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value or the upper and lower bounds for the best rank-1 approximation ratio of a tensor
space is also a worth studying topic.

However, as pointed out by [19], it is difficult to estimate the exact value, even the upper
or lower bounds for the best rank-1 approximation ratio of a tensor space. Meanwhile, Qi [19]
proposed four outstanding challenging questions relating to the best rank-1 approximation
ratio, which compose the most important studies on the best rank-1 approximation ratio.
Based on the result that the best symmetric rank-1 approximation of a symmetric tensor
is its best rank-1 approximation [2, 3, 18, 24], Zhang et al. [24] obtained a positive lower
bound for the best rank-1 approximation ratio of a symmetric tensor space. We illustrate
the previous results on the lower and upper bounds for some classes of tensor space in Table
1.1.

In this paper, we will present the exact values of the best rank-1 approximation ratios
of some special real tensor spaces and derive the upper bounds for the third order finite
dimensional general and symmetric tensor spaces. Furthermore, based on the phenomenon
that the best rank-1 approximation of a nonzero real tensor over the real field may not equal
to its best rank-1 approximation over the complex field, we will show that the exact value
of the best rank-1 approximation ratio of a real tensor space may not equal to the ratio of
the complex tensor space with the same dimension. Meanwhile, some results on the best
rank-1 approximation ratio of a complex tensor space are also given. Our contributions on
the lower and upper bounds for some classes of tensor space are displayed in Table 1.2.

Table 1.1 Previous results on the lower/upper bounds for some classes of tensor space

tensor spaces lower bounds upper bounds
VR(m;n1, · · · , nm) 1/

√
n1 · · ·nm−1 [19] 1 [19]

Sym2(Rn) 1/
√
n [19] 1/

√
n [19]

Sym3(Rn) 1/n [19]
√
6/(n+ 5) [19]

Sym4(Rn) 1/(n
√
n) [24]

√
3/(n2 + 2n) [19]

Table 1.2 Our contributions on the lower/upper bounds for some classes of tensor space

tensor spaces lower bounds upper bounds
1/

√
2n1 (for even n1) 1/

√
2n1 (for even n1)

VR(3; 2, n1, n2) 1/
√
2n1 − 1 (for odd n1) 1/

√
2n1 − 1 (for odd n1)

1/n [19] 1/
√
2n (for even n)

Sym3(Rn) 1/n [19] 1/
√
2n− 1 (for odd n)

VC(3; 2, 2, 2) 1/
√
3 1/

√
2

Without loss of generality, we always assume that the tensors discussed in this paper are
nonzero tensors and just consider the finite dimensional tensor space. The corresponding
notations in the paper are arranged as follows : a tensor is denoted by an underlined letter
(e.g. A), while a scalar is denoted by a plain letter, and a matrix and a vector are denoted by
bold letters (e.g. A and a). Furthermore, we employ some notations in [19]. For example,
we let VR ≡ VR(m;n1, · · · , nm) =

⊗m
j=1 Rnj , VC ≡ VC(m;n1, · · · , nm) =

⊗m
j=1 Cnj , and

Symm(Rn) =
⊗m

j=1 Rnj (n1 = · · · = nm = n) be the symmetric tensor spaces, where
n1 ≤ · · · ≤ nm.

The rest of this paper is organized as follows. In Section 2, we simply recall some
definitions and important results which are needed for the subsequent sections. In Section
3, by using the maximal orthogonal rank of a tensor space, we present the main results of the
paper. In Section 4, we discuss the best rank-1 approximation ratio of a complex 2× 2× 2
tensor space. Finally, some conclusions are made in Section 5.
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2 Preliminaries

This section is devoted to review some concepts and results which are needed for the following
sections. Interested readers can refer to more tensor approximation knowledge in [12, 14].

For the finite dimensional tensor space, we denote A = (ai1···im) ∈ VR or VC. The
Frobenius norm of the tensor A is formulated as

||A||F =
√
⟨A,A⟩ =

(
n1∑

i1=1

· · ·
nm∑

im=1

ai1···imai1···im

)1/2

.

