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which corresponds to an m degree homogenous polynomial

Axm :=

n∑
i1,...,im=1

ai1,i2,...,imxi1xi2 · · ·xim ,

where x = (x1, x2, . . . , xn)
T ∈ Rn. Meanwhile, the n-dimensional column vector Axm−1 can

be defined in the component form(
Axm−1

)
i
:=

n∑
i2,...,im=1

ai,i2,...,imxi2 · · ·xim .

Moreover, the tensor A is said to be symmetric if its entries ai1,...,im are invariant under
any permutation of their indices {i1, . . . , im} [7, 10, 16]. In this paper, we assume that all
tensors involved are symmetric.

For the tensor A, if there exists λ ∈ R and x ∈ Rn satisfying

Axm−1 = λx,
xTx = 1,

(1.1)

then λ is a Z-eigenvalue of A and x is the corresponding Z-eigenvector [16].
By the variational principle, any vector x satisfying (1.1) is a KKT point of the polyno-

mial optimization problem
max
x∈Rn

Axm

s.t. xTx = 1
(1.2)

with (Axm, x) being a Z-eigenpair of A.
There have been several algorithms for finding the rank-1 tensor approximation, including

the higher order power method (PM) [7, 10], the alternating least square (ALS) [25], the
Newton iteration [25] and the modified power method [26]. Kolda and Mayo [8] designed
the shifted power method that is guaranteed to converge to a KKT point. It should be
noted that these algorithms aim to find the largest-magnitude Z-eigenvalue. Nie and Wang
[14] studied semidefinite relaxations of this problem that can provide both the largest and
smallest Z-eigenvalues.

There have also been several algorithms to compute eigenvalues directly. Qi et al. [18]
put forth a direct method for the cases that n = 2 and that m = n = 3, in which all
Z-eigenvalues can analytically be given. Han [3] provided an unconstrained optimization
approach for finding generalized eigenpairs of even order symmetric tensors. Hao et al. [4]
presented a sequential subspace projection method (SSPM) for solving extreme Z-eigenvalues
of large scale symmetric tensors and established the linear convergence of the SSPM method.
Besides, a random phase global strategy was introduced to help find extreme Z-eigenvalues.
Cui et al. [2] came up with a new approach to compute all real eigenvalues sequentially by
using Jacobian SDP relaxations of some special polynomial optimization problems. Jiang
et al. [6] discussed approaches for calculating the extreme Z-eigenvalue of super-symmetric
tensor via convex Optimization.

In this paper, we shall propose a feasible trust-region method for calculating extreme
Z-eigenvalues of symmetric tensors based on the reformulation (1.2). The proposed method
has two basic features. The first is that the true Hessian, which is ready for polynomials,
is utilized in the trust-region subproblem so that any cluster point of the iterations can
be shown to satisfy the second-order necessary conditions. Since saddle points and local
minimizers will be excluded, the method seems to have a stronger ability in finding extreme
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Z-eigenvalues compared with those algorithms that are only guaranteed to find a KKT
point. This is important since the tensor Z-eigenvalue problem (1.2) is NP hard [5] and the
largest Z-eigenvalue of a symmetric tensor is corresponding to the global maximizer of the
problem (1.2). The second is that after a trial step dk is provided by solving the trust-region
subproblem at the current point xk, the projection of xk + dk to the unit sphere, instead
of the point xk + dk itself, is judged and if successful, is used for the next point xk+1.
Consequently, xk+1 is feasible. This is why we call our method by feasible trust-region
method or simply FTR method.

The rest of this paper is organized as follows. In the next section, we describe the
FTR method for the largest Z-eigenvalue of symmetric tensors. Global convergence and
local quadratic convergence of the FTR method for the extreme Z-eigenvalue problem are
established in Section 3. Numerical results with the FTR method are reported in Section
4, which show that the FTR is superior to both SSPM and PM. The conclusions are drawn
in the last section.

2 The Feasible Trust-Region Method

In this section, we propose the feasible trust-region method (FTR) for solving (1.2). The
method is different from the traditional trust-region method for general constrained opti-
mization, in which some specific techniques [23, 24] are required for the trust-region sub-
problems in order to minimize the linear constraints violation. Instead, we deal with the
constraints in another way for the problem (1.2). Specifically, at each iteration, if the trial
step dk is accepted, the iterate xk+dk is enforced to be feasible by setting xk+1 = r(xk+dk),
where

r(x) =
x

∥x∥
(2.1)

is a projection operator to the unit sphere. Throughout this paper, ∥ · ∥ stands for the
2-norm. We also use I to denote the identity matrix.

The problem (1.2) can be rewritten as follows

max
x∈Rn

f(x) =
1

m
Axm

s.t.
1

2

(
xTx− 1

)
= 0. (2.2)

The Lagrangian function is

L(x, λ) = f(x)− λ

2
(xTx− 1).

