s investigate how to solve (3.8) when p = ∞. Similar to the discussion above,

suppose at, (at)(k), (ât)(k−1), (ht)(k) are the t-th column of Ai, A
(k)
i , Â

(k−1)
i , H

(k)
i respectively,

and the subproblem can be transformed as

(at)(k) = argmin
at

⟨(ht)(k), at − (ât)(k−1)⟩ +
L
(k−1)
i

2
∥at − (ât)(k−1)∥2 + ρ∥at∥∞

= argmin
at

L
(k−1)
i

2

∥∥∥∥at − (ât)(k−1) +
(ht)(k)

L
(k−1)
i

∥∥∥∥2 + ρ∥at∥∞. (3.14)

This update can be performed by resorting to the following lemma.

Lemma 3.2. Suppose a∗ = argmin
a∈Rm

1
2∥a− b∥2 + γ∥a∥∞, then we have

a∗i =

{
bi if |bi| ≤ y∗

y∗ if |bi| > y∗
(3.15)

for i = 1, 2, . . . ,m, where y∗ = argmin
y≥0

1
2

m∑
i=1

[(|bi| − y)+]2 + γy, and (x)+ = max(x, 0).

Proof. We first observe that if ∥a∥∞ is determined say ∥a∥∞ = y, to minimize ∥a− b∥2 we
can choose ai (the ith component of vector a) such that the following holds

∥a− b∥2 =

m∑
i=1

[(|bi| − y)+]2. (3.16)

Therefore, the target problem can be further converted to the following,

min g(y) , 1
2

m∑
i=1

[(|bi| − y)+]2 + γy

s.t. y ≥ 0
(3.17)

394 X. GAO, B. JIANG AND S. TAO

Taking the derivative of the g(y), we have

∇g(y) = γ −
m∑
i=1

(|bi| − y)+ = γ −
∑
i∈I

(|bi| − y), where I = {i | y ≤ |bi|} (3.18)

Notice that ∇g(y) is nondecreasing function for y ≥ 0, and when y = 0, ∇g(y) = γ−
m∑
i=1

|bi|.

If we denote the y∗ to be the optimal solution of (3.17), then we have the following
y∗ = 0 if γ ≥

m∑
i=1

|bi|

y∗ =
∑

i∈I |bi|−γ

|I| if γ <
m∑
i=1

|bi|
. (3.19)

Once we obtained the optimal y∗, based on (3.16) we can easily get the corresponding
optimal solution a∗ of the subproblem as below

a∗i =

{
bi if |bi| ≤ y∗

y∗ if |bi| > y∗
(3.20)

Although the closed solution derived in Lemma 3.2 can also be found in [4], we keep
the argument above for the convenience of the reader. Finally, we can apply the result to

solving the subproblem (3.14) by letting a = at, b = (ât)(k−1) − (ht)(k)

L
(k−1)
i

, and γ = ρ/L
(k−1)
i in

the lemma’s setting.

3.3.3 Detailed algorithm

Finally, we are able to summarize our BCD methods for tensor CP low rank decomposition
in following table.

Algorithm 1: BCD method for solving tensor low rank decomposition
Input N -way tensor X .
Output factor matrices A1, · · · , AN .
Initialization randomly generate A0

1, · · · , A0
N , with appropriate sizes.

for k = 1, 2, · · · , do
for n = 1, 2, · · · , do
• Compute P

(k−1)
n , L

(k−1)
n , ω

(k−1)
n , and H

(k)
n according to (3.9)–(3.12) respectively.

• Let Â
(k−1)
n = A

(k−1)
n + ω

(k−1)
n (A

(k−1)
n −A

(k−2)
n).