Let

SR = {B ∈ VR|B = ⊗m
j=1v

(j),v(j) ∈ Rnj}

and

SC = {B ∈ VC|B = ⊗m
j=1v

(j),v(j) ∈ Cnj}

be the set of rank-1 tensors over the real field and complex field, respectively. Then, for
A ∈ VR, the number

σR(A) =
√

max
B∈SR,||B||F=1

|⟨A,B⟩|, (2.1)

is equal to Frobenius norm of the best rank-1 approximation of A over the real field [19].
Furthermore, it should be noted that σR(A) is well known in the literature to be the spectrum
norm of the tensor A or the largest singular value of A, which was first proposed by Lim
[17]. Similarly, for A ∈ VC, the number

σC(A) =
√

max
B∈SC,||B||F=1

|⟨A,B⟩| (2.2)

is equal to Frobenius norm of the best rank-1 approximation of A over the complex field.
Obviously, by equalities (2.1) and (2.2), one knows that if A ∈ VR, then it holds that

σR(A) ≤ σC(A). Based on the preparation above and the definition of the best rank-1
approximation ratio of a tensor space [19], the best rank-1 approximation ratio of VR and
VC can be expressed in the following way, respectively,

App(VR) = max

{
µ : µ ≤ σR(A)

||A||F
, ∀A ∈ VR, A ̸= 0

}
, (2.3)

and

App(VC) = max

{
µ : µ ≤ σC(A)

||A||F
, ∀A ∈ VC, A ̸= 0

}
. (2.4)

At the end of this section, we pay attention to the orthogonal rank of a tensor over the
real field, which is given by Definition 2.1 [13].

Definition 2.1. The orthogonal rank of A = (ai1···im) ∈ VR over the real field is defined as
the minimal r such that A can be expressed as the following form:

A =
r∑

i=1

σiU
(i),

where σi > 0 and all U (i) ∈ VR are rank-1 tensors such that ⟨U (i), U (j)⟩ = 0 (i ̸= j),

||U (i)||F = 1, for i, j = 1, 2, · · · , r.
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According to Definition 2.1, it is easy to prove that the orthogonal rank of a tensor over
the real field keeps to be invariant under the multilinear orthogonal transformation [13].
Using the orthogonal rank, we present the definition for the maximal orthogonal rank of a
tensor space.

Definition 2.2. The maximal orthogonal rank of a tensor space VR is defined as the minimal
r such that for any tensor A ∈ VR, the orthogonal rank of A is less than or equal to r.

The orthogonal rank of a tensor over the complex field can be defined in a similar way and
the orthogonal rank also keeps to be invariant under the multilinear unitary transformation
[13]. For conciseness, we omit it.

3 Estimating the Best Rank-1 Approximation Ratio of a Real Ten-
sor Space

This section consists of two subsections. The first subsection provides a short discussion
on the orthogonal rank of a real tensor, which can be used to estimate the best rank-1
approximation ratio of a real tensor space, and presents a way to estimate the orthogonal
rank of a given third order tensor. The second subsection is devoted to discuss the bounds
for the best rank-1 approximation ratio, which is the main purpose of this section.

3.1 The orthogonal rank of a tensor

In this subsection, we illustrate the relation between the maximal orthogonal rank of a
tensor space and the best rank-1 approximation ratio of the corresponding tensor space and
present a new proof of the lower bounds for the best rank-1 approximation ratios.

Lemma 3.1. Let the orthogonal rank of A ∈ VR over the real field R be r. Then

σR(A)

||A||F
≥ 1√

r
. (3.1)

Proof. Let the orthogonal rank decomposition of the tensor A over the real field R be
expressed in the following form:

A = A(1) + · · ·+A(r),

where all the A(i)s are rank-1 tensors such that ⟨A(i), A(j)⟩ = 0 (i ̸= j), for 1 ≤ i, j ≤ r.
Then it holds that

||A||2F =
r∑

i=1

||A(i)||2F , and ||A−A(i)||2F = ||A||2F − ||A(i)||2F .

