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where ∥x∥1 =
∑n

i=1 |xi| is the l1-norm of x. Problem (SSR) is generalized to the matrix
space by utilizing the rank of a matrix instead of ∥ · ∥0, named as low-rank matrix recovery:

min
X∈Rn1×n2

rank(X) s.t. A(X) = A(W ), (LMR)

where W ∈ Rn1×n2 is the original low-rank matrix to be recovered, and A : Rn1×n2 → RM

is a given linear transformation. Analogous to problem (SSR), problem (LMR) is also NP-
hard ( [8,21]) and its popular convex relaxation was proposed by Fazel, Hindi and Boyd [11],
named as nuclear norm minimization:

min
X∈Rn1×n2

∥X∥∗ s.t. A(X) = A(W ), (NNM)

where ∥X∥∗ is the nuclear norm of the matrix X, i.e., the sum of its singular values.
It has been shown that if the measurement matrix A (respectively, the linear trans-

formation A) in the constraints satisfies some special conditions, which are called exact
recovery conditions, one can obtain a solution to the original problem (SSR) (respectively,
problem (LMR)) via its relaxation (l1-min) (respectively, problem (NNM)). In other words,
problems (SSR) and (LMR) are equivalent to their relaxations (l1-min) and (NNM), respec-
tively. Particularly, for Gaussian random matrices or transformations, these conditions can
be met with high probability whenever the number of the measurements is large enough.
There are mainly three kinds of the exact recovery conditions: the null space property, the
s-goodness condition and the restricted isometry property.

One exact recovery condition is the null space property, which has been studied in the
last years [25, 26, 31, 32]. The null space property is a necessary and sufficient condition
for the solution of problem (l1-min) (respectively, problem (NNM)) to coincide with the
solution of problem (SSR) (respectively, problem (LMR)) in an affine space. It characterizes
a particular property of the null-space of the linear map.

s-goodness condition is the other one exact recovery condition. Juditsky and Nemirovski
[14] first established necessary and sufficient conditions for a sensing matrix to be “s-good”
to allow for the equivalence between problem (l1-min) and problem (SSR), which comes from
the optimal condition in term of the optimization technique. Then, based on the singular
value decomposition of a matrix and the partition technique, Kong et al. [17, 18] extended
s-goodness conditions to the matrix case. They also demonstrated that these characteristics
lead to verifiable sufficient conditions for exact s-rank matrix recovery and to computable
upper bounds on those s, for which a given linear transformation is s-good.

The third popular exact recovery condition is the restricted isometry property (RIP).
Restricted isometry constant δr of a matrix was first introduced by Candés and Tao [6].
Further works for RIP in CS were studied in [2,5,7,9]. When it comes to the matrix case, the
RIP condition has been extended from those results in CS [4,15,19,22,30]. Recently, Oymak
et al. [27] used a key singular value inequality to extend several classes of recovery conditions,
from vectors to matrices in a simple and transparent way from a broad perspective. And
lately, Cai and Zhang [3] established sharp RIP conditions for sparse signal and low-rank
matrix recovery. The RIP condition which guarantees the equivalence between problem
(LMR) and its nonconvex relaxation was investigated in [16,39].

In modern world, the structure of data we encounter becomes more and more complex.
Compared with the vector and matrix representations, utilizing tensors to represent the
signals or images with high dimensional data can be more convenient for modeling and
dealing with in many specific problems. Hence, some researchers begin to study the similar
low-rank tensor recovery problem. In 2009, Liu et al. [20] first introduced the trace norm
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for tensors and proposed a method for solving the low-rank tensor completion problem.
Later, by using the n-rank of a tensor, Gandy et al. [12] considered the low-n-rank tensor
recovery, denoted by LTR, which is more general than the one in [20]. They introduced a
tractable convex relaxation of the n-rank model and proposed efficient algorithms to solve
this problem numerically. More recently, several efficient methods for solving LTR were
proposed, for example, tensor-HC method [33], fixed point iterative method [37], splitting
augmented Lagrangian method [36], hard thresholding iterative algorithm [40], and other
methods [34, 35]. However, there are little investigation on the theory of the successful
recovery. In the recent years, researchers have studied how many random measurements are
needed to guarantee the successful recovery by LTR and its convex relaxation, and obtained
some amazing results [13, 23, 29, 35]. To some extent, their work gave theoretical guidance
to the application. However, there are few studies on the equivalence between LTR and its
convex relaxation. In this paper, we will focus on this issue and explore what conditions can
guarantee the equivalence. In 2012, we discussed this topic and obtained some preliminary
results [38]; and this paper is the latest revision.

The organization of this paper is as follows. In the next section, we first introduce
some preliminary knowledge, then propose the model of LTR and its convex relaxation.
In Sections 3, we discuss the null space property for the equivalence between LTR and its
relaxation. The s-n-good condition is explored in Section 4, and we also use the quantity of
the s-n-goodness to measure the distance between the original tensor to be recovered and
the υ-optimal solution of the convex relaxation problem. In Section 5, we establish a sharp
RIP condition, which is the extension of that in [3]. The relationship among the three exact
recovery conditions are given in Section 6; and conclusions are given in the last section.

2 Preliminaries

Throughout this paper, we denote the tensor space by T := Rn1×n2×...×nN and an N -th
order tensor by X ∈ T. The inner product of two tensors is defined as

⟨X ,Y⟩ =
n1∑

j1=1

n2∑
j2=1

· · ·
nN∑

jN=1

xj1,j2,...,jN yj1,j2,...,jN

and the corresponding Frobenius-norm is ∥X∥F =
√
⟨X ,X⟩. In particular, when N = 2,

the Frobenius norm of a matrix X ∈ Rn1×n2 is ∥X∥F :=
√
trace(XTX).