• Update A
(k)
n according to (3.8) with the closed form in (3.13) or (3.15) .

end for
if stopping criterion is satisfied then

Return A
(k)
1 , · · · , A(k)

N .
end if

end for

LOW CP/TUCKER RANKED TENSORS COMPLETION 395

4 Tensor Low Rank completion

In this section, we show that our algorithm for CP low-rank approximation can be modified
to solve both CP and Tucker low-rank completion problems, which is to recover low-rank
tensor from partial data. It is known that many problems in signal possessing, computer
vision and MRI can be formulated into the completion problems [2,10], since sometimes part
of data are missing by various reasons. There have already been some algorithms for tensor
completion problems [2,10,15], but we didn’t observe a method work directly on the tensor
itself. Specifically, in the previous literature, the authors first unfold the tensor into some
related matrix by rearranging the positions of the elements and then consider the completion
problem of the resulting matrix. For instance, Liu et al [10] and Gandy et al [15] studied
the low-n-rank recovery of a tensor, which is the average of the rank of all mode matrices.
However, the relationship between the n-rank and the CP rank is still unclear. Recently,
Jiang et al. [6] showed that for a super-symmetric tensor, it is rank one in the sense of CP
if and only if its square unfolding matrix is also rank one. To our best knowledge, the work
in this paper is the first attempt to study CP rank completion problem and our method can
work with Tucker rank as well. Numerical results in next section show that our algorithms
can recover missing data from only a small amount of samples.

4.1 CP low-rank completion

One formulation of CP low-rank completion problem is given by

min
A1,A2,··· ,AN

1

2
∥PΩ(X − JA1, A2, · · · , AN K)∥2 + ρ rankCP (JA1, A2, · · · , AN K) (4.1)

where Ω ⊂ [I1]× [I2] · · ·× [IN] is the index set of the observed entries of X and PΩ(X) keeps
the entries of X in Ω and sets the remaining elements to zero. Again, we take advantage
of the relationship between group sparsity and low CP rank structure, and end up with the
following problem:

min
A1,A2,··· ,AN

1

2
∥PΩ(X − JA1, A2, · · · , AN K)∥2

+ ρ

(
N∑
i=1

R∑
t=1

∥ai,t∥2

)
, f(A1, A2, · · · , AN) + ρ

(
N∑
i=1

ri(Ai)

)
(4.2)

Since PΩ is essentially a linear mapping, it is easy to verify that the above problem fit into
the regularized multiconvex optimization framework. Indeed, Algorithm 1 can be modified
to solve (4.2). The only difference lies in computing the gradient of function f(·) which
involves projection on the index set Ω. To calculate the partial gradient with respect to An,
we notice that

f(A1, A2, · · · , AN) =
1

2
∥PΩ(n)(An(AN ⊙ · · ·An+1 ⊙An−1 · · ·A1)⊤ −X(n))∥2

where Ω(n) is the mode-n unfolding of Ω. After careful examination, we have the gradient
for factor matrices:

∇Anf = PΩ(n)(An(AN ⊙ · · ·An+1 ⊙An−1 · · ·A1)⊤ −X(n)) (AN ⊙ · · ·An+1 ⊙An−1 · · ·A1).

We refer the reader [16] for more about projection index set. After applying Algorithm 1
with new gradient, we get the final solution.

396 X. GAO, B. JIANG AND S. TAO

4.2 Tensor Tucker completion

In Tucker low-rank completion problem, we want to obtain a low Tucker rank tensor that
approximate the original tensor well from partial information. Since the Tucker rank is a
vector, the low Tucker rank means that the values for all components of this vector are
small. Following the discussion of group sparsity and Tucker low-rank effect, we arrive at
the following formulation:

min
G,A1,A2,··· ,AN

1

2
∥PΩ(X − G ×1 A1 ×2 A2 · · · ×N AN)∥2 + ρ

(
N∑
i=1

Ri∑
ti=1

∥ai,ti∥2

)

, f(G;A1, A2, · · · , AN) + ρ

(
N∑
i=1

ri(Ai)

)
. (4.3)

Here the first term is the standard tensor completion formulation, and the second term is
the penalty term which can lead us to the low rank effect.

