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Introduction

Finding the best rank-one approximation to a given higher-order tensor is equivalent to
finding its largest tensor singular value (also known as its spectral norm), which is defined
as the maximum of the associated multilinear form on the product of unit spheres. This
simplest of all low-rank tensor approximation tasks is of large interest in its own, but also
constitutes the main building-block when constructing approximations of higher rank by
means of rank-one updates, see for example the references given in [7, Sec. 3.3].

The higher-order power method (HOPM) [4, 5] is a simple, effective, and widely used
optimization algorithm to approximately solve the task. The name comes from the fact that
it is the straight-forward generalization of an alternating power method for finding a pair
of dominant left and right singular vectors of a matrix. Depending on the scaling strategy
used for the iterates during the process, the higher-order power method can be seen as an
alternating least squares (ALS) algorithm, see [10] and references therein.

Despite its importance, a satisfactory convergence theory for the HOPM was missing
until recently. Clearly, the convergence of the generated sequence of approximated singular
values follows easily from the monotonicity of the method [17]. More interesting and im-
portant, however, is the question of single-point (and not just sub-sequential) convergence
of the sequences of generated rank-one tensors or even their factors to a critical point of
the problem. The local convergence for starting guesses close enough to a critical point was
established in [24] and [21], but the made assumptions remained somewhat restrictive. Con-
cerning global convergence, the investigations of Mohlenkamp [15] showed that the sequence
of rank-one tensors generated by ALS is bounded, and that their consecutive differences are
absolutely square summable and hence converge to zero. This would imply convergence of
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the method, if the set of cluster points, each of which must be a critical point, contains at
least one isolated point which then is the limit. In a recent work by Wang and Chu [22] this
last issue was addressed by arguing that for almost every tensor the second-order deriva-
tive at zeros of the projected gradient of the cost function is regular, and hence critical
points isolated. In this way, global convergence of the higher-order power method has been
established, at least for almost every tensor.

The outlined argumentation appears, however, somewhat intricate. In this paper, we
propose an alternative convergence proof based on an elegant method from the theory of
analytic gradient flows, whose foundation is the Lojasiewicz gradient inequality — a powerful
feature of real-analytic functions. Simply speaking, the validity of this inequality at a cluster
point of a gradient-related descent iteration enforces absolute summability of increments,
which implies convergence [1]. The continuous counterpart of this methodology is mentioned
n [22], but the possibility to directly apply the available results on discrete gradient flows
to ALS was not explored. This is what we shall do in the present paper.

In [23], Xu and Yin used a further generalization, the Kurdyka-Lojasiewicz inequality,
to obtain convergence results for a variety of cyclic block coordinate descent methods when
applied to a large class of strongly block multiconvex functions. This includes a wide range of
alternating block techniques for regularized low-rank tensor optimization tasks. In principle,
our considerations will show that even without regularization, the ALS algorithm for rank-
one approximation is a member of this problem class. The key observation is an insight
gained in [12], that the norms of the factors generated by ALS remain bounded from above
and below, even when no normalization is used. In particular, norm constraints can be
avoided in the analysis for this reason.

The focus on one specific method allows us to present the logic of the convergence
proof in a simplified form compared to the very general reasoning in [23]. As a result,
we obtain the global convergence of the higher-order power method as the last link in
a transparent chain of simple arguments. Admittedly, the abstract results based on the
Lojasiewicz gradient inequality, that are invoked at one point in the presentation, constitute
a nontrivial ingredient in our proof, but they can be regarded as well-established by now.

The paper is organized as follows. In Sec. 2 we introduce the notation used, define the
higher-order power method, and the equivalent alternating least squares algorithm. In Sec. 3
we state the abstract convergence results from the literature on which we rely, and then prove
that they can be applied to rank-one ALS. The main result is Theorem 3.10. Finally, Sec. 4
is devoted to generalizations of the used arguments to strongly convex optimization tasks
in other multilinear tensor formats by means of ALS-type algorithms [3, 9, 10, 18, 16, 20].
We explain why for formats other than rank-one, regularization is typically unavoidable to
achieve similar strong results.