We will use the notations of fibers and unfoldings given in [12]. The mode-i fibers
are all vectors xj1...ji−1:ji+1...jN obtained by fixing the indexes of {j1, . . . jN}\ji, which are
analogue of matrix rows and columns. The mode-i unfolding of X ∈ T, denoted by X<i>,
arranges the mode-i fibers to be the columns of the resulting matrix. The tensor element
(j1, j2, . . . , jN ) is mapped to the matrix element (ji, l), where l = 1 +

∑N
k=1, k ̸=i(jk − 1)Lk

with Lk =
∏k−1

j=1, j ̸=i nj , which infers X<i> ∈ Rni×Ji , where Ji =
∏N

k=1,k ̸=i nk. The n-rank
of a tensor X ∈ T is defined by

n-rank(X ) = rank(X<1>), (rankX<2>), . . . , (rankX<N>).

The mode-i product of a tensor X ∈ T by a matrix U ∈ RJi×ni , denoted by X ×i U ,
is a (n1 × · · · × ni−1 × Ji × ni+1 × · · · × nN )-tensor of which the entries are given by
(X ×i U)k1...ki−1jiki+1...kN =

∑
ki
xk1...ki−1kiki+1...kNujiki .

It is easy to see that the mode-i unfolding of a tensor X ∈ T can be expressed as a linear
operator. Hence, for any i ∈ {1, 2, . . . , N}, we define a linear operator by

Bi : T → Rni×Ji with Bi(X ) := X<i>.
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It is not difficult to find that the conjugate of Bi is the refolding of a matrix into a tensor
by the mode-i for any i ∈ {1, 2, . . . , N}.

Proposition 2.1. For any i ∈ {1, 2, . . . , N}, by defining the refolding of a matrix into a
tensor by the mode-i to a linear transformation Gi, i.e., Gi(X<i>) = X , we have B∗

i = Gi,
where B∗

i denotes the conjugate of Bi.

Utilizing Proposition 2.1, we have the following result directly.

Lemma 2.2. Let I : T → T be the identity operator in the Tensor Hilbert space, then
B∗

i ◦ Bi = I , where ◦ denotes the composition of two operators.

Now, by extending the definition of an r-rank matrix, we try to character a tensor with
low n-rank.

Definition 2.3. We say a tensor X is r-n-rank, if its every mode-i unfolding Bi(X ) is an
r-rank matrix, i.e., rank(Bi(X )) ≤ r.

Next, we consider the model of low-rank tensor recovery. Suppose that W is the true
data to be restored and it has low n-rank, one can observe the linear measurements A (W),
where A : T → RM is a given linear transformation. The target is to recover the true data
W from the known facts. Replacing rank(·) of a matrix by the n-rank of a tensor, the model
of LTR is extended from problem (LMR) naturally:

min
X∈T

n-rank(X ) s.t. A (X ) = A (W). (LTR)

This model is also proposed in [23] and they illustrated this model can successfully recoverW
with probability one whenever the number of measurements M is large enough, i.e., problem
(LTR) recovers every r-n-rank tensor X with probability one whenever M ≥ (2r)N+2rnN+
1. Also, Mu et. al. defined the recoverability of the original data W by problem (LTR)
in [23], which we will use in the consequent discussions.

Definition 2.4. [Definition 1 in [23]] We call W recoverable by problem (LTR) if the
following set is empty:

{X ′ ̸= W | A (X ′) = A (W), n-rank(X ′) ≼RN
+
n-rank(W)}.

Problem (LTR) is a difficult non-convex multiple objective programming, however, it has
a convex relaxation, which is much more tractable:

min
X

1

N

N∑
i=1

∥Bi(X )∥∗ s.t. A (X ) = A (W). (LTP)

It is also proved that problem (LTP) recovers the underlying tensor W when the number of
measurements M is sufficiently large [35].

In the following, we will explore what conditions of A can guarantee the equivalence
between problems (LTR) and (LTP), including the null space property, the s-n-goodness
condition and the restricted isometry property. And the equivalence we say means that an
r-n-rank tensor W is the unique minimizer of both problem (LTP) and problem (LTR).
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3 Null Space Property

Null space property (NSP) is one basic condition for the equivalence between problems
(LMR) and (NNM). The following lemma is one of the classic results:

Lemma 3.1 (Lemma 6 in [25]). One can recover any r-rank matrix W via problem (NNM)
if and only if the NSP holds, i.e., 2∥W∥r < ∥W∥∗ for all W ∈ Null(A)\{0}, where ∥W∥r
is the sum of the r largest singular values of matrix W .

Now, we extend the above result to the tensor case.

Theorem 3.2. Let A : T → RM be a linear transformation. If

1

N

N∑
i=1

(∥Bi(Y)∥∗ − 2∥Bi(Y)∥r) > 0 (3.1)

holds for any Y ∈ Null(A )\{0}, then one can recover any r-n-rank tensor W by solving
problem (LTP).

Proof. It is obvious thatW+Y is a feasible point of problem (LTP) for any Y ∈ Null(A )\{0},
where Null(A ) := {X : A (X ) = 0}.

If W ∈ T is an r-n-rank tensor, then Bi(W) is r-rank for every i ∈ {1, 2, . . . , N}. Thus,
by the proof of Lemma 6 in [25], we have

∥Bi(W + Y)∥∗ ≥ ∥Bi(W)∥∗ + ∥Bi(Y)∥∗ − 2∥Bi(Y)∥r. (3.2)

Furthermore, combining (3.2) with (3.1), we obtain

1

N

N∑
i=1

∥Bi(W + Y)∥∗ >
1

N

N∑
i=1

∥Bi(W)∥∗. (3.3)

Hence, W is the unique solution to problem (LTP).

Note that Theorem 3.2 gives a sufficient condition for a low n-rank tensor to be the
unique optimal solution of problem (LTP). However, it is not clear whether this low n-rank
tensor is recoverable by problem (LTR) under the null space property (3.1). The following
theorem is to give an answer, and we can see that it needs more strict condition to guarantee
the equivalence between problems (LTR) and (LTP).