Without loss of generality, we assume ||A(1)||F = max
{
||A(i)||F |1 ≤ i ≤ r

}
. According to

the Property 3.1 of [15], we have that for any rank-1 tensor B it holds

||A−B||2F ≥ ||A||2F − σR(A)
2.

Especially, let B = A(1), then we have

||A−B||2F = ||A−A(1)||2F = ||A||2F − ||A(1)||2F ≥ ||A||2F − σR(A)
2. (3.2)
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It follows from (3.2) that σR(A)
2 ≥ ||A(1)||2F . Therefore, we have

σR(A)

||A||F
≥ ||A(1)||F√

||A(1)||2F + · · ·+ ||A(r)||2F
≥ ||A(1)||F√

r||A(1)||2F
=

1√
r
.

The conclusion is obtained.

By using Lemma 3.1, one knows that if the upper bound for the maximal orthogonal
rank of a tensor space is acquired, then naturally, the lower bound for the best rank-1
approximation ratio of this tensor space can be obtained. Consequently, the problem of
estimating the lower bound for the best rank-1 approximation ratio of a tensor space is
transformed into the estimation of the upper bound for the maximal orthogonal rank of this
tensor space. Furthermore, by (3.1), we get

r ≥

⌊(
1

σR(A)/||A||F

)2
⌋
, (3.3)

where ⌊x⌋ denotes the closest integer smaller than x.
Thus, the inequality (3.3) can be used to estimate the lower bound for the orthogonal

rank of a tensor.
In what follows, we are to present a simple example to illustrate how to estimate the

upper bound for the maximal orthogonal rank of a tensor space.

Example 3.2. Let A = (ai1i2i3) ∈ VR(3; 2, 2, 3). Then by a simple computation, we have

A =

[
a111 a121
a211 a221

∣∣∣∣ a112 a122
a212 a222

∣∣∣∣ a113 a123
a213 a223

]
=

[
a111 0
0 0

∣∣∣∣ a112 0
0 0

∣∣∣∣ a113 0
0 0

]
+

[
0 a121
0 0

∣∣∣∣ 0 a122
0 0

∣∣∣∣ 0 a123
0 0

]
+

[
0 0

a211 0

∣∣∣∣ 0 0
a212 0

∣∣∣∣ 0 0
a213 0

]
+

[
0 0
0 a221

∣∣∣∣ 0 0
0 a222

∣∣∣∣ 0 0
0 a223

]
=

[
1
0

]
⊗
[

1
0

]
⊗

a111

 1
0
0

+ a112

 0
1
0

+ a113

 0
0
1


+ · · ·+

[
0
1

]
⊗
[

0
1

]
⊗

a221

 1
0
0

+ a222

 0
1
0

+ a223

 0
0
1


=
∑2

i1=1

∑2
i2=1 ei1,2 ⊗ ei2,2 ⊗

(∑3
i3=1 ai1i2i3ei3,3

)
,

where eij ,2 and eik,3 denote the standard vectors in R2 and R3, respectively.
As a result, the maximal orthogonal rank of VR(3; 2, 2, 3) is less than or equal to 4.

Hence, it holds that App(VR(3; 2, 2, 3)) ≥ 1
2 .

With the aforementioned discussion, we provide an alternative proof for the following
result, which is one of the important results in [19].

Theorem 3.3 ([19]). Let n1 ≤ · · · ≤ nm, and

µ =
1

√
n1 · · ·nm−1

.

Then µ is a positive lower bound for App(VR).
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Proof. Let A = (ai1···im) ∈ VR. Then the tensor A can be expressed in the following form:

A =

n1∑
i1=1

· · ·
nm−1∑

im−1=1

⊗m−1
k=1 eik,nk

⊗

(
nm∑

im=1

ai1i2···imeim,nm

)
, (3.4)

where eik,nk
(1 ≤ ik ≤ nk) denote the standard vectors in Rnk for 1 ≤ k ≤ m.

It follows from (3.4) that the orthogonal rank of A over the real field is less than or equal
to n1 · · ·nm−1. By the arbitrariness of A, we get that the maximal orthogonal rank of VR
is less than or equal to n1 · · ·nm−1. Then by using Lemma 3.1, we get the conclusion.