By this reformulation, the KKT point x∗ and the related Lagrange multiplier λ∗ = ∇f(x∗)Tx∗

of (2.2) exactly form a Z-eigenpair (λ∗, x∗) of A.
We consider the following trust-region subproblem of (2.2) at the current feasible point

xk,

max
d∈Rn

mk(d) = fk + gTk d+
1

2
dTWk d,

s.t. xT
k d = 0,

∥d∥ ≤ ∆k, (2.3)
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where

fk = f(xk),

gk = g(xk) = ∇f(xk)− λkxk, (2.4)

Wk = W (xk) = ∇2f(xk)− λkI (2.5)

are the function value, gradient and Hessian of L(x, λ) at (xk, λk), respectively. ∆k is the
trust-region radius. For the value of λk, we prescribe

λk = ∇f(xk)
Txk = Axm

k . (2.6)

Consider the null space subproblem of (2.3). We define the n by n−1 column orthogonal
matrix Uk as the basis of the null space Nxk

= {d |xT
k d = 0} of xk. By writing

d = Ukq (2.7)

and using ∥d∥ = ∥q∥, we obtain the reduced trust-region model

max
q∈Rn−1

m̃k(q) = fk + g̃Tk q +
1

2
qTW̃kq

s.t. ∥q∥ ≤ ∆k, (2.8)

where g̃k = UT
k gk ∈ Rn−1, W̃k = UT

k WkUk ∈ R(n−1)×(n−1). One may refer to the relation
(18.21) in [15] for the details of the null space method.

We now move to the outline of the feasible trust-region method. Two key ingredients in
a trust-region algorithm are the strategies for choosing the trust-region radius and judging
whether the trial step is accepted. Given a trial step dk = Ukqk, we define the ratio

ρk =
f (r(xk + dk))− f(xk)

mk(dk)−mk(0)
. (2.9)

The numerator in (2.9) is the actual increase of f(x) and the denominator is the predicted
increase. If ρk is close to 1, there is a good agreement between the model mk(d) and
the function f(x) over this step, it is safe to expand the trust-region radius at the next
iteration. Considering ∥xk+1∥ = 1, it is reasonable to restrict ∆k+1 ≤ 2. If ρk is positive
but significantly smaller than 1, we do not alter the trust-region, but if it is close to zero
or negative, we shrink the trust-region radius by reducing ∆k at the next iteration [15].
Specifically, ∆k+1 is updated as follows

∆k+1 =


1
4∆k, if ρk ≤ σ1;
min (2, 2∆k) , if ρk > σ2;
∆k, else,

(2.10)

where σ1, σ2 are constants with 0 < σ1 < σ2 and σ1 < 1.
Since dk = 0 lies in the region ∥q∥ ≤ ∆k, the predicted increase is always nonnegative.

Hence, if ρk is negative, the new objective value f (r(xk + dk)) is smaller than f(xk), the
step must be rejected. Specifically, the next iteration xk+1 is defined as

xk+1 =

{
r(xk + dk), if ρk ≥ σ0;
xk, else,

(2.11)

where σ0 ∈ [0, σ1) is a constant. Since r is the projection operator to the unit sphere, we
see that the next point xk+1 must keep the feasibility.
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The following is a description of the FTR method for computing the largest Z-eigenvalues
of symmetric tensors.

Algorithm 1 The feasible trust-region method for the problem (2.2)

Step 0. Given an initial point x0, set the parameters σ0, σ1, σ2, ϵ, ∆0, λ0 = Axm
0 and k := 0.

Step 1. Compute gk, Wk, Uk,g̃k and W̃k, then solve the problem (2.8) to get qk and set
dk = Ukqk.

Step 2. If ∥dk∥ ≤ ϵ, stop and output (λk, xk).

Step 3. Calculate ρk by (2.9).

Step 4. Update the trust-region radius ∆k by (2.10).

Step 5. If ρk ≥ σ0, set xk+1 = r(xk+dk) and λk+1 = Axm
k+1; else xk+1 = xk and λk+1 = λk.

Set k := k + 1 and go to Step 1.

3 Convergence Analysis

In this section, we establish the global convergence and local quadratic convergence of Al-
gorithm 1 for the problem (2.2). We shall employ the techniques in traditional trust-region
methods to derive the results. However, we will face some difficulties because xk+1 is up-
dated by r(xk + dk) instead of xk + dk in order to keep the feasibility.

To simplify our analysis, define

h(x) = f(r(x)).

The gradient and Hessian of h(x) are

∇h(x) =
(

I

∥x∥
− xxT

∥x∥3

)
∇f(r(x)), (3.1)

∇2h(x) =
∇r(x)∇2f(r(x))

∥x∥
− x∇f(r(x))T

∥x∥3
− 3∇f(r(x))TxxxT

∥x∥5

− xT∇f(r(x))I +∇r(x)∇2f(r(x))xxT +∇f(r(x))xT

∥x∥3
,

respectively.