Theorem 3.3. Let A : T → RM be a linear transformation and W ∈ T be an r-n-rank
tensor. If for every i ∈ {1, 2, . . . , N},

∥Bi(Y)∥∗ − 2∥Bi(Y)∥r > 0 (3.4)

holds for any Y ∈ Null(A )\{0}, then W is the unique optimal solution to problem (LTP).
What’s more, W is recoverable by problem (LTR). In other words, problems (LTR) and
(LTP) have the same unique minimizer.

Proof. First, it’s easy to see that (3.4) is more strict than (3.1). Thus, W is the unique
solution to problem (LTP) since it’s an r-n-rank tensor.

Second, to prove W is recoverable by problem (LTR), we should prove that

{X ′ ̸= W | A (X ′) = A (W), n-rank(X ′) ≼RN
+
n-rank(W)} = ∅.
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Suppose that there exists an X ′ ̸= W satisfying that A (X ′) = A (W) and n-rank(X ′) ≼RN
+

n-rank(W), which means for every i ∈ {1, 2, . . . , N},

A ◦ B∗
i (Bi(X ′)) = A ◦ B∗

i (Bi(W)) and rank(Bi(X ′)) ≤ rank(Bi(W)) ≤ r.

Note that for every i ∈ {1, 2, . . . , N}, it’s easy to verify that

Null(A ◦ B∗
i ) = {Bi(Y) : Y ∈ Null(A)}.

So, based on Lemma 3.1, if (3.4) holds, then for every i ∈ {1, 2, . . . , N}, both Bi(W) and
Bi(X ′) are the optimal solutions to the following problem:

min
X

∥X∥∗ s.t. (A ◦ B∗
i )(X) = (A ◦ B∗

i )(Bi(W)),

but Bi(W) ̸= Bi(X ′). This contradicts that the above problem has one unique minimizer.

4 s-n-Good Condition and the Error Bound

4.1 s-n-good condition

Based on the convex optimization technique, s-good condition has been proposed to be a
sufficient and necessary condition for the equivalence between problems (NNM) and (LMR)
[17, 18]. Given an integer 1 ≤ s ≤ min{n1, n2}, a linear transformation A : Rn1×n2 → RM

is called s-good if for every s-rank matrix W ∈ Rn1×n2 , W is the unique optimal solution
to the nuclear norm optimization (NNM), i.e., one can recover any s-rank matrix W by
problem (NNM). Furthermore, if A is s-good, then W is the unique solution to problem
(LMR), i.e., the solution to problem (LMR) can be exactly recovered from problem (NNM).

Now, we try to explore a generalization of the s-good condition to the tensor case. First,
we write the Lagrangian function of problem (LTP):

L(X , y) =
1

N

N∑
i=1

∥Bi(X )∥∗ − yT (A (X )− A (W)).

Note that W is the optimal solution to problem (LTP) if and only if

O ∈ ∂XL(X , y)|X=W ,

where O ∈ T with its entries being all zeros, and ∂XL is the subdifferentiation of Lagrangian
function L(·) with respect to X . Let gi(X ) = ∥Bi(X )∥∗, which can be viewed as the
composition of the operator ∥ · ∥∗ and the operator Bi. Thus, we have

∂X gi(X ) = B∗
i ∂Bi(X )∥Bi(X )∥∗ and ∂XL(X , y) =

1

N

N∑
i=1

∂X gi(X )− A ∗y.

As it is known, for a matrix Z ∈ Rn1×n2 with its SVD being Z = Un1×sZsV
T
n2×s, where

the columns of Un1×s (respectively, Vn2×s) are orthogonal, Zs = Diag(σ(Z)) and σ(z) =
(σ1(Z), . . . , σs(Z))T , the subdifferentiation of the nuclear norm is:

∂∥Z∥∗ =

{
Un1×sV

T
n2×s +M :

Z and M have orthogonal row
and column spaces, and ∥M∥ ≤ 1

}
,
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where ∥ · ∥ means the matrix operator norm. Hence, if W is s-n-rank, then the subdifferen-
tiation of gi(X ) at point W is given by

∂gi(X )|X=W =

{
B∗

i (UiV
T
i +Mi) :

Bi(W) = UiΣiV
T
i , UT

i Mi = 0,MiVi = 0,
and ∥Mi∥ ≤ 1

}
.

Therefore, s-n-rank tensor W is the optimal solution to problem (LTP) if and only if there
exists y ∈ RM such that

O =
1

N

N∑
i=1

B∗
i (UiV

T
i +Mi)− A ∗y, (4.1)

where Ui, Vi, Mi are defined as the above.
Note that

A ∗y = (B∗
i ◦ Bi)A

∗y = B∗
i (A ◦ B∗

i )
∗y =

1

N

N∑
i=1

B∗
i (A ◦ B∗

i )
∗y,

equation (4.1) turns out to be

N∑
i=1

B∗
i [(A ◦ B∗

i )
∗y − (UiV

T
i +Mi)] = O.

Thus, if for every i ∈ {1, · · · , N}, there exists a vector y ∈ RM such that

(A ◦ B∗
i )

∗y = UiV
T
i +Mi, (4.2)

then, s-n-rank tensor W can be recovered by problem (LTP). And a sufficient condition for
(4.2) to hold is that linear transformation A ◦B∗

i : Rni×Ji → RM is s-good for every index
i ∈ {1, 2, . . . , N}. Therefore, we define the s-n-goodness in tensor case:

Definition 4.1. Let s be an integer satisfying 0 ≤ s ≤ r = min1≤i≤N{ni}. We call a linear
transformation A : T → RM is s-n-good, if A ◦ B∗

i : Rni×Ji → RM is s-good for every
index i ∈ {1, 2, . . . , N}.

Utilizing this definition, we can obtain the equivalence between the original tensor prob-
lem (LTR) and its convex relaxation (LTP).

Theorem 4.2. Let A : T → RM be a linear transformation and s be an integer satisfying
0 ≤ s ≤ r = min1≤i≤N{ni}. If A is s-n-good, then one can recover any s-n-rank tensor W
by problem (LTP). Furthermore, W is also recoverable by problem (LTR).