In fact, the idea and algorithm in CP low-rank decomposition and completion can be
used for solving Tucker low-rank completion. For instance, if we want to apply Algorithm
1, the update for the factor matrices A1, · · · , AN is almost the same as the CP case, except
we have different gradient here:

∇Anf = PΩ(n)(AnG(n)(AN⊗· · ·An+1⊗An−1 · · ·A1)⊤−X(n))(AN⊗· · ·An+1⊗An−1 · · ·A1)G⊤
(n),

and accordingly

P (k−1)
n = (A

(k−1)
N ⊗ · · ·A(k−1)

n+1 ⊗A
(k)
n−1 · · ·A

(k)
1)(G

(k−1)
(n))⊤,

where G(n) is the mode-n unfolding of core tensor G.
Different from CP situation, Tucker low-rank completion requires to update the core ten-

sor after A1, · · · , An have been updated in each iteration. One should notice that updating
the core tensor G involves a lot of computational details. The reason is that the extrapo-
lation way for updating factor matrices (3.8) will make A1, · · · , AN no longer orthonormal.
Therefore, no closed form of G can be written out. In our approach, we need to matricize the
core tensor into a matrix, but at this time it doesn’t matter which mode we choose to unfold
the core tensor. For simplicity, we use 1-mode unfolding G(1) to update G. Specifically,

f(G(1)) =
1

2
∥PΩ(1)(A1G(1)(AN ⊗ · · ·A3 ⊗A2)⊤ −X(1))∥2.

Then

∇G(1)
f = A⊤

1 PΩ(1)(A1G(1)(AN ⊗ · · ·A3 ⊗A2)⊤ −X(1))(AN ⊗ · · ·A3 ⊗A2)

We take L
(k−1)
G = ∥(A

(k)
N)⊤A

(k)
N ∥ × · · · ∥(A

(k)
1)⊤A

(k)
1 ∥. In addition, let Ĝ

(k−1)
(1) = G

(k−1)
(1) +

ω(k−1)(G
(k−1)
(1) −G

(k−2)
(1)), where ω(k−1) is defined as (3.11). So

Ĥ
(k)
G(1)

= (A
(k)
1)⊤PΩ(1)(A

(k)
1 Ĝ

(k−1)
(1) (A

(k)
N ⊗ · · ·A(k)

3 ⊗A
(k)
2)⊤ −X(1))(A

(k)
N ⊗ · · ·A(k)

3 ⊗A
(k)
2)

would be the gradient of f(Ĝ
(k−1)
(1)). Then, we are able to derive new G

(k)
(1) by

G
(k)
(1) = Ĝ

(k−1)
(1) −

Ĥ
(k)
G(1)

L
(k−1)
G

(4.4)

LOW CP/TUCKER RANKED TENSORS COMPLETION 397

Finally, we transform G
(k)
(1) back to the core tensor tensor G(k) and finish the updating. We

refer the reader [17] for more about core tensor update.

5 Numerical Results

In this section, we test our algorithms for 3-way tensor low-rank decomposition and com-
pletion. All tests are performed with Tensor Toolbox of version 2.5 [1]. Our algorithms are
terminated whenever the condition ∥Vk − Vk+1∥ < tol = 0.005 holds, where Vk is either the
objective value of (3.2) for the decomposition problem or objective value of (4.2) and (4.3)
for the completion problem in the kth iteration.

In the upcoming tables, we refer Deviation to the relative error from the original tensor,
Rank/R. to the rank of the recovered tensor, Iter to the iteration number and Time/T
to the running time of solving the problem. In the tables for completion problem, SR is
referred to the percentage of the sampling data of the original tensor X .