Best Rank-One Approximation

In this section, we recall the higher-order power method and the alternating least squares
algorithm, and explain their connection in more detail.

Preliminaries

Let d > 3 and ny,n9,...,nq4 € N be given. The elements of the Cartesian product R™ x
R"2 x --- x R™ will be either explicitly denoted by tuples (z!,22,...,2%), or abbreviated
by
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The elements in R *"2Xx"d wi]] be called tensors and are treated as multi-dimensional
arrays with entries labeled by multi-indices 41,4, ...,44. For tensors we use (-, )¢ and || - ||¢
to denote the Frobenius inner product and norm, respectively. For vectors, we omit the
subscript F when denoting the Euclidean inner product and norm. Similarly, the norm of a
tuple x will be denoted by ||x|| = (||| + [|2||% + - - - + [|=||?)1/2.

Consider the multilinear map 71 : R™ x R™2 x ... x R — R™*n"2XX%4 defined by

m1(x) = ztozo- - oz, (2.1)

1,2 d

where o is the outer product. It means that [71(x)];, i,,....i, = %;, %5, -+ - @f,. The non-zero

tensors in the range of 7, are called rank-one tensors. The vectors x* will be called factors
of 71(x). A crucial property of 71 is

(m(x), m(y)r = (', y") 2?7 - (@ y?), (2.2)
and therefore
I G le = =" 12 - - =] (2.3)

To a tensor F € R™MXm2X"XNd we ggsociate a multilinear form I defined as

ni
d
F( ) <]: Tl F - Z Z Z 11,82,...,%d le122...xid'

11=11i2=1 ig=1

For p=1,2,...,d, we also define partial contractions F'*(x) which are the vectors in R™,
whose 7,th entry is

Np—1 Mp+1

Lo ph=lpptl o od
Z Z Z Z 1s- *7iu7177;u;iu+17~~>7;dxi1 xiuflmiu+1 mid7

i1=1 tp—1=1d,41=1 ig=1

that is, the contraction with z* is omitted. Equivalently, F'#(x) may be defined as the
unique vector in R™* satisfying
(F*(x),2") = F(x) (2.4)

for all z*.
The algorlthms we consider produce sequences of iterates (zf), for every component
uw=1,2,...,d. We hence introduce the notation

1 po o ptl d
Xk*(xlw xk>$k 1a'~~7xk—1)'

For convenience, let further x{ ,, = x.

Higher-order power method

The critical values of x — F(x)/(||z||[|z?| - - - ||z?||) are called the singular values of the
tensor F [13]. The mazimum singular value is

A* = max F(x). (2.5)

llztl=llz2||=-=ll=]|=1

This expression defines a norm (the usual norm of a multilinear form), and so A* is sometimes
referred to as the spectral norm of the underlying tensor F in the literature. The higher-order
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power method (HOPM) is a cyclic block coordinate method to approximate A*. By (2.4),
the optimal choice for z# when fixing the other factors is
P (x)

“HorM = [ () (2

This already constitutes the HOPM summarized as Algorithm 1. For clarity we use the
notation y): for the iterates of HOPM, and reserve x) for the iterates produced by the ALS
algorithm (Algorithm 2) introduced next.

Algorithm 1: Higher-order power method (HOPM)
Input: Tensor F € RM*n2XXnd starting guess yo with Fl(yq) # 0.
k<0, Ao = F(yo)
while not converged do
for y=1,2,...,d do
P A ¢y

Y1 = T =i
Ee )

end

Metr1 = F(Yrs1)
k+—k+1

end

Note that since F(y%) is not decreasing and F(y{) > 0, a division by zero will never
occur.