At last in this subsection, we present a result relating to the upper bound for the or-
thogonal rank of a third order tensor.

Lemma 3.4. Let A = [A1| · · · |An3 ] ∈ VR(3;n1, n2, n3). Suppose that the rank of the matrix
Ai is equal to ri, 1 ≤ i ≤ n3, respectively. Then the orthogonal rank of A over the real field
is less than or equal to

∑n3

i=1 ri.

Proof. The proof is straightforward. According to the assumptions that the rank of the
matrix Ai is equal to ri, by using the singular value decomposition of the matrix Ai,

Ai = σ
(i)
1 u

(i)
1 (v

(i)
1 )T + · · ·+ σ(i)

ri u
(i)
ri (v

(i)
ri )

T , 1 ≤ i ≤ n3,

we have that the tensor A can be expressed as the following form:

A =

r1∑
i=1

σ
(1)
i u

(1)
i ⊗ v

(1)
i ⊗ e1,n3 + · · ·+

rn3∑
i=1

σ
(n3)
i u

(n3)
i ⊗ v

(n3)
i ⊗ en3,n3 , (3.5)

where ⟨u(i)
j ,u

(i)
k ⟩ = 0, ⟨v(i)

j ,v
(i)
k ⟩ = 0(j ̸= k), ||u(i)

j ||2 = ||v(i)
j ||2 = 1, and σ

(i)
j > 0, 1 ≤ i ≤

n3.
Thus, by (3.5) we get that the orthogonal rank of A is less than or equal to

∑n3

i=1 ri.

By Lemma 3.4, it is easy to see that one can obtain the upper bound for the orthogonal
rank of a tensor through estimating the ranks of all slices of this tensor.

3.2 The bounds for the best rank-1 approximation ratio of a real tensor space

On the basis of the preceding subsection, in this subsection, we will present the exact values
for the best rank-1 approximation ratio of some special real tensor spaces, and estimate the
upper bounds for the best rank-1 approximation ratio of general real tensor spaces.

Lemma 3.5. App(VR(3; 2, 2, 2)) =
1
2 .

Proof. According to the results on the maximization of a multilinear function over spherical
constraints [9], or the largest singular value of a tensor [17], is easy to evaluate that the
largest singular value of the tensor

A = [I2|A] =

[
1 0
0 1

∣∣∣∣ 0 −1
1 0

]
(3.6)

over the real field is equal to 1, where I2 denotes the 2× 2 identity matrix and

A =

[
0 −1
1 0

]
. (3.7)
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Hence, it holds that App(VR(3; 2, 2, 2)) ≤ 1√
1+1+1+1

= 1
2 . Furthermore, by using Theorem

3.3, we obtain that App(VR(3; 2, 2, 2)) ≥ 1
2 . Two inequalities together lead to the conclusion.

Remark 3.6. The largest singular value of a real tensor over the real field may be not equal
to its largest singular value over the complex field.

It is easy to check that the tensor A defined by equality (3.6) can be formulated as

A =
1

2

[
1
−i

]
⊗
[

1
i

]
⊗
[

1
i

]
+

1

2

[
1
i

]
⊗
[

1
−i

]
⊗
[

1
−i

]
. (3.8)

Let

L =
1√
2

[
1 i
1 −i

]
,M = N =

1√
2

[
1 −i
1 i

]
.

Then it holds that

(L,M,N) ·A =

[ √
2 0
0 0

∣∣∣∣ 0 0

0
√
2

]
. (3.9)

Since all three matrices L, M, and N are unitary matrices, it follows from (3.8) and (3.9)
that the largest singular value of A over the complex field is equal to

√
2 [21]. That is

σC(A) =
√
2, which is not equal to σR(A) = 1.

We then present the main results of this subsection as follows.

Theorem 3.7. If n1 ≤ n2 and n1 is even, then App(VR (3; 2, n1, n2)) =
1√
2n1

.

Proof. Let A be defined by (3.7). Then, by a simple computation, we get that the largest
singular value of the tensor

A =

n1 columns︷ ︸︸ ︷
I2 0 · · · 0
0 I2 · · · 0
...