5.1 Tensor low-rank decomposition

For CP low-rank decomposition associated with 3-way tensor, we initially randomly generate
a tensor X which has the dimension of 30 × 30 × 30, i.e. X ∈ R30×30×30. Moreover, we set
the CP rank of X to be 4 which is reasonably low compared with the dimension of the given
tensor X . To justify our algorithm for the low-rank decomposition, we assume that we are
absolutely ignorant about the initial rank of the X which had been set as 4. Without this
knowledge, we simply begin with a randomly chosen tensor X̂ ∈ R30×30×30, and its CP
rank is 20, namely the three factor matrices A,B,C ∈ R30×20. As we have proposed two
different types of group sparsity regularization, namely L1,2-norm and L1,∞-norm. We have
applied both of them in our test, and expect that the CP rank of the final solution X ∗ that
returned by our algorithm will be as small as 4. The results are provided in Table 1, in
which we find the CP rank is very close to 4 and the deviation is also acceptably small. It
shows both the L1,2-norm and L1,∞-norm regularization algorithms for the decomposition
can obtain a quite accurate tensor with respect to the original tensor X and possess the low
rank property as well. Moreover, we can find that regarding the accuracy and processing
time, the L1,2-norm regularization slightly outperforms the L1,∞-norm regularization. Thus
we would only focus on L1,2-norm regularization in the remaining tests.

We also conduct another experiment comparing our algorithm of BCD scheme with the
traditional ALS algorithm. In this comparison, we first randomly generate a tensor X
which belongs to R20×20×20. We set the CP rank of the original tensor X to be within a
relatively low random level which is between 2 and 8, so we do not know the exact rank of
the tensor. As the previous experiment suggests, we expect our algorithm can give us a low
rank decomposition. We also run ALS with the rank of either 4 or 20. Moreover, we can
add a post-processing procedure to our algorithm, that is we run the ALS algorithm based
on the rank that return by our algorithm when it terminated. We expect this procedure can
further enhance the accuracy of our approximation, and denote this approach as ALSBCD
in our table. The numerical results are summarized in Table 2. We can see that the ALS
can not give us a low rank approximation, it either fails to get low rank or fails to get a
satisfactory accuracy. However, combining ALS with our algorithm can indeed improve the
accuracy.

398 X. GAO, B. JIANG AND S. TAO

5.2 Tensor low-rank completion

This subsection contributes to testing our algorithms for 3-way tensor completion problems.
The general setting is quite similar to that in low-rank decomposition. As for the CP low
rank completion, we again randomly generate an original tensor X which has the dimension
of 30 × 30 × 30 i.e. X ∈ R30×30×30. We also set the CP rank of the original tensor X to be
4. Then we randomly obliterate some certain amount of elements of the tensor, so we get
a tensor with some missing data. To run our algorithm, we simply began with a randomly
chosen tensor X̃ ∈ R30×30×30 associated with the CP rank of 20. We hope the final result
X ∗ obtained by our algorithm will be as close as possible to the original tensor X .

For Tucker low-rank completion, we randomly generate an original tensor Y which has
the dimension of 15 × 15 × 15 i.e. Y ∈ R15×15×15. The Tucker rank of this tensor is set to
be (3, 3, 3). Like the situation of CP completion, we assume there are some missing data
in the original tensor Y and expect our algorithm will make the final result Y∗ as close as
possible to the original tensor Y.

From the Table 3 and Table 4, we see that the deviation is small when SR = 0.3 and much
smaller when SR = 0.6. It means that the performance of CP and Tucker low completion
with our method is quite reliable. One may notice that it cost more CPU time for Tucker
completion. This is because the core tensor update requires more effort than the matrix
update. Nevertheless, since our method directly deals with the Tucker rank, it provides an
way to recover a Tensor with low Tucker rank.

Recently, Liu, et al [10] proposed tensor completion using the matrix nuclear norm as a
convex program.

min
X

N∑
n=1

αn∥X(n)∥∗ subject to PΩ(X) = PΩ(M) (5.1)

where αn are pre-determined weights satisfying
∑

n αn = 1 and ∥A∥∗ is the nuclear norm
of A. They proposed three algorithms to solve the above problem and its relaxed versions,
including simple low-rank tensor completion (SiLRTC), fast low-rank tensor completion
(FaLRTC), and high accuracy low-rank tensor completion (HaLRTC). Among those three,
FaLRTC is the most stable and efficient algorithm. So we compare the Tucker Low Rank
Completion with FaLRTC on a three-way tensor. Each tensor is of size 15 × 15 × 15 and
is generated with Tucker rank 3 × 3 × 3. The sample ratios are set as 0.3 and 0.7. The
performances of two methods are shown in Table 5. It suggests that our algorithm has
higher accuracy when the sample ratio is large for the Tucker rank structure though it
consumes more time. Investigating the efficiency of the implementation for Tucker Low
Rank Completion is one of our future directions.