Proof. The proof is similar to the one of Theorem 3.3. By the definition of s-n-goodness of a
linear transformation A and the assumption that rank(Bi(W)) ≤ s for all i ∈ {1, 2, . . . , N},
it is easy to see that for every i ∈ {1, 2, . . . , N}, Bi(W) is the unique solution to the following
problem:

min
X∈Rni×Ji

∥X∥∗ : s.t. A ◦ B∗
i (X) = A ◦ B∗

i (Bi(W)). (4.3)

Thus, one can recover any s-n-rank tensorW by problem (LTP). Otherwise, there exists an s-

n-rank tensorW ′ ̸= W such that A (W) = A (W ′) and
∑N

i=1 ∥Bi(W ′)∥∗ ≤
∑N

i=1 ∥Bi(W)∥∗,
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which means there must exist an index i0 such that Bi(W ′) is r-rank and ∥Bi0(W ′)∥∗ ≤
∥Bi0(W)∥∗. This contradicts that Bi0(W) is the unique solution to problem (4.3) for i = i0.

Suppose that W is not recoverable by problem (LTR), and there exists an X ′ ̸= W
satisfying A (X ′) = A (W) and rank(Bi(X ′)) ≤ rank(Bi(W)) ≤ s. Using the s-n-goodness
of A , we can obtain that Bi(X ′) is the unique solution to problem (4.3). This contradicts
that Bi(W) is the unique solution to problem (4.3). Hence, W is recoverable by (LTR).

4.2 Error bound

In [17], the authors first introduced two quantities, γs(A) and γ̂s(A), which were defined as
follows:

Definition 4.3. Let A : Rn1×n2 → RM be a linear transformation and s be an integer
satisfying 0 ≤ s ≤ r = min{n1, n2}. Then,

(i) γs(A) is the infimum of γ ≥ 0 such that for every matrix X ∈ Rn1×n2 with SVD
X = Un1×sV

T
n2×s(i.e., s nonzero singular values, all equal to 1), there exists a vector

y ∈ RM such that

A∗y = UDiag(σ(A∗y))V T ,

where U = [Un1×s Un1×(r−s)], V = [Vn2×s Vn2×(r−s)] are orthogonal matrices, and

σi(A∗y)

{
= 1, if σi(X) = 1,
∈ [0, γ], if σi(X) = 0

for every i ∈ {1, 2, . . . , r}. If for some X as above there does not exist such y, we set
γs(A) = ∞.

(ii) γ̂s(A) is the infimum of γ ≥ 0 such that for every matrix X ∈ Rn1×n2 with s nonzero
singular values, all equal to 1, there exists a vector y ∈ RM such that

∥A∗y −X∥ ≤ γ.

If for some X as above there does not exist such y, we set γ̂s(A) = ∞.

They used γs(A) and γ̂s(A) to characterize the s-goodness of A, i.e., A is s-good if and
only if γs(A) < 1 (or γ̂s(A) < 1

2 ). Therefore, using this result and Definition 4.1, we can
obtain the following theorem:

Theorem 4.4. Let A : T → RM be a linear transformation and s be an integer satisfying
0 ≤ s ≤ r = min1≤i≤N{ni}. Then, A is s-n-good if and only if γs(A ◦B∗

i ) < 1 (or γ̂s(A ◦
B∗

i ) <
1
2 ) for every i ∈ {1, 2, . . . , N}.

Also, γs(A) and γ̂s(A) could be used to measure the error bound between the solution of
problem (LMR) and the υ-optimal solution to problem (NNM) in [17]. In this subsection,
we will try to measure the error bound between the solution of problem (LTR) and the
υ-optimal solution to problem (LTP).

For the sake of the proof, we first state one important property of γ̂s(A) (see [17, Theorem
2.7]:

Property 4.5. γ̂s(A ) = maxX{∥X∥s : ∥X∥∗ ≤ 1, A(X) = 0}, where ∥X∥s is the sum of
the s largest singular values of X.
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In what follows, let the singular value decomposition (SVD) of the matrix W ∈ Rn1×n2

be W = UDiag(σ(W ))V T , where U and V are both orthogonal matrices, m = min{n1, n2},
σ(W ) = (σ1(W ), . . ., σm(W ))T and σ1(W ) ≥ . . . ≥ σm(W ) ≥ 0 are nonzero singular values
of W in nonincreasing order. Let W s be the best s-rank approximation of W , which is
actually

W s = UDiag((σ1(W ), . . . , σs(W ), 0 . . . , 0)T )V T .

Now, we give the error bound in the low-n-rank tensor recovery problem.

Theorem 4.6. Let A : T → RM be a linear transformation and s be an integer satisfying
0 ≤ s ≤ r = min1≤i≤N{ni}. And let t = min{2s, r} and A be 2s-n-good. Suppose that W
is an optimal solution of problem (LTR) and X is a υ-optimal solution to problem (LTP),
meaning that

A (X ) = A (W) and
1

N

N∑
i=1

∥Bi(X )∥∗ ≤ Opt + υ,

where Opt is the optimal value of (LTP). We can obtain

1

N

N∑
i=1

∥Bi(X )− Bi(W)∥∗ ≤ 1

N(1− 2γ̂(A ))

N∑
i=1

[υ + 2∥Bi(W)−W s
i ∥∗],

where W s
i is the best s-rank approximation of Bi(W) and γ̂(A ) := maxi{γ̂t(A ◦ Bi)}.

Proof. Set Z := X −W. For every i ∈ {1, 2, . . . , N}, let Bi(W) have structure as Bi(W) =
W s

i +W c
i , where

W s
i = Ui

(
Dis 0
0 0

)
V T
i and W c

i = Ui

(
0 0
0 Di2

)
V T
i ;

and Bi(X ) has the form as

Bi(X ) = Ui

(
Xi1 Xi2

Xi3 Xi4

)
V T
i .