...
. . .

...
0 0 · · · I2

(n2−n1) columns︷ ︸︸ ︷
0 · · · 0
0 · · · 0
...

... 0
0 · · · 0

∣∣∣∣∣∣∣∣∣
A 0 · · · 0 0 · · · 0
0 A · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · A 0 · · · 0

 ∈ Rn1×n2×2

over the real field is equal to 1. Thus it holds that App(VR(3; 2, n1, n2)) ≤ 1√
2n1

. Noting

the inequality App(VR(3; 2, n1, n2)) ≥ 1√
2n1

, we have App(VR(3; 2, n1, n2)) =
1√
2n1

.

Corollary 3.8. If n1 ≤ n2 and n1 is even, then the maximal orthogonal rank of VR
(3; 2, n1, n2) over the real field is equal to 2n1.

Proof. Based on the proof of Theorem 3.7, we know that there exists a tensor A such that
σR(A)
||A||F = 1√

2n1
. Thus, it follows from inequality (3.3) that the maximal orthogonal rank of

VR (3; 2, n1, n2) over the real field is larger than or equal to 2n1. Furthermore, by (3.4), we
get that the maximal orthogonal rank of VR (3; 2, n1, n2) over the real field is less than or
equal to 2n1. Hence, the conclusion can be conducted.
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Similar to the proof of Theorem 3.7, by adding a zeros vector and a stand vector (en1,n2 ∈
Rn2) in the previous construction, we can get

App(VR(3; 2, n1, n2)) ≤
1√

2n1 − 1
, (3.10)

where n1 is odd and n1 ≤ n2.
Thus, the maximal orthogonal rank of VR (3; 2, n1, n2) over the real field is large than

or equal to 2n1 − 1 when n1 is odd. However, what are the exact values of the maximal
orthogonal rank of App(VR(3; 2, n1, n2)) over the real field and what are the exact values of
App(VR(3; 2, n1, n2)) for odd n1? In what follows, we will discuss these two problems.

Lemma 3.9. If n ≥ 3 and n is odd, then the maximal orthogonal rank of VR (3; 2, n, n)
over the real field is equal to 2n− 1.

Proof. Based on the discussion above, we know that the maximal orthogonal rank of
VR(3; 2, n, n) over the real field is larger than or equal to 2n− 1. As a result, we just need
to prove that the maximal orthogonal rank of VR(3; 2, n, n) over the real field is less than or
equal to 2n− 1.

Let A = [A1|A2] ∈ Rn×n×2, where Ai ∈ Rn×n and i = 1, 2. If at least one of Ai is
nonsingular, we get that at least one rank of Ai is less than or equal to n − 1. Thus, by
Lemma 3.4, we obtain that the orthogonal rank of A over the real field is less than or equal
to 2n− 1. Thus to prove the final result, we only need to further discuss the case that both
A1 and A2 are nonsingular.

Let A−1
1 denote the inverse of the matrix A1. Since n is an odd number, we have that

the matrix A−1
1 A2 has at least one real eigenvalues. Assume that λ is one real eigenvalue

of A−1
1 A2, then there exists a nonsingular matrix P ∈ VR(2;n, n) such that

A−1
1 A2 = P−1

[
A 0
0 λ

]
P = P−1ÃP,

where A ∈ VR(2;n− 1, n− 1), and

Ã =

[
A 0
0 λ

]
.

Then, by using the properties of the multilinear transformation, we have

(P, (P−1)T , I2) · (A−1
1 , In, I2) ·A = [In|Ã].

Thus, it holds that

A = (L,M, I2) · [In|Ã] = [LMT |LÃMT ], (3.11)

where L = A1P
−1, M = PT .

Let the QR decomposition of the matrices L and M be

L = Q(1)R(1) = Q(1)


r
(1)
11 r

(1)
12 · · · r

(1)
1n

0 r
(1)
22 · · · r

(1)
2n

...
... · · ·

...