3.1 Global convergence

Lemma 3.1. (i) For all x, y satisfying xTx = 1 and yTy = 1, we have

∥W (x)∥ ≤M, (3.2)

∥g(x)− g(y)∥ ≤ L0∥x− y∥, (3.3)

∥W (x)−W (y)∥ ≤ L1∥x− y∥, (3.4)

where M , L0 and L1 are positive constants.
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(ii) For all x, y satisfying 1 ≤ ∥x∥ ≤ 3 and 1 ≤ ∥y∥ ≤ 3, we have

∥∇2h(x)−∇2h(y)∥ ≤ L2∥x− y∥, (3.5)

where L2 is a positive constant.

Proof. They are obvious since g(x), W (x) and ∇2h(x) are smooth and bounded on the
closed sets {x |xTx = 1} and {x | 1 ≤ ∥x∥ ≤ 3}.

Lemma 3.2. For the error between the model mk(dk) and h(xk + dk), we have

|mk(dk)− h(xk + dk)| ≤ β∥dk∥3, (3.6)

where β is some positive constant.

Proof. By the mean value theorem for integration, we have

h(xk + dk) = h(xk) +∇h(xk)
Tdk +

1

2
dTk∇2h(xk + θkdk)dk

for some θk ∈ (0, 1). Since xT
k dk = 0, we can see by (3.1) that

∇h(xk)
Tdk = ∇f(xk)

T(I − xkx
T
k )dk = ∇f(xk)

Tdk.

By the expression of gk in (2.4), we also have that gTk dk = ∇f(xk)
T dk. Thus ∇h(xk)

Tdk =
gTk dk. Further, noticing that xT

k dk = 0, xT
k xk = 1 and θk ∈ (0, 1), we can get that

1 ≤ ∥xk + θkdk∥2 = 1 + θ2k∥dk∥2 ≤ 5.

Thus the point xk + θkdk still belongs to the set {x | 1 ≤ ∥x∥ ≤ 3}. It follows from the
definition (2.3) of mk(dk) and (3.5) that

|mk(dk)− h(xk + dk)| =
∣∣∣∣12dTkWkdk −

1

2
dTk∇2h(xk + θkdk)dk

∣∣∣∣
=

∣∣∣∣12dTk∇2h(xk)dk −
1

2
dTk∇2h(xk + θkdk)dk

∣∣∣∣
≤ 1

2
L2∥dk∥3.

Hence (3.6) holds with β = 1
2L2.

Lemma 3.3. The predicted increase of the problem (2.3) satisfies

mk(dk)−mk(0) ≥
1

2
∥gk∥min

(
∆k,

∥gk∥
∥Wk∥

)
. (3.7)

Proof. For the problem (2.8), we know by Lemma 4.4 in [15] that

m̃k(qk)− m̃k(0) ≥
1

2
∥g̃k∥min

(
∆k,

∥g̃k∥
∥W̃k∥

)
.

By the Poincaré interlacing theorem (for example, see [20]), we have that ∥W̃k∥ = ∥UT
k WkUk∥ ≤

∥Wk∥. This with ∥g̃k∥ = ∥UT
k gk∥ = ∥gk∥ gives

mk(dk)−mk(0) = m̃k(qk)− m̃k(0)

≥ 1

2
∥gk∥min

(
∆k,

∥gk∥
∥Wk∥

)
,

which completes the proof.
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The next lemma indicates that at least one of the cluster points of {xk} is a KKT points
of the problem (2.2).

Lemma 3.4. Consider the sequence {xk} generated by Algorithm 1. Then the sequence
{f(xk)} is nondecreasing. Furthermore, we have

lim inf
k→0

∥gk∥ = 0. (3.8)

Proof. Suppose there is a constant ϵ > 0 and a positive index K such that

∥gk∥ ≥ ϵ, ∀ k ≥ K. (3.9)

Firstly, we claim that there is a constant ∆̄ > 0 such that

∆k ≥ ∆̄, ∀ k ≥ K. (3.10)

Actually,

ρk ≥ 1− |1− ρk|

= 1− |mk(dk)−mk(0)− h(xk + dk) + h(xk)|
mk(dk)−mk(0)

= 1− |mk(dk)− h(xk + dk)|
mk(dk)−mk(0)

. (3.11)

It follows from Lemmas 3.2 and 3.3, (2.9) and (3.9) that

ρk ≥ 1− 2β∥dk∥3

∥gk∥min
(
∆k,

∥gk∥
∥Wk∥

)
≥ 1− 2β∆3

k

ϵmin
(
∆k,

ϵ
M

) . (3.12)

Therefore, ρk > σ1 holds if ∆k < min

{
ϵ
M ,

√
(1−σ1)ϵ

2β

}
. By (2.10), ∆k+1 will not shrink. As

a result, (3.10) holds with

∆̄ = min

{
∆K ,

1

4
min

{
ϵ

M
,

√
(1− σ1)ϵ

2β

}}
.