Alternating least squares
Given F € Rm1Xm2XXna Jef,

760 = 51 - nIR (27)
The best rank-one approximation problem consists in finding a minimizer for f. The cor-
responding block coordinate descent method is called alternating least squares (ALS). The

name comes from the fact that the problem for a single factor x# with the others held fixed
is a least squares problem with normal equation

0= <f - Tl(X),Tl(Jfl, s 7$#_1,yﬂa$#+l, s 7xd)>F
2.8

) <F“<x> . (H ||xV|2>“"”7y“> for all f* € B, =9

VFEL
where we have used (2.2) and (2.4). Assuming z¥ # 0 for all v # u, the unique solution is
Fr(x)
ah g = : (2.9)
AT T 2”2

The resulting ALS algorithm is noted as Algorithm 2.

Note that F!(xq) # 0 implies zf; # 0 for p = 2,...,d, so the very first step of the
algorithm is feasible and z} # 0. As we show in the next section, the sequences ||z} are
monotonically increasing for every pu, so the subsequent update steps also never fail.
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Algorithm 2: Alternating Least Squares (ALS)
Input: Tensor F € R™MXn2X"Xna starting guess xo with F1(xq) # 0.
k+0

while not converged do
for y=1,2,...,d do

Z‘H F#(Xk-t,-l)
k+1 — - 1
ko 12 gy 12 - g2 a2
end
k+—k+1

end

In contrast to what is recommended in practice (see e.g. [10]), our version of ALS omits
any normalization of the factors z; during the process. This is by purpose, as it simplifies the
analysis. From a theoretical viewpoint it also makes no difference, as any rescaling strategy
does not affect the generated sequence of subspaces span(z);). In particular, comparing (2.6)
and (2.9) it is plain to see the equivalence of HOPM and ALS, but the detailed proof requires
some notational effort.

Proposition 2.1. Let (A, yx) and (xi) denote the iterates generated by Algorithms 1 and 2,
respectively, when applied to the same starting guess yo = xg. Then it holds

u
yh = =, and A, = ||m(x) e

I’
for all k > 1 and all p. Also, if X, is a critical point of the function (2.7) with T (x.) # 0,

then y. with yi = x4 /||z¥| is a critical point (w.r.t. the spherical constraints) of (2.5).

Proof. We show by induction that for every k > 0 and p there exists ajf > 0 such that
zj, = ajyy. For k > 1 this obviously implies af, = [lz}|, as [ly}]| = 1 by construction. We
introduce an ordering of the pairs (k, ) according to their appearance in the algorithms,

e, (kyu) > (Lv)if k > Corif k = ¢ and pp > v. Setting off = 1 the assertion yf =
abxf obviously holds for all pairs (k,u) with & = 0. Now fix (k + 1, ) and assume the
relation has been proved for all previous pairs. Exploiting the multilinearity of F*(x) w.r.t.

gt ot et e? and using ) = |l2f || for v < p, it holds
1 -1 1 —1
T a£+ dF“(YZH) _ H+ "'ail\F(YZH)H oyt (2.10)
k+1 = 1 = 1 k41 :
ab gy okl TR el by oy TR )

! .

(note that 4™ ---af and = - [Jz|| also cancel once k > 1). Hence o, equals the
fraction on the right side of (2. 10) which is positive.
Now that we have proved z} = oyl with of = |lz| for all & > 1, (2.10) and (2.3)

imply
W = ||Fr(v*—1
171 (e ) lle = [1F* (i)l

By definition of ', , and (2.4),

L —1 L —1 L
[ £ (YZ+1)H = (F" (yg+1),ylli+1> = (F“(yg+1),y;c+1> = F(yllj+1)7
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where the second equality holds because F*(x) never depends on z*. In summary,

||71(XZ+1)||F = F(yg+1), (2.11)
and in particular |71 (Xg41)|lF = F(¥kt1) = Aet1-