0 0 · · · r
(1)
nn

 = Q(1)

[
R

(1)
1 r(1)

0 r
(1)
nn

]
, (3.12)
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and

M = Q(2)R(2) = Q(2)


r
(2)
11 0 · · · 0

r
(2)
21 r

(2)
22 · · · 0

...
... · · ·

...

r
(2)
n1 r

(2)
n2 · · · r

(2)
nn

 = Q(2)

[
R

(2)
1 0

r(2)
T

r
(2)
nn

]
, (3.13)

respectively, where r(1) = [r
(1)
1n , r

(1)
2n , · · · , r

(1)
n−1,n]

T , r(2) = [r
(1)
n1 , r

(1)
n2 , · · · , r

(1)
n,n−1]

T , and

R
(1)
1 =


r
(1)
11 r

(1)
12 · · · r

(1)
1n−1

0 r
(1)
22 · · · r

(1)
2n−1

...
... · · ·

...

0 0 · · · r
(1)
n−1,n−1

 ,R
(2)
1 =


r
(2)
11 0 · · · 0

r
(2)
21 r

(2)
22 · · · 0

...
... · · ·

...

r
(2)
n−1,1 r

(2)
n−1,2 · · · r

(2)
n−1,n−1

 .

Then by using (3.11), (3.12) and (3.13), we have

((Q(1))T , (Q(2))T , I2) ·A = [R(1)(R(2))T |R(1)Ã(R(2))T ]. (3.14)

Furthermore, by a simple computation, we get

R(1)(R(2))T =

[
R

(1)
1 r(1)

0 r
(1)
nn

][
(R

(2)
1 )T r(2)

0 r
(2)
nn

]

=

[
R

(1)
1 (R

(2)
1 )T R

(1)
1 r(2) + r

(2)
nnr(1)

0 r
(1)
nnr

(2)
nn

]
, (3.15)

and

R(1)Ã(R(2))T =

[
R

(1)
1 r(1)

0 r
(1)
nn

][
A 0
0 λ

] [
(R

(2)
1 )T r(2)

0 r
(2)
nn

]

=

[
R

(1)
1 A(R

(2)
1 )T R

(1)
1 Ar(2) + λr

(2)
nnr(1)

0 λr
(1)
nnr

(2)
nn

]
.

(3.16)

Take right hand sides of equalities (3.15) and (3.16) into (3.14), respectively, we get

((Q(1))T , (Q(2))T , I2) ·A

=

[
R

(1)
1 (R

(2)
1 )T R

(1)
1 r(2) + r

(2)
nnr(1)

0 0

∣∣∣∣ R
(1)
1 A(R

(2)
1 )T R

(1)
1 Ar(2) + λr

(2)
nnr(1)

0 0

]
+

[
0 0

0 r
(1)
nnr

(2)
nn

∣∣∣∣ 0 0

0 λr
(1)
nnr

(2)
nn

]
.

(3.17)

It follows from Corollary 3.8 and (3.17) that the orthogonal rank of A over the real field
is less than or equal to 2(n − 1) + 1 = 2n − 1. Thus the maximal orthogonal rank of VR
(3; 2, n, n) over the real field is equal to 2n− 1.

Through the proof of Lemma 3.9, one can see that by using the multi-linear orthogonal
transformation, a given tensor can be simplified, thus it is easy to formulate the tensor as the
sum of some orthogonal rank-1 tensors. Similarly, the following conclusion can be obtained.
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Corollary 3.10. If n1 ≤ n2 and n1 is odd, then the maximal orthogonal rank of VR
(3; 2, n1, n2) over the real field is equal to 2n1 − 1.

Conversely, by using the maximal orthogonal rank of a real tensor space over the real
field, one can get the exact value of the best rank-1 approximation ratio of a real tensor
space.

Theorem 3.11. If n1 ≤ n2 and n1 is odd, then App(VR (3; 2, n1, n2)) =
1√

2n1−1
.

Proof. The proof is straightforward. On the one hand it follows from Lemma 3.9 and
Corollary 3.10 that App(VR(3; 2, n1, n2)) ≥ 1√

2n1−1
, and on the other hand by (3.10) we get

App(VR(3; 2, n1, n2)) ≤ 1√
2n1−1

. Hence, the conclusion is obtained.