Moreover, we also compare the CP low rank completion with the Tucker low rank com-
pletion when they are applied to the same tensor. Namely, at each instance, we generate
one original tensor, and then we applied both methods for tensor completion problems to
that particular tensor. The original tensor we generate is either low CP rank or low Tucker
rank, and we expect the performances of those two methods are distinct. We can find the
numerical results in Table 6, where the Type of Ori. denotes the type of the low-rank struc-
ture of the original tensor. In fact, as we expected, the result shows that the methods are
more suitable for the tensor which has the corresponding structure, i.e., when the tensor
has CP low rank structure it is more preferable to use the CP low rank completion method.
The same logic applied to the Tucker case.

Among all those numerical tests, the regularization parameter ρ appears in both decom-
position and completion models. If ρ is too large, the rank of the obtained tensor will be

LOW CP/TUCKER RANKED TENSORS COMPLETION 399

very low, but the error of approximation would be very high, and vise versa when ρ is too
small. But there is not a clear and systematic way of choosing the parameter. In fact, a
proper parameter ρ would vary from case to case. As a result, for different instances, the
tuning process of ρ will consist of multiple trials of different values, and for that tuning
process, one may choose the bisection method to perform the trials.

6 Conclusion

In this paper, we put forward a method of finding CP low-rank decomposition with its
application of CP/Tucker completion without knowing the rank. Our main idea is to take
advantage of the group sparsity and to apply BCD and MBI scheme to our problem. Based
on the group sparsity, we formulate our problem as an regularized multi-convex problem,
in which we applied the BCD/MBI methods. By utilizing an updating scheme proposed
by Y. Xu et al [17], we can solve our problem efficiently. All the implementation details
of our algorithms have been discussed. The numerical performances have shown that our
approach of using group sparsity is quite reasonable and effective, especially when the given
tensor has a low-rank structure. We believe our approach will have a lot of important real
applications in different fields.

References

[1] B.W. Bader and T.G. Kolda, MATLAB Tensor Toolbox Version 2.5, Available online,
2012, http://www.sandia.gov/tgkolda/TensorToolbox/.

[2] D. Goldfarb and Z. Qin, Robust Low-Rank Tensor Recovery: Models and Algorithms,
SIAM J. Matrix Anal. Appl. 35 (2014) 225–253.

[3] E. van den Berg, M. Schmidt, M. Friedlander,and K. Murphy, Group sparsity via
linear-time projection, Technical Report TR-2008-09, Department of Computer Science,
University of British Columbia, 2008.

[4] F. Bach, R. Jenatton, J. Mairal and G. Obozinski, Structured sparsity through convex
optimization, Statist. Sci. 27 (2012) 447–608.

[5] J. Hastad, Tensor rank is NP-complete, J. Algorithms 11(1990) 644–654.

[6] B. Jiang, S. Ma and S. Zhang, Tensor principal component analysis via convex opti-
mization, Math. Program., published online, DOI: 10.1007/s10107-014-0774-0, 2014.

[7] J. Jiang, H. Wu, Y. Li and R. Yu, Three-way data resolution by alternating slice-wise
diagonalization (ASD) method, J. Chemometrics 14 (2000) 15–36.

[8] J.B. Kruskal, Rank, Decomposition and uniqueness for 3-way and N -way arrays, Mult.
Data Anal., 1989.

[9] J.D. Carroll and J.J. Chang, Analysis of individual differences in multidimensional
scaling via an N-way generalization of Eckart-Young decomposition, Psychometrika 35
(1970) 283–319.

[10] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing
values in visual data, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2013) 208–220.

400 X. GAO, B. JIANG AND S. TAO

[11] L. Meier, S. Geer and P. Bählmann, The group lasso for logistic regression, J. R. Stat.
Soc. Ser. B Stat. Methodol. 70 (2008) 53–71.