Secondly, consider the following two cases for ρk. For the first case, assume that there
is an infinite subsequence K such that

ρk > σ1, ∀ k ∈ K. (3.13)

In this case,

h(xk+1)− h(xk) ≥ σ1 [mk(dk)−mk(0)]

≥ 1

2
σ1ϵmin

(
∆k,

ϵ

M

)
,

where the last equality uses Lemma 3.3. Noting that {h(xk)} is nondecreasing and is
bounded on the unit sphere xTx = 1, we have

lim
k∈K,k→∞

∆k = 0.
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For the second case, if (3.13) fails, there must exist an index K0 such that

ρk≤σ1, ∀ k ≥ K0. (3.14)

Then we know from the updating strategy (2.10) that ∆k is multiplied by 1
4 for all sufficiently

large k and hence lim
k→∞

∆k = 0. This contradicts (3.10), giving lim inf
k→∞

∥gk∥ = 0.

The next theorem shows that any cluster point of {xk} is a KKT point and satisfies the
second-order necessary conditions.

Theorem 3.5. Consider the sequence {xk} generated by Algorithm 1. Then

lim
k→0
∥gk∥ = 0. (3.15)

Moreover, for any cluster point x∗ of {xk}, the second-order necessary condition holds; i.e.,
g(x∗) = 0 and

dTW ∗d ≤ 0 (3.16)

for all vector d satisfying dTx∗ = 0, where W ∗ = W (x∗).

Proof. Consider any index s such that ∥gs∥ ̸= 0. For every point x in the ball

B(xs, δ) = {x |xTx = 1, ∥x− xs∥ ≤ δ},

we obtain from (3.3) that

∥g(x)∥ ≥ ∥gs∥ − ∥g(x)− gs∥ ≥ ∥gs∥ − L0∥x− xs∥.

Denoting δ = ∥gs∥
2L0

, we have

∥g(x)∥ ≥ ∥gs∥ − L0δ =
1

2
∥gs∥. (3.17)

It follows from lim inf
k→0

∥gk∥ = 0 in Lemma 3.4 that the ball B(xs, δ) cannot contain the whole

sequence {xk}.
Suppose t ≥ s such that xt+1 is the first iterate after xs outside B(xs, δ). Then all

{xs, · · · , xt} ∈ B(xs, δ) and

f(xt+1)− f(xs) =

t∑
k=s

(f(xk+1)− f(xk))

≥
t∑

k=s,xk ̸=xk+1

σ0 (mk(d)−mk(0))

≥
t∑

k=s,xk ̸=xk+1

1

2
σ0∥gk∥min

(
∆k,

∥gk∥
∥Wk∥

)

≥
t∑

k=s,xk ̸=xk+1

1

4
σ0∥gs∥min

(
∆k,
∥gs∥
2M

)
,

where the first inequality uses (2.11), the second inequality follows from Lemma 3.3 and the
last one uses (3.2).
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Consider the following two cases for ∆k. On one hand, if ∆k ≤ ∥gs∥
2M for all k = s, · · · , t,

we have

f(xt+1)− f(xs) ≥
1

4
σ0∥gs∥

t∑
k=s,xk ̸=xk+1

∆k ≥
1

4
σ0∥gs∥δ =

1

8L0
σ0∥gs∥2. (3.18)

On the other hand, if ∆k > ∥gs∥
2M for some k = s, · · · , t,

f(xt+1)− f(xs) ≥
1

8M
σ0∥gs∥2. (3.19)

As f(x) is smooth on the unit sphere, the value f(x∗) of any limit point x∗ must be finite.
Noting that the sequence f(xk) is nondecreasing, we have

f(x∗)− f(xk)→ 0,

which with (3.18) and (3.19) derives

0← f(x∗)− f(xs) ≥ f(xt+1)− f(xs)

≥ σ0∥gs∥2 min

(
1

8L0
,

1

8M

)
Thus we can conclude that lim

s→∞
∥gs∥ = 0. Therefore any cluster point x∗ of {xk} satisfies

g(x∗) = 0.
Now we show (3.16) by contradiction. Suppose that there exists a positive eigenvalue η0

satisfying
vTW ∗v = η0 > 0, where vTx∗ = 0, ∥v∥ = 1. (3.20)

Without loss of generality assume that gTk v ≥ 0, otherwise let v = −v. Consider the direction
d = τkv for some constant 0 ≤ τk ≤ ∆k, we have

mk(d)−mk(0) = gTk d+
1

2
dTWkd

= τkg
T
k v +

1

2
τ2kv

TWkv

≥ 1

2
∥d∥2vTWkv. (3.21)

Since |vTWkv− vTW ∗v| ≤ ∥Wk −W ∗∥∥v∥2, ∥v∥ = 1, without loss of generality we consider
a convergent subsequence {xk} for which Wk →W ∗, we can see that vTWkv → η0 when xk

is sufficiently close to x∗.
Consider the following two cases (similarly to the proof of Lemma 3.4). For the first

case, assume that there is an infinite subsequence K such that

ρk > σ1, ∀ k ∈ K.