Then, similar to the matrix case, we can write Bi(Z) = Zs
i + Zc

i , where

Zs
i = U

(
Xi1 −Dis Xi2

Xi3 0

)
V T and Zc

i = U

(
0 0
0 Xi4 −Di2

)
V T .

Hence, we have rank(Zs
i ) ≤ rank((Xi1 − Dis, Xi2)) + rank(Xi3) ≤ 2s, and Zs

i
TW c

i = 0
and W s

i
TZc

i = 0. So, let t = min{2s, r}, then rank(Zs
i ) ≤ t.

Since X is a υ-optimal solution to problem (LTP), we have

1
N

∑N
i=1 ∥Bi(W)∥∗ + υ

≥ Opt+ υ ≥ 1
N

∑N
i=1 ∥Bi(W + Z)∥∗

≥ 1
N

∑N
i=1 ∥W s

i + Bi(Z)− Zs
i + Zs

i + Bi(W)−W s
i ∥∗

≥ 1
N

∑N
i=1[∥W s

i + Bi(Z)− Zs
i ∥∗ − ∥Zs

i + Bi(W)−W s
i ∥∗]

= 1
N

∑N
i=1[∥W s

i ∥∗ − ∥Bi(W)−W s
i ∥∗ + ∥Bi(Z)− Zs

i ∥∗ − ∥Zs
i ∥∗],
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where the last equality holds because of Lemma 2.3 in [30]. Thus,

1

N

N∑
i=1

∥Bi(Z)− Zs
i ∥∗ ≤ 1

N

N∑
i=1

[∥Zs
i ∥∗ + 2∥Bi(W)−W s

i ∥∗] + υ.

Moreover, by using the fact that A ◦ B∗
i (Bi(Z)) = 0 and Property 4.5, we have

∥Bi(Z)∥t ≤ γ̂t(A ◦ B∗
i )∥Bi(Z)∥∗. Also it’s easy to verify that ∥Zs

i ∥∗ ≤ ∥Bi(Z)∥t. Thus,
we have

∥Zs
i ∥∗ ≤ ∥Bi(Z)∥t ≤ γ̂t(A ◦ B∗

i )∥Bi(Z)∥∗.

Furthermore, we can obtain that

1
N

∑N
i=1 ∥Bi(Z)∥∗

≤ 1
N

∑N
i=1[∥Zs

i ∥∗ + ∥Bi(Z)− Zs
i ∥∗]

≤ 1
N

∑N
i=1[2γ̂t(A ◦ B∗

i )∥Bi(Z)∥∗ + 2∥Bi(W)−W s
i ∥∗ + υ],

which is equivalent to

1
N

∑N
i=1(1− 2γ̂t(A ◦ B∗

i ))∥Bi(Z)∥∗ ≤ 1
N

∑N
i=1 2∥Bi(W)−W s

i ∥∗ + υ.

Since γ̂(A ) = maxi{γ̂t(A ◦ Bi)} and A is 2s-n-good, which means γ̂(A ) < 1
2 , we can get

the desired conclusion.

When N = 2, since B1(X ) = X and B2(X ) = XT , we have

1

2

2∑
i=1

∥Bi(X )∥∗ = ∥X∥∗ and
1

2

2∑
i=1

∥Bi(X )− Bi(W)∥∗ = ∥X −W∥∗.

Hence, we have the following corollary in the matrix case.

Corollary 4.7. Let A : Rn1×n2 → RM be a linear transformation and s be an integer
satisfying 0 ≤ s ≤ r = min{n1, n2}. And let t = min{2s, r} and γ̂t(A) < 1

2 (or γt(A) < 1).
Also let W ∈ Rn1×n2 be the unique solution of problem (LMR). Suppose that X is a υ-optimal
solution to problem (NNM), meaning that

A(X) = A(W ) and ∥X∥∗ ≤ Opt + υ,

where Opt is the optimal value of problem (NNM). We have

∥X −W∥∗ ≤ 1 + γt(A)

1− γt(A)
[υ + 2∥W −W s∥∗].

What is remarkable is that this corollary gets an error bound in the matrix case without
the “Block Assumption” which is necessary for deriving the result in [17].

5 Restricted Isometry Property

First we recall the definition of the restricted isometry constant (RIC) in the context of
matrix space:
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Definition 5.1. The restricted isometry constant δr of a linear transformationA : Rn1×n2 →
RM is defined as the smallest positive constant such that

(1− δr)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δr)∥X∥2F (5.1)

holds for all r-rank X ∈ Rn1×n2 .

Cai and Zhang explored the sharp RIP condition in [3], which is the latest result of RIC
discussed in the literature. The meaning of ‘sharp’ contains the following two aspects:

• If W is an r-rank matrix, then

δtr <
√
(t− 1)/t for some t ≥ 4/3 (5.2)

can guarantee that W is the unique optimal solution of both problem (NNM) and
problem (LMR).

• For any ϵ > 0, δtr <
√
(t− 1)/t + ϵ is not sufficient to guarantee the exact recovery

of all r-rank matrices for large r, i.e., there exists an r-rank matrix W such that W is
not the minimizer of problem (NNM).

Next, we will investigate the similar results in tensor space. First, we extend Definition
5.1 to the tensor case, which also appeared in [28] and [29].

Definition 5.2. Let r = (r1, . . . , rN ). The restricted isometry constant (RIC) of the linear
transformation A : T → RM , αr, is defined as the smallest positive constant such that

(1− αr)∥X∥2F ≤ ∥A (X )∥22 ≤ (1 + αr)∥X∥2F (5.3)

holds for all tensors X ∈ T of n-rank at most r, i.e., rank(X<i>) ≤ ri for all i ∈ {1, . . . , N}.

It has been proved that for δ, ϵ ∈ (0, 1), a random draw of a Gaussian measurement map
A satisfies αr ≤ δ with probability at least 1− ϵ whenever the number of measurements M
is large enough [29].