[12] M. Yuan and Y. Lin, Model selection and estimation in regression with grouped vari-
ables, J. R. Stat. Soc. Ser. B Stat. Methodol. 68 (2006) 49-67¿

[13] P. Paatero, A weighted non-negative least squares algorithm for three-way PARAFAC
factor analysis, Chemometr. Intell. Lab. 38 (1997) 223–242.

[14] R.A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for
an explanatory multi-modal factor analysis, UCLA Working Papers in Phonetics 16
(1970) 1–84.

[15] S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery
via convex optimization, Inverse Problems, 27 (2011).

[16] T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51
(2009) 455–500.

[17] Y. Xu and W. Yin, A block coordinate descent method for multi-convex optimization
with applications to nonnegative tensor factorization and completion, SIAM J. Imaging
Sci. 6 (2013) 1758–1789.

Manuscript received 10 May 2014
revised 16 November 2014, 13 January 2014

accepted for publication 13 January 2014

No. L1,∞ L1,2

Deviation Rank IterL1,∞ TimeL1,∞ Deviation Rank IterL1,2 T imeL1,2

parameter: l=m=n=30, t=4, r=20
1 2.690e-003 4 3013 56.77 9.764e-004 5 1878 16.12
2 3.038e-003 4 1901 45.52 9.230e-004 4 2690 26.26
3 3.894e-003 4 2034 48.55 1.222e-003 4 1019 11.33
4 4.473e-003 4 2270 54.52 1.366e-003 4 996 12.10
5 4.160e-003 4 2118 52.07 1.303e-003 4 1289 12.11
6 3.916e-003 4 2863 65.63 1.416e-003 4 1240 12.14
7 3.824e-003 4 2329 68.12 1.214e-003 4 1115 9.20
8 3.038e-003 4 1901 48.62 9.230e-004 4 2690 31.14
9 2.745e-003 4 2793 67.45 8.617e-004 4 1278 14.53
10 2.690e-003 4 3013 110.11 9.764e-004 5 1878 17.84

Table 1: CP low-rank decomposition through L1,∞ and L1,2-norm regularization

LOW CP/TUCKER RANKED TENSORS COMPLETION 401

No. BCD ALS ALSBCD

Deviation R. IterBCD TBCD Deviation R. IterALS TALS Deviation R. IterAB TAB
parameter: l=m=n=20, t=2+unidrnd(6), r=25

1 9.68e-005 7 10963 147.56 5.77e-001 4 11 0.56 4.32e-006 7 580 6.89
2 8.80e-005 7 9034 124.03 5.77e-001 4 12 0.21 3.67e-006 7 31 0.47
3 1.08e-004 8 11064 145.89 5.59e-001 4 15 0.21 1.55e-005 8 12 0.25
4 9.69e-005 7 8040 109.42 5.50e-001 4 15 0.19 1.75e-005 7 14 0.26
5 8.43e-005 8 8203 111.75 5.27e-001 4 18 0.22 5.69e-006 8 14 0.28
1 8.36e-005 5 11526 116.70 2.52e-005 20 7 0.27 1.43e-005 5 16 0.16
2 7.79e-005 5 10656 108.14 2.87e-005 20 9 0.29 6.99e-006 5 16 0.15
3 1.06e-004 5 11735 117.70 2.06e-005 20 9 0.39 8.30e-006 5 255 1.81
4 1.59e-004 5 8740 87.96 4.91e-005 20 9 0.34 8.05e-006 5 14 0.14
5 8.26e-005 5 11125 110.74 6.69e-005 20 14 0.41 1.06e-005 5 541 4.42

Table 2: BCD vs ALS vs ALSBCD for CP low rank decomposition

No. Deviation Rank Iter Time
SR=30%(70% missing data)

1 1.538e-004 5 13820 91.00
2 1.575e-004 4 9858 65.38
3 2.622e-004 4 9667 62.02
4 1.410e-004 6 14700 92.64
5 4.180e-004 4 11161 75.46