By (3.21), we have

f(xk+1)− f(xk) ≥ σ1(mk(dk)−mk(0)) ≥
1

4
σ1η0∥dk∥2, ∀ k ∈ K. (3.22)

It follows from f(xk+1)−f(xk)→ 0 that ∥dk∥ → 0. Thus dk = 0 will be the optimal solution
of (2.3) for k sufficiently large; i.e., qk = 0 is the optimal solution of the subproblem (2.8).
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Therefore, we have that g̃k = 0 and W̃k is negative semidefinite. The latter contradicts
(3.20). For the second case, if there exists an index K0 such that

ρk ≤ σ1, ∀ k ≥ K0,

we have lim
k→∞

∆k = 0. This with (3.6), (3.11) and (3.21) indicates that ρk → 1 and hence

we obtain a contradiction with ρk ≤ σ1. In both cases, we can obtain some contradiction
and hence the statement (3.16) is correct. The proof is completed.

3.2 Local quadratic convergence

In this subsection, we show the local quadratic convergence of Algorithm 1.

Assumption 3.6. Suppose that for some feasible point x∗ ∈ Rn and the Lagrange multiplier
λ∗ = ∇f(x∗)Tx∗ that g(x∗) = 0. Suppose also that

dTW ∗d < 0, (3.23)

for all d ̸= 0 satisfying (x∗)Td = 0, where W ∗ = W (x∗).

Lemma 3.7. Suppose Assumption 3.6 holds for the problem (2.2). If the iterates xk and
λk generated by Algorithm 1 are sufficiently close to x∗ and λ∗, respectively, we have

lim
k→∞

ρk = 1 and ∥dk∥ < ∆k, ∀ k > K0, (3.24)

for some positive index K0.

Proof. Denote W̃ ∗ = U∗TW ∗U∗, where U∗ is the basis of Nx∗ = {d |dTx∗ = 0}. By
Assumption 3.6, we know that W̃k is negative definite for sufficiently large k; i.e., the largest
eigenvalue is smaller than −η1 for some constant η1 > 0. Consider the direction

q = −τkW̃−1
k g̃k, (3.25)

where τk = min
(
1, ∆k

∥W̃−1
k g̃k∥

)
is the stepsize. Then q is a feasible solution of the problem

(2.8). We can claim that exact solution dk of the problem (2.3) satisfies ∥dk∥ = ∥q∥. To
verify this, consider the two choices of τk. If ∆k

∥W̃−1
k g̃k∥

< 1, both ∥dk∥ and ∥q∥ equal to

∆k. Otherwise, if ∆k

∥W̃−1
k g̃k∥

≥ 1, q will be the optimal solution of the problem (2.8), and

∥q∥ = ∥Ukq∥ = ∥dk∥. Then for the exact solution dk,

mk(dk)−mk(0) ≥ m̃k(q)− m̃k(0)

= qTg̃k +
1

2
qTW̃kq

= −τ−1
k qTW̃kq +

1

2
qTW̃kq

≥ −1

2
qTW̃kq ≥

1

2
η1∥q∥2

=
1

2
η1∥dk∥2. (3.26)

Therefore, it follows from (3.6), (3.11) and (3.26) that

ρk → 1.
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That is to say, there exists an index K0 such that

ρk > σ1, ∀ k ≥ K0.

Noting that ∆k does not shrink and ∥g̃k∥ → 0, we have ∆k

∥W̃−1
k g̃k∥

> 1. Therefore, the τk in

(3.25) will be equal to 1 and ∆k > ∥W̃−1
k g̃k∥ = ∥dk∥. This completes the proof of (3.24).

By the logics of the proof of Theorem 3.7 in [22], we can derive the following local
convergence result.

Lemma 3.8. Suppose Assumption 3.6 holds and the sequence {xk} generated by Algorithm 1
is sufficiently close to x∗. Then xk and dk satisfy

∥xk + dk − x∗∥ = O(∥xk − x∗∥2). (3.27)

Proof. The trust-region constraint can be omitted since by Lemma 3.7, ∥dk∥ < ∆k always
holds for sufficiently large k. The problem (2.3) is reduced to

max
d

mk(d) = fk + gTk d+
1

2
dTWk d

s.t. xT
k d = 0. (3.28)

Consider the KKT system of (3.28). There exist d ∈ Rn and µ ∈ R solving the system(
Wk −xk

−xT
k 0

)(
d
µ

)
=

(
−gk
0

)
. (3.29)

Let Pk = I − xkx
T
k be the projection matrix from Rn to Nxk

. By (3.29), Pkxk = 0 and
∇f(x∗)− λ∗x∗ = 0, we have

PkWkdk = −Pkgk = −Pk(∇f(xk)− λ∗xk)

= −Pk(∇2f(x∗)− λ∗I)(xk − x∗) +O(∥xk − x∗∥2)
= −PkW

∗(xk − x∗) +O(∥xk − x∗∥2).