Finally, let x, be a critical point of the function (2.7) with 71(x4) # 0. Then x* is a
stationary point of (2.9), so that for all 4 it holds z4 = ol F*(x,) with of =[], [l2¥[]* #
0. Let y& = 2 /||=z4]], then using multilinearity it also follows that

Blyl = F¥(y+) (2.12)

for some 84 # 0. The tangent space to the unit sphere at . consists of all vectors dy.
orthogonal to y4. Hence y, is a critical point of F' on the Cartesian product of spheres, if
for every p it holds (V,F(y.),dyt) = 0 for all such dy¥. But since F is linear with respect
to every block variable, this is the case, as

(VuF(yx), 0yty = (F*(y.), dyt)y = BE(y*, dyt) = 0
by (2.4) and (2.12). O

As a result, we can prove convergence of HOPM by proving convergence of ALS.

Convergence of Alternating Least Squares

The global, point-wise convergence of the iterates generated by Algorithm 2 will be deduced
from known results based on the Lojasiewicz gradient inequality. We first recall the required
abstract properties, and then show that they hold for Algorithm 2.

Point-wise convergence via Lojasiewicz inequality

Our aim is to apply the following result [1, Theorem 3.2].

Theorem 3.1. Let f : V — R be a real-analytic function on a finite-dimensional real vector
space V, and let (x) C R™ be a sequence satisfying

fxi) = f(xir1) = oV F i)l Ixrsr — x| (3.1)
for all large enough k and some o > 0. Assume further that the implication
[f(&k41) = f(xR)] = X1 =% (32)

holds. Then a cluster point X, of the sequence (xi) must be its limit. In particular, if the
sequence is bounded, it is convergent.

The key ingredient in the proof of this theorem is the Lojasiewicz gradient inequality,
1-6
[f(x) = f(x)7 <AV (3.3)

which can be shown to hold in some (unknown) neighborhood of x, when f is real-analytic [14,
p. 92]. The constants A > 0 and 0 € (0,1/2] are typically not explicitly known as well. Yet,
in combination with (3.1) and (3.2), the Lojasiewicz gradient inequality allows to prove
that the norms ||xg+1 — Xi|| of increments are summable, which implies convergence of the
sequence (xg).

Under stronger conditions, one can conclude that the limit is a critical point of f. The
following theorem will be applicable to Algorithm 2, although the convergence rate estimates
remain of minor use as long as no a-priori results on the expected value of the Lojasiewicz
exponent 6 are available.
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Theorem 3.2. Under the conditions of Theorem 3.1, assume further that there exists k > 0
such that
1Xk1 = xk [l = £V f(xx)|| (3.4)

for all large enough k. Then V f(x.) = 0, and the convergence rate can be estimated as
follows:
k : 1
q if 0 = 5 (for some 0 < q<1),
RPN A / (35)
k~ 120 if0<6<3.
We were not able to identify the original reference for this theorem which seems rather
scattered through the literature, see e.g. [2, 11]. For concreteness we point to [19], where
Theorems 3.1 and 3.2 are proved in the stated form.

Application to Algorithm 2

Let now f be the function (2.7) again, and (xx) the sequence generated by Algorithm 2.
By a chain of simple arguments, we will show that the required properties (3.1), (3.2),
and (3.4) are satisfied. As F''(x¢) only depends on z2,...,zd, we assume now without loss
in generality that x} = 21 to avoid special treatment of the very first update in the following
proofs.

The first two results are well-known, and express the monotonicity of the algorithms.

Proposition 3.3. Forallk >1 and p=1,2,...,d it holds
IFIE = 72 (i) E + 17 — 7a () 1.