It should be noted that in general cases it is difficult to get the exact value of the best
rank-1 approximation ratio of a tensor space.

Furthermore, by using Theorem 3.7 and Theorem 3.11, we have the following conclusion.

Corollary 3.12. Let 2 ≤ n1 ≤ n2 ≤ n3. Then it holds that

App(VR(3;n1, n2, n3)) ≤

{
1√
2n2

, for even n2,
1√

2n2−1
, for odd n2.

Proof. If n2 is even, then by Theorem 3.7, we know that there exists a tensor A = [A1|A2] ∈
Rn2×n3×2 such that σR(A)

||A||F = 1√
2n2

. Let

Â = [A1|A2|0| · · · |0] ∈ Rn2×n3×n1 .

Then it holds σR(Â)

||Â||F
= 1√

2n2
. Thus, we have App(VR(3;n1, n2, n3)) ≤ 1√

2n2
. In a similar

way, for odd n2, the conclusion App(VR(3;n1, n2, n3)) ≤ 1√
2n2−1

can be proved.

Especially, for the symmetric tensor spaces Sym3(Rn) (n ≥ 2), the above conclusion is
also true.

Theorem 3.13.

App(Sym3(Rn)) ≤

{
1√
2n

, for even n,
1√

2n−1
, for odd n.

(3.18)

Furthermore, if n = 2, then App(Sym3(Rn)) = 1
2 .

Proof. Let

A1 =

[
0 1
1 0

]
,A2 =

[
1 0
0 −1

]
. (3.19)

It is obvious that the tensor

A2 = [A1|A2] =

[
0 1
1 0

∣∣∣∣ 1 0
0 −1

]
is a tensor in Sym3(R2). According to the result that the best symmetric rank-1 approxi-
mation of a symmetric tensor is its best rank-1 approximation [2, 3, 18, 24] and the results
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on the maximization of a multilinear function over spherical constraints [9], or the largest
singular value of a tensor [17], we get that the Frobenius norm of the best symmetric rank-1
approximation of A2 over the real field is equal to 1. Thus, it holds that App(Sym3(R2)) ≤ 1

2 .

Based on Theorem 3.3, we then have App(Sym3(R2)) = 1
2 .

In a similar way, let

A3 =

[
A1 0
0 0

∣∣∣∣ A2 0
0 0

∣∣∣∣ 0 0
0 1

]
=

 0 1 0
1 0 0
0 0 0

∣∣∣∣∣∣
1 0 0
0 −1 0
0 0 0

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 1

 .

It is easy to check that the tensor A3 is a tensor in Sym3(R3) and using the similar method
above, we can get that the Frobenius norm of the best rank-1 approximation of A3 over the
real field is equal to 1. Thus, it holds that App(Sym3(R3)) ≤ 1√

5
.

Recursively, for even n, let

An =

n columns︷ ︸︸ ︷
A1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣
A2 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣
0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · A1

∣∣∣∣∣∣∣∣∣
0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · A2

 .

Then An is a tensor in Sym3(Rn).

For odd n, let

An =

n columns︷ ︸︸ ︷
A1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣∣
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · A1 0
0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣
0 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · A2 0
0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
0 0 · · · 1

 .

Then An is a tensor in Sym3(Rn).

Thus, by using a similar method, the conclusion can be obtained.

Remark 3.14. The upper bounds given by (3.18) are smaller than the upper bounds
√

6
n+5

given by Qi [19], for n ≥ 2.

4 Estimating the Best Rank-1 Approximation Ratio of a Complex
2× 2× 2 Tensor Space

The goal of this section is to discuss the best rank-1 approximation ratio of a complex tensor
space and illustrate that the exact value of the best rank-1 approximation ratio of a finite
dimensional real tensor space may not equal the exact value of the best rank-1 approximation
ratio of the complex tensor space with the same dimension.

Lemma 4.1. Let A ∈ VC(3; 2, 2, 2). Then the maximal orthogonal rank of A over the
complex field is equal to 3.