Here, W ∗ = ∇2f(x∗)− λ∗I. Hence, we can get

Pk(Wk −W ∗)dk = −PkW
∗(xk + dk − x∗) +O(∥xk − x∗∥2). (3.30)

By xT
k dk = 0 and 2xT

k (xk − x∗) = 2− 2xT
k x

∗ = ∥xk − x∗∥2, we have

xT
k (xk + dk − x∗) = O(∥xk − x∗∥2). (3.31)

Combing equations (3.30) and (3.31), we can obtain(
PkW

∗

xT
k

)
(xk + dk − x∗) =

(
−Pk(Wk −W ∗)dk

0

)
+O(∥xk − x∗∥2). (3.32)

It follows from ∥Pk∥ = 1 and (3.4) that

∥Pk(Wk −W ∗)dk∥ ≤ ∥Wk −W ∗∥∥dk∥ ≤ L1∥xk − x∗∥∥dk∥. (3.33)
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Next, we claim from (3.32) and (3.33) that

∥xk + dk − x∗∥ = O(∥xk − x∗∥∥dk∥) +O(∥xk − x∗∥2). (3.34)

Denote the matrix Gk and G∗ as

Gk =

(
PkW

∗

xT
k

)
, G∗ =

[
P ∗W ∗

x∗T

]
∈ R(n+1)×n,

where P ∗ = I − x∗(x∗)T. For any d ∈ Rn satisfying G∗d = 0, we have x∗Td = 0 and
P ∗W ∗d = 0, which means that dTP ∗W ∗d = dTW ∗d = 0. By (3.23) we can get that d = 0.
Therefore, G∗ has full column rank. Further, as xk is close to x∗, the matrix Gk has also
full column rank. Taking norms on the both sides of (3.32) and using (3.33), we can obtain
(3.34).

Finally, we can derive from (3.34) that

∥dk∥ ≤ ∥xk + dk − x∗∥+ ∥xk − x∗∥
= O(∥xk − x∗∥∥dk∥) +O(∥xk − x∗∥2) + ∥xk − x∗∥
= O(∥xk − x∗∥), (3.35)

which with (3.34) gives (3.27). This completes the proof.

Now we are ready to prove the local quadratic convergence of the FTR method for the
tensor Z-eigenvalue problem.

Theorem 3.9. Under the assumptions of Lemma 3.8, the sequence {xk} generated by Al-
gorithm 1 satisfies

∥xk+1 − x∗∥ = O(∥xk − x∗∥2). (3.36)

Proof. By the facts that ∥xk + dk∥2 = 1 + dTk dk ≥ 1 and ∥x∗∥ = 1, it follows from
Lemma 3.8 that

∥xk+1 − x∗∥ =
∥∥∥∥ xk + dk
∥xk + dk∥

− x∗
∥∥∥∥

=
1

∥xk + dk∥
∥xk + dk − ∥xk + dk∥x∗∥

≤ ∥xk + dk − x∗ + x∗ − ∥xk + dk∥x∗∥
≤ ∥xk + dk − x∗∥+ (∥xk + dk∥ − ∥x∗∥)
≤ ∥xk + dk − x∗∥+ ∥xk + dk − x∗∥
= O(∥xk − x∗∥2). (3.37)

This completes the proof.

4 Numerical Experiments

We tested the proposed feasible trust-region method (FTR), which was compared with the
sequential subspace projection method (SSPM) [4] and the high order power method (PM)
[7, 10]. Some testing examples were also calculated in [14], where the exact extreme Z-
eigenvalues can be computed theoretically. Therefore we are able to verify whether the
algorithm returns the correct extreme Z-eigenvalues.
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Our codes are implemented in MATLAB (R2013a). All the experiments are preformed
on a Dell desktop with Intel dual core E6750 CPU at 2.66 GHz and 2GB of memory running
Windows 7. The three models share the same normalized random initial points which obey
the Gaussian distribution. The parameters for FTR are set to be

σ0 = 0.1, σ1 = 0.25, σ2 = 0.75, ϵ = 1.0−5, ∆0 = 2.

The stopping criterion for both SSPM and PM is∣∣∣∣1− ∇f(x)Tx
∥∇f(x)∥ · ∥x∥

∣∣∣∣ ≤ 10−10,

which naturally holds if ∇f(x) is parallel to x.
The matrix Uk in (2.7) can be generated in the following way. Consider the Householder

transformation matrix Hk (that satisfies H2
k = I) such that

Hkxk = −sign((xk)1)e1,

where (xk)1 is the first element of xk ∈ Rn and e1 = (1, 0, · · · , 0)T. More exactly, we have

Hk = I − 2wkw
T
k , where wk =

xk + sign((xk)1)e1
∥xk + sign((xk)1)e1∥

.

The matrix Uk can be chosen such that

[−sign((xk)1)xk, Uk] = Hk. (4.1)

Therefore the computational cost to formulate the reduced problem (2.8) is O(n2).
If we change max into min in the problem (2.2), both FTR and SSPM can return the

smallest Z-eigenvalue. However, the PM method looks only for the largest-magnitude Z-
eigenvalue.

The following five examples in [14] are used in our tests.