Next, we will discuss how large δ is to make αr ≤ δ be the sharp RIP condition for the
equivalence between problems (LTP) and (LTR). Before giving the main result and proof, we
propose the following two lemmas which are useful in the consequent analysis: the first one
is a corollary of Lemma 1.1 in [3]; and the second one characters the relationship between
the best rank-r approximation Y r of a matrix Y and the rest part Y − Y r.

Lemma 5.3. For a positive number η and a positive integer s, define the polytope T (η, s) ⊂
Rm×n by

T (η, s) = {X ∈ Rm×n : ∥X∥ ≤ η, ∥X∥∗ ≤ sη},

where ∥X∥ means the spectral norm of a matrix, i.e., its largest singular value. For any
X ∈ Rm×n, define the set of low-rank matrices U(η, s,X) ⊂ Rm×n by

U(η, s,X) = {Y : rank(Y ) ≤ s, ∥Y ∥ ≤ η, ∥Y ∥∗ = ∥X∥∗}.

Then, any X ∈ T (η, s) can be expressed as X =
∑M ′

i=1 λiZi, where 0 ≤ λi ≤ 1,
∑M ′

i=1 λi =
1,and Zi ∈ U(η, s,X).

Proof. Suppose the singular value decomposition of X is X =
∑m

i=1 σiuiv
T
i , where σi are

in descending order. Let vector h := (σ1, . . . , σm)T , then we have rank(X) = ∥h∥0, ∥X∥ =
∥h∥∞, and ∥X∥∗ = ∥h∥1. Using Lemma 1.1 in [3], the result is obtained directly.
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Lemma 5.4. For any matrix Y ∈ Rn1×n2 , let the best rank-r approximation of Y be Y r.
Then, Y − Y r can be divided into the sum of two parts: Y (1) + Y (2), which satisfy that for
some t ≥ 4/3,

rank(Y (1)) ≤ r(t− 1) and ∥Y (2)∥∗ ≤ ∥Y r∥∗ −
rank(Y (1))

r(t− 1)
∥Y r∥∗.

Proof. Let n = min{n1, n2}. Suppose that the singular value decomposition of Y is Y =∑n
j=1 σjujv

T
j , where the singular values σj are in descending order. Since Y r is the best

rank-r approximation of Y , we have

Y r =

r∑
j=1

σjujv
T
j , Y − Y r =

n∑
j=r+1

σjujv
T
j , and ∥Y − Y r∥∗ ≤ ∥Y r∥∗.

Set η = ∥Y r∥∗/r. We divide Y − Y r into two parts, Y − Y r = Y (1) + Y (2), where

Y (1) =
∑

j≥r+1,σj>η/(t−1) σjujv
T
j , Y (2) =

∑
j≥r+1,σj≤η/(t−1) σjujv

T
j .

Then, ∑
j≥r+1,σj>η/(t−1)

σj = ∥Y (1)∥∗ ≤ ∥Y − Y r∥∗ ≤ ∥Y r∥∗ = ηr,

which shows that rank(Y (1)) ≤ r(t− 1). Since ∥Y (2)∥ ≤ η
t−1 , we have

∥Y (2)∥∗ = ∥Y − Y r∥∗ − ∥Y (1)∥∗ ≤ ∥Y r∥∗ −
rank(Y (1))

r(t− 1)
∥Y r∥∗.

The proof is complete.

Now, we give the RIP condition in tensor case:

Theorem 5.5. Let A : T → RM be a linear transformation and W be an r-n-rank tensor.
For some constant t ≥ 4/3, suppose tr = (tr, · · · , tr) ∈ RN . If the RIC of A , αr, satisfies
αtr <

√
(t− 1)/t, then the unique minimizer of problem (LTP) is equal to the solution to

problem (LTR), which is exactly W.

Proof. The proof is stimulated by the approach in the proof of Theorem 1.1 in [3]. First,
for some constant t ≥ 4/3, we assume that tr is an integer. Otherwise, we set t′ = ⌈tr⌉/r,
where ⌈x⌉ represents the smallest integer which is equal to or greater than x, then t′ > t
and t′r is an integer, and hence,

αt′r = αtr <
√
(t− 1)/t <

√
(t′ − 1)/t′,

which can be deduced to the former case.
Based on Theorem 3.3, we only need to prove that for all Y ∈ Null(A )\{0}, ∥Bi(Y)∥∗−

2∥Bi(Y)∥r > 0 for every i ∈ {1, . . . , N}.
Now, suppose that there exist Y ∈ Null(A )\{0} and an index i0 such that ∥Bi0(Y)∥∗−

2∥Bi0(Y)∥r ≤ 0. To make the symbols simple, we denote Bi0(Y) := Y . Set rank(Y (1)) = m
and η = ∥Y r∥∗/r. Then, utilizing Lemma 5.4, we have that for some t ≥ 4/3,

Y − Y r = Y (1) + Y (2), ∥Y (2)∥ ≤ η

t− 1
, and ∥Y (2)∥∗ ≤ (r(t− 1)−m)

η

t− 1
.
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We now apply Lemma 5.3 with s = r(t−1)−m. Then, Y (2) can be expressed as a convex

combination of low-rank matrices: Y (2) =
∑J

j=1 λjZj , where Zj is (r(t− 1)−m)-rank and
∥Zj∥ ≤ η

t−1 . Then,

∥Zj∥2F ≤ (r(t− 1)−m)∥Zj∥2 ≤ rη2

t− 1
=

∥Y r∥2∗
r(t− 1)

≤ ∥Y r∥2F
t− 1

≤ ∥Y r + Y (1)∥2F
t− 1

. (5.4)

Now for any µ > 0, denote D = Y r + Y (1) and Bj = D + µZj , then Bj is tr-rank and

Fj :=
∑J

j=1 λjBj − 1
2Bj = D + µY (2) − 1

2Bj = ( 12 − µ)D − 1
2µZj + µY. (5.5)

Thus,
∑m

j=1 λjBj − 1
2Bj − µY = ( 12 − µ)D − 1

2µZj is also a tr-rank matrix.
It is easy to prove that

m∑
j=1

λj∥A (B∗
i0(Fj))∥22 −

1

4

m∑
j=1

λj∥A (B∗
i0(Bj))∥22 = 0.