Proof. This is a necessary optimality condition for the least squares problem that was solved
to obtain z;, since, by homogeneity, 71 (x},) is in particular the Euclidean best approximation
of F in span(r(x%)). (More concretely, it follows from choosing z# = y* = 2/, ¢ in (2.8)
that F(xf) = [[m(x7;)[F.) 0

Proposition 3.4. Forv > pu and ¢ > k it holds
71 (<) Mle > [I71(x) I

Proof. This is an immediate consequence of Proposition 3.3, as, by the decreasing property
of ALS, ||F — mi(x})|| < ||F — mi(x})||g. Alternatively, the statement follows from (2.11)

and the monotonicity of HOPM. O

The next two key conclusions were drawn in [12, Lemma 4.1]. The first is as crucial as
it is trivial.
Proposition 3.5. For every p=1,2,...,d the sequence (||z}||) of norms is monotonically

mcreasing.

Proof. As in every inner step of Algorithm 2 only one block is updated, this follows from
Proposition 3.4 and (2.3). O

As a result, the norms of the factors z}, remain bounded from below and from above.

Proposition 3.6. Forallk>1 and p=1,2,...,d it holds

0 < [lzgll < [l ]l < ||f|F< I1 ||w8||_1>-

vER
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Proof. Since F'(xq) # 0, we have |z5| > 0 for all 4 > 2. Then also z} = z{ # 0 (the
equality was assumed at the beginning of the section). The inequality ||zf| < |2} holds
by Proposition 3.5. Combining with (2.3) and Proposition 3.3 gives

(H ||$5||> 2l < lIm(x0)lle < [ F e

VL

that is, the third inequality in the assertion. O
We now turn to the assumptions in Theorems 3.1 and 3.2.

Proposition 3.7. In loop k, the decrease in function value of block update p satisfies

,u
-1 Oft1
f(XZH)—f(XZH) + ||$k+1 $Z||27
where
1
oty = g Pt 1P a2 )

Proof. This is standard least squares theory: the update ) 41 1s chosen such that the gra-

. . —1 1 . .
dient of the quadratic form z* +— f(x,ch, . ,IZH , ot x?‘ e ,x%) is zero. Its quadratic
term is, using (2.3),

1 1 p=1 _p o+l dn2 _ Tkl 2
IHH§|‘T1(Ik+1a"'aIk+17x y Lp, 7"'7Ik||F* ||17 || 5
hence the Hessian in every point is o} 411n,- A Taylor expansion around zh 41 broves the
claim. 1

Proposition 3.8. The decrease in function value per outer loop satisfies

o0
f(xk) = f(Xpy1) > 7\|Xk+1 — x|l

where
op= min of >0.
n=12,....d

Proof. By Proposition 3.6, we have o} > o > 0o > 0 for all 4 = 1,2,...,d. Building a
telescopic sum, Proposition 3.7 yields

d
oo
F(xk) = f(Xp+1) Z I Xk+1 S (%) Z 1)1 — zil? = EHXkH — x|,
pn=1

as asserted. d
Proposition 3.9. There exists k > 0 such that (3.4) holds.

Proof. By Proposition 3.6, the iterates x} (so in particular the x;) remain in some compact
set B for all k. Let V, f(x) denote the partial block gradient at x with respect to . As f
is twice continuously differentiable on B, there exists L > 0 such that

IVuf () = Vi I < [VF(x) = V) < Lix -y
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for all x,y € B. Since by construction of the iterates it holds V, f(x}_ ;) = 0, we deduce

IV £Ge)1* = vauf xi)[|* = ZIIVuf Xfs1) = Vil ()|

d

<L) %y — %l
p=1

d
<L) |Ixkrr — xkl|® = L2dxpg1 — x|,
pn=1

The second inequality follows from the fact that xJ; 41 shares the first p blocks with xj1,
and the last d — pu blocks with x;. Hence (3.4) holds with x = 1/(LVd). O

In summary, we obtain our main result.

Theorem 3.10. The iterates (x) generated by Algorithm 2 converge to a point X, with
Vf(xx) =0, where f is given by (2.7). The convergence rate estimates (3.5) in terms of the
(a-priori unknown) exponent in the Lojasiewicz gradient inequality (3.3) al X, apply.