Example 4.1. Calculate the largest Z-eigenvalue of the 3th-order n-dimensional symmetric
tensor

Ai1,i2,i3 =
(−1)i1
i1

+
(−1)i2
i2

+
(−1)i3
i3

.

Example 4.2. Calculate the smallest Z-eigenvalue of the 4th-order n-dimensional symmet-
ric tensor

Ai1,i2,i3,i4 = arctan

(
(−1)i1 i1

n

)
+ · · ·+ arctan

(
(−1)i4 i4

n

)
.

Example 4.3. Calculate the smallest Z-eigenvalue of the 4th-order n-dimensional symmet-
ric tensor

Ai1,i2,i3,i4 = tan(i1) + tan(i2) + tan(i3) + tan(i4).

Example 4.4. Calculate the smallest Z-eigenvalue of the 4th-order n-dimensional symmet-
ric tensor

Ai1,i2,i3,i4 = sin(i1 + i2 + i3 + i4).

Example 4.5. Calculate the smallest Z-eigenvalue of the 5th-order n-dimensional symmet-
ric tensor

Ai1,i2,i3,i4,i5 = (−1)i1 log(i1) + · · ·+ (−1)i5 log(i5).
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Table 1: The numerical results of the five examples
SSPM FTR PM

Ex. m n λ iter time λ iter time λ iter time

10 1.78e+1 5 3.00e-2 1.78e+1 3 2.80e-2 1.78e+1 34 4.4e-3
20 3.42e+1 4 6.90e-3 3.42e+1 4 2.18e-2 3.42e+1 45 1.65e-2
30 5.01e+1 3 1.19e-2 5.01e+1 4 2.81e-2 5.01e+1 54 4.74e-2
40 6.59e+1 3 2.40e-2 6.59e+1 4 3.68e-2 6.59e+1 62 1.70e-1

4.1 3 50 8.16e+1 2 3.67e-2 8.16e+1 4 6.44e-2 8.16e+1 58 2.06e-1
60 9.72e+1 3 6.27e-2 9.72e+1 4 7.52e-2 9.72e+1 72 3.87e-1
70 1.13e+2 2 6.46e-2 1.13e+2 4 1.02e-1 1.13e+2 64 5.04e-1
80 1.28e+2 3 1.35e-1 1.28e+2 4 1.38e-1 1.28e+2 85 9.20e-1

10 -7.71e+1 5 1.01e-1 -7.71e+1 4 2.99e-1 -7.71e+1 68 1.52e-2
20 -2.83e+2 5 5.60e-2 -2.83e+2 5 5.51e-2 -2.83e+2 131 2.34e-1
30 -6.18e+2 7 3.32e-1 -6.18e+2 5 1.54e-1 -6.18e+2 208 1.54e+0

4.2 4 40 -1.08e+3 3 4.42e-1 -1.08e+3 6 4.58e-1 -1.08e+3 332 7.18e+0
50 -1.67e+3 4 1.33e+0 -1.67e+3 5 8.82e-1 -1.67e+3 315 1.60e+1
60 -2.39e+3 7 4.95e+0 -2.39e+3 5 2.02e+0 -2.39e+3 443 4.79e+1
70 -3.24e+3 6 8.17e+0 -3.24e+3 5 3.71e+0 -3.24e+3 496 1.09e+2
80 -4.22e+3 4 1.19e+1 -4.22e+3 5 1.10e+1 -4.22e+3 512 2.14e+2

10 -5.59e+2 3 5.4e-3 -5.59e+2 4 1.77e-2 -5.59e+2 12 3.7e-3
20 -3.69e+4 5 5.70e-2 -3.69e+4 4 4.25e-2 -3.69e+4 24 7.85e-2
30 -6.49e+4 5 2.51e-1 -6.49e+4 4 1.26e-1 -6.49e+4 28 2.62e-1

4.3 4 40 -1.07e+5 5 7.54e-1 -1.07e+5 4 3.31e-1 -1.07e+5 27 7.02e-1
50 -1.45e+5 5 1.77e+0 -1.45e+5 4 7.88e-1 -1.45e+5 29 1.68e+0
60 -1.96e+5 5 3.80e+0 -1.96e+5 4 1.65e+0 -1.96e+5 29 3.43e+0
70 -2.41e+5 4 5.86e+0 -2.41e+5 4 3.23e+0 -2.41e+5 31 7.53e+0
80 -2.98e+5 5 1.40e+1 -2.98e+5 4 6.24e+0 -2.98e+5 31 1.41e+1

10 -2.73e+1 21 3.47e-2 -2.27e+1 5 2.16e-2 2.56e+1 F 2.18e-1
20 -8.96e+1 40 4.43e-1 -1.11e+2 5 5.51e-2 7.97e+1 F 1.94e+0
30 -2.42e+2 3 1.79e-1 -2.09e+2 7 2.35e-1 -7.08e+1 F 7.64e+0