Then, by setting µ =
√

t(t− 1)− (t− 1), we can further obtain that

0 =

m∑
j=1

λj∥A (B∗
i0((

1

2
− µ)D − 1

2
µZj))∥22 −

1

4

m∑
j=1

λj∥A (B∗
i0(Bj))∥22

≤ (1 + αtr)
m∑
j=1

λj∥(
1

2
− µ)D − 1

2
µZj∥2F

−1

4
(1− αtr)

m∑
j=1

λj∥D + µZj∥2F

= (1 + αtr)
m∑
j=1

λj

(
(
1

2
− µ)2∥D∥2F +

1

4
µ2∥Zj∥2F

)

−1

4
(1− αtr)

m∑
j=1

λj(∥D∥2F + µ2∥Zj∥2F )

≤
(
(
2t− 1

2(t− 1)
µ2 − 2µ+

1

2
)αtr + (µ2 − 2µ)

)
∥D∥2F

< 0, (5.6)

where the first equality follows from A (B∗
i0
Y ) = A (Y) = 0, the first inequality follows

from the fact that (5.3) and B∗
i0
((12 −µ)(D)− 1

2µZj) and B∗
i0
(Bj) are tr-rank matrices, the

second inequality follows from (5.4), and the last inequality follows from αtr <
√
(t− 1)/t.

Note that (5.6) shows that 0 < 0, which is a contradiction. So the proof is complete.

Next, we will prove this RIP condition is sharp. In other words, for any ϵ > 0, αtr <√
(t− 1)/t + ϵ is not sufficient to guarantee the exact recovery of all r-n-rank tensors for

large r.

Theorem 5.6. Let t ≥ 4/3. For all ϵ > 0 and r ≥ 5/ϵ, set tr to be the same in Theorem
5.5, then there exists a linear transformation A satisfying αtr <

√
(t− 1)/t + ϵ and some

r-n-rank tensor W such that the minimizer of problem (LTP) is not equal to W.
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Proof. The proof is similar to that of Theorem 2.2 in [3], and the main approach is to con-
struct a linear transformation A satisfying αtr <

√
(t− 1)/t+ ϵ and an r-n-rank tensor W,

such that there exists another tensor Z satisfying A (Z) = A (W), but 1
N

∑N
i=1 ∥Bi(Z)∥∗ <

1
N

∑N
i=1 ∥Bi(W)∥∗, which means r-n-rank tensorW can not be recovered by problem (LTP).

Step 1: Construct a linear transformation A satisfying αtr <
√
(t− 1)/t+ ϵ

For any ϵ > 0 and r ≥ 5/ϵ, suppose that d1 = ((t− 1) +
√
t(t− 1))r and d is the largest

integer strictly smaller than d1. Define

X1 = S ×1 U
(1) ×2 U

(2) · · · ×N U(N),

where U(k) = (u
(k)
1 u

(k)
2 · · · u

(k)
nk ) is a unitary nk × nk matrix; and the element of S ∈ T is

given by

Si1···iN =


(r + dr2

d21
)−

1
2 , if 1 ≤ i1 = · · · = iN ≤ r,

(r + dr2

d21
)−

1
2 (− r

d1
), if r + 1 ≤ i1 = · · · = iN ≤ d,

0, otherwise,

then ∥X1∥F = 1. Define linear transformation A : T → RM by

A (X ) =

√
1 +

√
t−1
t (X − ⟨X1,X⟩X1).

Now, we prove that the RIC of A , αtr, satisfies αtr <
√
(t− 1)/t + ϵ. For all ⌈tr⌉-n-rank

tensor X , it holds that

∥A (X )∥22 =
(
1 +

√
(t− 1)/t

)
(∥X∥2F − |⟨X1,X⟩|2).

Furthermore, we have

∥A (X )∥22 ≤
(
1 +

√
t−1
t

)
∥X∥2F ≤

(
1 +

√
t−1
t + ϵ

)
∥X∥2F . (5.7)

Since X is ⌈tr⌉-n-rank, by Cauchy-Schwarz inequality, we have

0 ≤ |⟨X1,X⟩|2

≤ (r + dr2

d2
1
)−1

(
r + (⌈tr⌉ − r) r

2

d2
1

)
∥X∥2F

≤ d2
1+r2(t−1)+r

d2
1+d1r

· 1

1− r(d1−d)

d21+d1r

∥X∥2F

=
d2
1+r2(t−1)

d2
1+d1r

· (1 + r
d2
1+d1r

) · 1

1− r(d1−d)

d21+d1r

∥X∥2F

= 2
√
t− 1(

√
t−

√
t− 1)(1 + r

d2
1+d1r

) · 1

1− r(d1−d)

d21+d1r

∥X∥2F

≤ 2
√
t− 1(

√
t−

√
t− 1)(1 + 1

tr ) ·
1

1− 1
2r

∥X∥2F

≤ 2
√
t− 1(

√
t−

√
t− 1)(1 + 5

2r )∥X∥2F
≤ (2

√
t(t− 1)− 2(t− 1) + 5

2r )∥X∥2F ,
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where the third inequality follows from ⌈tr⌉ ≤ tr, the forth inequality follows from d1 ≥ r
since t ≥ 4/3 and d1 − d ≤ 1, and the last two inequalities follow from t ≥ 4/3. Therefore,

∥A (X )∥22 ≥

(
1−

√
t− 1

t
− ϵ

)
∥X∥2F . (5.8)

Using (5.7) and (5.8), we get αtr <
√
(t− 1)/t+ ϵ.