Proof. As stated in Proposition 3.9, relation (3.4) holds for all k£ and some x > 0. Proposi-
tion 3.8 then implies that both (3.1) and (3.2) also hold. The result is therefore an instance
of Theorems 3.1 and 3.2. O

Without going into detail, we shall not conceal that the appearance of the tensor order
d in the constant x obtained in the proof of Proposition 3.9 may ultimately deteriorate the
convergence rate stated in Theorem 3.2 for growing d. This rate, however, is not explicitly
available anyway. Generally speaking, a dependence on the dimensionality has to be taken
into account when relying on black-box tools like Theorems 3.1 and 3.2.

Due to the equivalence of ALS and HOPM in the sense of Proposition 2.1, Theorem 3.10
in particular states that the limit A, = ||7(x.)]||r is a singular value of the tensor F. There
is no guarantee that it is the maximum singular value A*. Of course, by the monotonicity
of HOPM, we would have A\, = \*, if the starting guess Ao = F(xo)/(||zd|l||z2]| - - - ||=&]|)
happened to be larger than the second largest critical value (singular value), but ensuring
this seems comparably hard as finding A\* itself.

On Generalizations to Compositions of Strongly Convex Func-
tions with Multilinear maps

In this section we take a second look at the main arguments used in Sec. 3.2 from an abstract
perspective, much in the spirit of [23]. We explain why these arguments do not easily apply
to general low-rank tensor optimization tasks by means of cyclic block coordinate descent
(BCD), unless regularization is used.

A generic low-rank optimization problem is the following. One is given a function

J:R’annzx---X’nd %R’
and a multilinear map

.1 2 d N1 Xng X Xn
T:V XVox-o x V- R"A"2 4,
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where V1, V2, ... V% are finite-dimensional vector spaces. Now denoting the elements of
VIxV2x. ... xVdby x = (z,2%,...,2%), the task is to minimize the function
o &
fx)=J(r(x) + 7 > Ml (4.1)
p=1

where o, > 0 is a regularization parameter.

The most common examples for J are the squared Euclidean distance || F — X||2 to a
given tensor F, and the energy functional (AX, X)r— (B, X)F of a “high-dimensional” linear
system of equations AX = B with A being a symmetric positive definite linear operator on
Rmxm2x-xna  The map 7, on the other hand, represents a low-rank tensor format of some
fixed rank. A notable example is the rank-r CP format, which for d = 3 reads

7(A,B,C) = Z a;ob;oc; (4.2)
i=1

with a;, b;, and ¢; being the columns of A € R™*" B € R"2*" and C € R™*" respectively.
For r = 1 we recover (2.1). Other important examples of tensor formats are the Tucker
format, the hierarchical Tucker format, and the tensor train format. We refer to [7, 8, 10]
and references therein.

The generalization of Algorithm 2 to f given by (4.1) is the cyclic BCD method noted in
Algorithm 3. It is feasible whenever J has bounded sub-level sets. We shall investigate to

Algorithm 3: Cyclic BCD for low-rank optimization

Input: Starting guess xq.

k+0

while not converged do
for y=1,2,...,d do

W : 1 p—1 pt1 d
Ty € argming ey f(Thiqs -T2 2, x))
end
k+—k+1

end

what extent one can prove convergence using the same ideas as in Sec. 3.2. To this end, we
assume that J is real-analytic, convex, and coercive, that is, || X || — oo implies J(X) — .
The two above-mentioned examples have this property. Then f in (4.1) is real-analytic,
and at least the restriction to every block-variable is convex. For fixed Xy = 7(xq), let
Lo ={X : JX) < J(Xp)}. Letting 790 > 0 be a lower spectral bound for the Hessians
V2J(X) on the compact convex set Ly, it follows from Taylor’s theorem that