334 X. KONG AND D. MENG

Proof. It is well know that the maximal rank of A over the complex field is equal to 3 [5].
Since the orthogonal rank of a tensor over a field is larger than or equal to its rank over this
field, we can get that the maximal orthogonal rank of A over the complex field is large than
or equal to 3. Hence, the rest of proof is to show that the maximal orthogonal rank of A
over the complex field is less than or equal to 3.

According to the rank of the tensor A, the proof can be divided into the following three
cases.

(I) If A is a rank-1 tensor, obviously, the orthogonal rank of A over the complex field is
equal to 1.

(II) If A is a rank-2 tensor, then there exist ai ∈ C2, bi ∈ C2 and ci ∈ C2, (1 ≤ i ≤ 2)
such that

A = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2.

Let the QR factorization of the matrix [a1,a2] be

[a1,a2] = Q(1)R(1) = Q(1)

[
r
(1)
11 r

(1)
12

0 r
(1)
22

]
.

Then it holds that

((Q(1))∗, I2, I2) ·A =

[
r
(1)
11

0

]
◦ b1 ◦ c1 +

[
r
(1)
12

r
(1)
22

]
◦ b2 ◦ c2

= e1 ◦ (r(1)11 b1 ◦ c1 + r
(1)
12 b2 ◦ c2) + r

(1)
22 e2 ◦ b2 ◦ c2.

(4.1)

By using (4.1), it is easy to obtain that the orthogonal rank of A over the complex field is
less than or equal to 3.

(III) If A is a rank-3 tensor, according to the canonical forms under the nonsingular
transformation [5], then there exist nonsingular matrices L, M and N ∈ C2×2, such that

(L,M,N) ·A =

[
1 0
0 1

∣∣∣∣ 0 1
0 0

]
= e1 ◦ e1 ◦ e1 + e2 ◦ e2 ◦ e1 + e1 ◦ e2 ◦ e2.

Thus, it holds that

A = (L−1,M−1,N−1) · (e1 ◦ e1 ◦ e1 + e2 ◦ e2 ◦ e1 + e1 ◦ e2 ◦ e2)
= l̃1 ◦ m̃1 ◦ ñ1 + l̃2 ◦ m̃2 ◦ ñ1 + l̃1 ◦ m̃2 ◦ ñ2,

where L−1 = [̃l1, l̃2], M
−1 = [m̃1, m̃2], and N−1 = [ñ1, ñ2].

Similar to the proof above, let the QR factorization of the matrix L−1 be

L−1 = Q(2)R(2) = Q(2)

[
r
(2)
11 r

(2)
12

0 r
(2)
22

]
,

then

((Q(2))∗, I2, I2) ·A =

[
r
(2)
11

0

]
◦ m̃1 ◦ ñ1 +

[
r
(2)
12

r
(2)
22

]
◦ m̃2 ◦ ñ1 +

[
r
(2)
11

0

]
◦ m̃2 ◦ ñ2

= e1 ◦ (r(2)11 m̃1 ◦ ñ1 + r
(2)
12 m̃2 ◦ ñ1 + r

(2)
22 m̃2 ◦ ñ2) + r

(2)
22 e2 ◦ m̃2 ◦ ñ1.

Thus, the orthogonal rank of A over the complex field is less than or equal to 3.
Summarizing the aforementioned results, we can then obtain the conclusion.
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We can then easily obtain the following result based on Lemma 4.1.

Theorem 4.2. App(VC(3; 2, 2, 2)) ≥ 1√
3
.

It follows from Lemma 3.5 and Theorem 4.2 that the exact value of the best rank-1 ap-
proximation ratio of a real tensor space may be different from the best rank-1 approximation
ratio of the complex tensor space with the same dimension.

5 Conclusions

By using the maximal orthogonal rank and the method for computing the best rank-1 ap-
proximation of a tensor, we present the exact values of the real 2 × n1 × n2 spaces and
illustrate that the best rank-1 approximation ratio of a real tensor space may be different
from the best rank-1 approximation ratio of the complex tensor space with the same dimen-
sion. However, estimating the best rank-1 approximation ratio of a general tensor space is
still a challenging task. More attention will be paid on the estimation of the best rank-1
approximation of a general tensor space in the future.
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