Step2: Construct W and Z
We construct W and Z by

W = S(W ) ×1 U
(1) ×2 U

(2) · · · ×N U(N), Z = S(Z) ×1 U
(1) ×2 U

(2) · · · ×N U(N),

where

S(W )
i1···iN =

{
1, if 1 ≤ i1 = · · · = iN ≤ r,
0, otherwise;

S(Z)
i1···iN =

{
r
d1
, if r + 1 ≤ i1 = · · · = iN ≤ d,

0, otherwise.

Note that both W and Z are r-n-rank and 0 = A (X1) = A (W−Z), which means A (W) =
A (Z). However, since d1 > d,

1

N

N∑
i=1

∥Bi(Z)∥∗ =
d

d1
r < r =

1

N

N∑
i=1

∥Bi(W)∥∗,

which implies W is not the minimizer of problem (LTP). The proof is complete.

Remark: When N = 2, the tensor space T = Rn1×n2×...×nN reduces to the matrix space
Rn1×n2 , and hence, Theorem 5.5 reduces to Proposition 3.1 in [3] in the noiseless matrix
case; while Theorem 5.6 reduces to Proposition 3.2 in [3] in the noiseless matrix case.

6 Relationship Among NSP, RIP and s-n-Goodness

In this section, we will discuss the relationship among the three exact recovery conditions:
the NSP, the s-n-good condition and the RIP. Based on the results in the aforementioned
sections, all these three conditions can guarantee the equivalence between problems (LTR)
and (LTP). However, the RIP condition is more strict than the other two from the proof of
Theorem 5.5; while the NSP condition is equivalent to the s-n-good condition.

Theorem 6.1. (NSP and s-n-good) Let A : T → RM be a linear transformation and
r be an integer satisfying 0 ≤ r ≤ R = min1≤i≤N{ni}. A is r-n-good if and only if
∥Bi(Y)∥∗ − 2∥Bi(Y)∥r > 0 holds for any Y ∈ Null(A )\{0}, ∀ i ∈ {1, 2, ..., N}.

Proof. From Theorem 4.4, A is r-n-good if and only if γ̂s(A ◦ B∗
i ) < 1

2 for every i ∈
{1, 2, . . . , N}. Based on (4.5), it is easy to obtain the equivalence between the r-n-goodness
and the NSP condition.

Theorem 6.2. Let A : T → RM be a linear transformation and r be an integer satisfying
0 ≤ r ≤ R = min1≤i≤N{ni}. Set tr = (tr, · · · , tr) ∈ RN . If the RIC of A , αr, satisfies

αtr <
√

t−1
t for some t ≥ 4/3, then
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(i) (RIP and NSP) for all i ∈ {1, 2, ..., N}, the following holds:

∥Bi(Y)∥∗ − 2∥Bi(Y)∥r > 0, ∀ Y ∈ Null(A )\{0}.

(ii) (RIP and s-n-good) A is r-n-good.

Proof. The relationship between RIP and NSP has been proved obviously through the proof
of Theorem 5.5. So, the above consequence (i) holds directly. And by utilizing the result
in (i) and the equivalence between NSP and s-n-good, the relationship between RIP and
s-n-good in (ii) is obtained straightly.

Next, we will give an example to show that all the three conditions, NSP, s-n-goodness
and RIP, are only sufficient but not necessary. In other words, we construct a problem such
that it is equivalent to the relaxation problem but the three exact recovery conditions do
not hold.

Example 6.3. Let the linear transformation A : R6×6×6 → R3 be given by

A (X ) =

 ⟨A1,X⟩
⟨A2,X⟩
⟨A3,X⟩

 ,

where Ai (i = 1, 2, 3) are three 6× 6× 6 tensors and ⟨·, ·⟩ is the inner product between two
tensors.

A1 = (a
(1)
ijk): (a

(1)
jjj)

6
j=1 = ( 1√

2
, 0, 1√

3
,− 1√

2
, 1√

2
, 0) and other entries are zeros.

A2 = (a
(2)
ijk): (a

(2)
jjj)

6
j=1 = ( 1√

2
, 1√

2
, 1√

3
,− 1√

3
, 0,− 1√

2
) and other entries are zeros.

A3 = (a
(3)
ijk): (a

(3)
jjj)

6
j=1 = (0, 1√

2
, 1√

3
, 1√

6
,− 1√

2
,− 1√

2
) and other entries are zeros.

Let W = (wijk) ∈ R6×6×6 with w333 =
√
3 and other entries being zeros is the tensor

to be recover. It’s easy to see that n-rank(W)=(1, 1, 1), so it’s a 2-n-rank tensor. And

A (W) =

 1
1
1

 . It’s not difficult to verify that W is the minimizer of both problems

(LTR) and (LTP) with the above linear transformation A . However, A does not satisfy
those three conditions.

First, we check the RIP condition. By simple calculation, we have

∥A (W)∥22 =
6∑

j=1

w2
jjj = 1 = ∥W∥2F .

Thus, α2 = 0 which contradicts the definition of α2 (0 < α2 < 1). So the RIP condition
does not hold for this A .

Second, we check the NSP condition. There exists a tensor Y = (yijk) ∈ R6×6×6 with
y222 = y666 = 1 and other entries being zeros such that A (Y) = 0, i.e., Y ∈ Null(A )\{0}.
And we can obtain that for all i = 1, 2, 3,

2∥Bi(Y)∥r = ∥Bi(Y)∥∗,

which means NSP condition does not hold. And based on Theorem 6.1, we can know that
A is not 2-n-good.

Hence, this example shows that all these three conditions are only sufficient.
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7 Conclusions

In this paper, we explored the conditions to guarantee the equivalence between the low-n-
rank tensor recovery problem (LTR) and its convex relaxation (LTP). We studied three exact
recovery conditions: the NSP, the s-n-goodness condition and the RIP, with the main results
being regarded as extensions from the corresponding results in the matrix case. Also, we
discussed the relationship among the three exact recovery conditions and gave an example to
show these conditions are only sufficient for the equivalence between problem (LTR) and its
convex relaxation. A further issue is to investigate some necessary and sufficient conditions.
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