4.4 4 40 -4.10e+2 24 3.29e+0 -3.90e+2 5 4.27e-1 1.01e+2 F 2.27e+1
50 -6.25e+2 4 1.46e+0 -6.25e+2 8 1.44e+0 -1.10e+2 F 5.60e+1
60 -9.05e+2 4 3.21e+0 -9.05e+2 8 3.25e+0 9.73e+1 F 1.22e+2
70 -1.25e+3 4 6.14e+0 -1.20e+3 8 5.83e+0 1.23e+3 F 2.41e+2
80 -1.65e+3 4 1.26e+1 -1.65e+3 7 1.00e+1 8.31e+2 F 4.24e+2

10 8.83e+2 5 1.61e+0 8.83e+2 5 7.80e-1 8.83e+2 50 2.12e+0
4.5 5 20 6.24e+3 9 5.31e+1 6.24e+3 6 1.77e+1 6.24e+3 111 9.57e+1

30 1.94e+4 9 3.48e+2 1.94e+4 6 1.15e+2 1.94e+4 170 9.62e+2
40 4.05e+4 7 1.06e+3 4.05e+4 8 5.66e+2 4.05e+4 175 3.81e+3

The numerical results are summarized in Table 1. ‘Ex.’ is the number of the example,
‘m’ is the order, ‘n’ records the dimension, ‘iter’ stands for the iteration number, ‘time’
means the CPU time in seconds, and ‘λ’ is the Z-eigenvalue output by FTR, SSPM and
PM, respectively. The algorithm is terminated once the iteration number exceeds 1000, in
which case we mark with ‘F’.

We shall give some comments on the numerical results.
Firstly, the FTR method has a good theoretical property; namely, it can guarantee each

cluster point of the iterations satisfies the second-order necessary conditions. We see from
Table 1 that both SSPM and PM can obtain the same extreme Z-eigenvalue except for
Example 4.4. For this example, the PM method is divergent and fails to provide the same
extreme Z-eigenvalue, SSPM terminates at a local KKT point when n = 20 and FTR finds
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some local minimizers when n = 30, 40, 70. Hence, it should be noted that both FTR and
SSPM are essentially looking for better local solutions. Therefore they may fail to find
extreme Z-eigenvalus sometimes although they work well for most of the experiments.

Secondly, the FTR method takes only fewer than 10 iterations. FTR and SSPM are
about the same except for Example 4.4.

Thirdly, the FTR method and SSPM perform much faster than PM obviously. FTR
takes less time compared with SSPM for most of the experiments. We can also notice that
for all the three algorithms, the cases that m = 4 are slower than the cases that m = 3, but
faster than the cases that m = 5. The five examples are also computed in [14], where the
exact largest and smallest Z-eigenvalues can be obtained simultaneously by the semidefinite
relaxation method (SDPR). It is known that tensor eigenvalue problems can be reformulated
into high dimensional positive semidefinite problems, which require much more time to solve.
Consider Example 4.2, SDPR takes less than one minute when 5 ≤ n ≤ 30; less than one
hour when 35 ≤ n ≤ 55, but about one hour when n = 60. In contrast, FTR takes less than
0.5 second when 10 ≤ n ≤ 40; less than four seconds for 50 ≤ n ≤ 70; and only about 11
seconds when n = 80. The performance of SSPM is similar to FTR. Similar observations
can be obtained from some other examples.

The computational complexity of the three methods are summarized in Table 2, where
‘-’ means this computation is not involved. It should be mentioned that in FTR, with
Axm−2 available, O(n2) and O(n2) operations are required for Axm−1 and W̃k respectively.
Similarly, in the three methods, with Axm−1 available, O(n) operations are required for
Axm. The subproblem of SSPM involves computing an m-order 2-dimensional tensor Ak

by O(m2nm) operations and solving an m-degree polynomial equation. The trust-region
subproblem (2.8) is solved by the exact method [12], which costs O(n3) operations.

Table 2: The complexity of the three methods
SSPM FTR PM

Axm−2 - O(mnm) -
Axm−1 O(mnm) O(n2) O(mnm)
Axm O(n) O(n) O(n)
Ak O(m2nm) - -

W̃k - O(n2) -
subprob root of polynomial O(n3) -

5 Conclusions

We have proposed a feasible trust-region method (FTR) for calculating Z-eigenvalues of
symmetric tensors. It can deal with nonconvex/nonconcave problems because of the trust-
region constraint, thus it takes more chance to escape from saddle points and local minimiz-
ers/maximizers. Therefore, the extreme Z-eigenvalues can be found with higher probability.
Moreover, it keeps all the iteratives feasible. Global convergence and local quadratic con-
vergence are established for the FTR method for the tensor Z-eigenvalue problem. In our
numerical experiments, FTR is compared with the sequential subspace projection method
(SSPM) and the high order power method (PM). The testing examples include symmetric
tensors for n ≤ 100 with m = 3, n ≤ 80 with m = 4, and n ≤ 40 with m = 5. FTR takes
no more than 10 iterations and can terminate within about 11 seconds for all experiments
except the cases that m = 5.
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