J(y)ZJ(X)+<VJ(X),3’*X>F+%OIIJJ*XHE (4.3)
for all X, in Ly. Let us further introduce the quantities
||T(’I]£:+17 e 7IZ;i7 I'U', Ig+17 ctt .Tg)”%
Uk:+1 - g}gb ||;CP«||2 ) (44)

which are easily identified as the squared minimal singular values of the restricted linear

—1 1 i . . . .
maps ¥ — T(Tp ;.- ,xZH,x“,xg"— ,..., %) that arise during the iteration. They will
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play a similar same role as the o}/, ; in Proposition 3.7. Note that if max(yy0y, ;,0.) > 0,
then the update 41 1s a unique choice, since in this case the corresponding restricted
minimization problem is strongly convex (see (4.5)).

The new entry z} 41 satisfies V, f (x} +1) = 0. Specifically, by the chain rule and the
linearity of 7 with respect to every block variable, this implies

0= <vuf(xg+l)’xg - xg+1>
= <VJ<T<X;$+1))’ T(XZ;I) - T(XZ+1)>F + 0 <mlli+1v Ty — w‘,:+1>.

Since all generated tensors 7(x};) remain in Lo, it then follows from (4.3) that

n
1 ' YoOk41 T O«
f(XZJr ) — f(xﬁchl) 2 +2 ||a?Z+1 - xZ”Q’ (4.5)

which is the analog to Proposition 3.7.

The regularized case

Suppose we have chosen o, > 0. Then we can easily deduce an analog of Proposition 3.8
from (4.5). Further, the sub-level sets of f are bounded when o, > 0 (as J is bounded
below). Hence, since f is decreasing, the sequences (z}) themselves remain bounded for
every u, which in turn allows to prove an analog of Proposition 3.9. These two propositions
were sufficient to prove Theorem 3.10, which therefore can be generalized as follows.

Theorem 4.1 (cf. Xu and Yin [23, Theorems 2.8 and 2.9]). Let J be real-analytic, convez,
and coercive, and T be multilinear as considered above. A sequence (xy) of iterates generated
by Algorithm 3 for the function f given by (4.1) with o, > 0 is uniquely determined by Xg,
and converges to a point X, satisfying Vf(x.) = 0. The convergence rate estimates (3.5)
apply correspondingly.

The non-regularized case

When o, = 0, we need 7o > 0 (which is always possible if f is strictly convex), but also
have to assume that
liminf o}, = o > 0, (4.6)
k,p
in order to deduce an analog of Proposition 3.8 from (4.5). As the 7(x}/) remain bounded,
property (4.6) then implies, in light of (4.4), that the sequences () also remain bounded
for every p, so that an analog of Proposition 3.9 again can be established.

Theorem 4.2. Let J be real-analytic, strictly convex, and coercive, and T be multilinear as
considered above. A sequence (xi) of iterates generated by Algorithm 3 for the function f
given by (4.1) with o, = 0 satisfying (4.6) converges to a point X, satisfying V f(x.) = 0.
The convergence rate estimates (3.5) apply correspondingly.

Condition (4.6) can be interpreted as a stability requirement on the used tensor format
during the iteration. Unless one finds a good argument to guarantee it in advance (for in-
stance some condition on the starting guess), Theorem 4.2 remains an a-posteriori statement
of minor practical value. For Algorithm 2, the product formula (2.3) and Proposition 3.6
(which itself is proved using (2.3)) imply (4.6). Unfortunately, a property like (2.3) is a
unique feature of rank-one tensors. For none of the aforementioned tensor formats involv-
ing notions of higher rank an argument ensuring the stability condition (4.6) is currently
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available. In the case of optimization using rank-r CP tensors (4.2) with r > 1, this may be
explained by the fact that the problem itself can be ill-posed [6]. Another reason for (4.6)
to fail can be that the used rank in the multilinear tensor format overestimates the actual
rank of the sought solution.
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