SR=60%(40% missing data)
1 7.056e-005 5 16649 111.08
2 7.608e-005 4 11159 74.27
3 1.621e-004 6 10529 70.15
4 5.812e-005 6 17917 115.55
5 1.827e-004 4 11153 73.95

Table 3: CP low-rank Completion

No. Deviation Rank Iter Time
SR=30%(70% missing data)

1 1.324e-001 (6,5,6) 8135 177.13
2 2.895e-002 (6,5,5) 16307 354.24
3 3.103e-002 (3,3,4) 19462 397.20
4 3.892e-002 (4,4,6) 12495 266.51
5 2.371e-002 (4,6,4) 20234 434.07

SR=60%(40% missing data)
1 1.715e-002 (3,4,4) 24316 489.06
2 1.572e-002 (7,5,4) 16732 315.63
3 9.815e-003 (4,3,5) 14372 324.10
4 1.524e-002 (4,3,3) 22248 486.58
5 2.505e-002 (5,5,3) 14877 395.43

Table 4: Tucker low-rank Completion

402 X. GAO, B. JIANG AND S. TAO

No. Time Deviation Time Deviation
SR=30%(70% missing data)

Tucker Completion FaLRTC
1 395.04 1.217e-002 0.46 1.211e-002
2 414.51 1.535e-002 0.34 1.304e-002
3 370.89 1.205e-002 0.37 9.061e-003
4 563.35 1.049e-002 0.37 1.054e-002
5 451.35 9.879e-003 0.35 9.236e-003

SR=70%(30% missing data)
Tucker Completion FaLRTC

1 448.82 4.558e-002 0.61 9.347e-002
2 236.81 5.278e-002 0.63 1.421e-001
3 466.32 6.797e-002 0.60 3.873e-001
4 375.61 6.041e-002 0.70 2.996e-001
5 310.64 5.724e-002 0.61 3.073e-001

Table 5: Tucker low-rank Completion vs FaLRTC

Type of Ori. No. Deviation Rank Iter Time Deviation Rank Iter Time
SR=30%(70% missing data)

CP Completion Tucker Completion

CP
low rank
structure

1 1.194e-003 4 2122 4.55 2.377e-001 (6,7,6) 12156 323.38
2 2.139e-003 4 3469 7.26 2.864e-001 (4,5,6) 19206 513.46
3 1.895e-003 4 3087 6.45 3.100e-001 (7,5,5) 11192 307.2

Tucker
low rank
structure

1 1.193e-001 6 1757 3.96 3.038e-002 (9,8,9) 13751 367.07
2 2.997e-001 5 250 0.57 6.053e-002 (6,9,8) 13927 372.72
3 7.678e-002 7 4878 10.42 2.473e-002 (7,7,5) 16527 442.68

SR=60%(40% missing data)

CP
low rank
structure

1 6.393e-004 4 2989 6.33 1.860e-001 (7,9,6) 10074 262.64
2 1.083e-003 5 2043 4.38 2.247e-001 (5,5,3) 11803 338.47
3 8.944e-004 4 2989 6.54 3.056e-001 (5,3,4) 11227 303.99

Tucker
low rank
structure

1 4.197e-002 7 654 1.48 1.391e-002 (6,8,6) 17823 476.39
2 3.208e-002 7 1881 4.10 7.917e-003 (6,7,5) 20768 556.28
3 6.877e-002 6 1006 2.18 9.922e-003 (9,6,8) 13953 443.61

Table 6: CP Completion vs Tucker Completion

Xiang Gao
Department of Industrial and Systems Engineering
University of Minnesota, Minneapolis
MN 55455, USA
E-mail address: gaoxx460@umn.edu

Bo Jiang
Research Center for Management Science and Data Analytics
School of Information Management and Engineering
Shanghai University of Finance and Economics
Shanghai 200433, China
E-mail address: isyebojiang@163.com

Shaozhe Tao
Department of Industrial and Systems Engineering
University of Minnesota, Minneapolis
MN 55455, USA
E-mail address: taoxx120@umn.edu

