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Definition 1.1. Let A ∈ R[m,n]. The pair (λ, x) ∈ R × Rn is called Z-eigenpair, and
λ is called Z-eigenvalue and x is the corresponding Z-eigenvector of A if they satisfy the
equations

Axm−1 = λx and xTx = 1. (1.2)

It was proved in Qi [22] that Z-eigenvalues always exist for a symmetric tensor. The prop-
erties of Z-eigenvalues were studied in [20–22]. In [16,20,22] , the number of Z-eigenvalues
of an m-order n-dimensional symmetric tensor was discussed. Z-eigenvalues of a given ten-
sor have applications in numerical multilinear algebra [17], image processing [23,25], higher
order Markov chains [15], and spectral hypergraph theory [7], etc. In a series of their recent
work [13–15], Ng et al. discovered interesting new connections of the Z-eigenvalue problem
to the transition probability tensors of higher order Markov chains. They proposed a frame-
work (HAR) that can be used in multi-relational data mining. Some other related works
in this new front have been conducted in [2] and [8]. It is NP-hard to compute eigenvalues
of higher order tensors (i.e. m ≥ 3). Recently, Qi et al. [24] proposed a direct method for
finding all the Z-eigenvalues in the case of order three and dimension three, by reducing
a symmetric tensor to a pseudo-canonical form. Kolda and Mayo [10] provided a shifted
power method (SS-HOPM) for computing a Z-eigenvalue and its associated eigenvector for
a symmetric tensor. SS-HOPM is guaranteed to converge by a suitably modified function

f̂(x) ≡ f(x) + α(xTx)m/2,

which is convex or concave on Rn, however, only several Z-eigenpairs are generally found
for a fixed α. More recently, Hu et al. [6] proposed a sequential semidefinite programming
method for finding the extreme Z-eigenvalues of tensors, which can apply to even order
tenors. Cui et al. [4] use Jacobian SDP relaxations in ploynomial optimization to compute
all real eigenvalues of symmetric tensors sequentially. The goal of this paper is to compute
Z-eigenpairs of symmetric tensors by another way.

The equations (1.2) are seen to be a system of nonlinear equations with respect to the
variables (x, λ). Moreover, it is easy to prove that the Jacobian of the system is symmet-
ric for a symmetric tensor. Gu et al. [5] proposed a norm descent quasi-Newton method
for symmetric nonlinear equations. We mainly follow the quasi-Newton method in [5] to
compute Z-eigenpairs of symmetric tensors. In this paper, we analyze the special structure
of the system of nonlinear equations generated by (1.2), and determine an upper bound
of a parameter where the decent direction can be obtained by solving a system of linear
equations with a parameter less than that bound. Hence, we obtain a descent direction by
solving only a system of linear equation each iteration. We prove that the proposed method
for computing Z-eigenpairs of a symmetric tensor converges globally and superlinearly.

The organization of this paper is as follows. Section 2 proposes quasi-Newton method
for computing Z-eigenpairs of symmetric tensors. The convergence theory is presented in
Section 3. Section 4 demonstrates preliminary numerical results on test problems.

2 Quasi-Newton Method

In this section, we give an algorithm for computing Z-eigenpairs of a symmetric tensor.
Let A ∈ R[m,n],

F (x, λ) =

(
Axm−1 − λx
1
2 (1− xTx)

)
= 0. (2.1)

Then F : Rn+1 → Rn+1 is a nonlinear function, and is continuously differentiable. The
tensor eigenvalue equations (1.2) for m > 2 amount to a system of nonlinear equations



QUASI-NEWTON METHOD FOR COMPUTING 281

(2.1). Any solution of (2.1) is a Z-eigenpair of the symmetric tensor A. The following result
is from [18].

Lemma 2.1. If A ∈ R[m,n] is a symmetric tensor, then it follows

F ′(x, λ) =

(
(m− 1)Axm−2 − λIn −x

−xT 0

)
, (2.2)

where

(Axm−2)ij =
n∑

i2,··· ,im−1=1

aiji2···im−1xi2 · · ·xim−1 , i, j = 1, · · · , n.

Hence, F ′(x, λ) is a symmetric matrix.

Since the Jacobian F ′(x, λ) is symmetric, then (2.1) is the symmetric nonlinear problem.
The symmetric nonlinear equations has been studied by several authors. Li and Fukushima
[11] proposed a globally and superlinearly convergent Gauss-Newton-based BFGS method
for such problem. Gu et al. [5] extended this method to the norm descent case.

Let θ(ω) = 1
2∥F (ω)∥2, where ω = (x, λ). Then the nonlinear equation problem (2.1) is

equivalent to the following global optimization problem

min θ(ω), ω ∈ Rn+1. (2.3)

In the norm descent quasi-Newton method for solving (2.1), the subproblem to be solved
on each iteration is the following linear equations:

Bkd+ qk(t) = 0, (2.4)

where Bk is an approximation of matrix F ′(ω)2, ωk is the current iterate, and t is a param-
eter,

qk(t) = (F (ωk + tF (ωk))− F (ωk))/t. (2.5)

For general symmetric nonlinear equations, it is proved in [5] that there exists a constant
t̄ > 0 depending on k such that when t ∈ (0, t̄), the solution d(t) of (2.4) is a descent direction
of θ(ω) at ωk. However, t̄ is not explicitly obtained, and a descent direction is found by
multiple tests.

Now we use this norm descent quasi-Newton method to solve (2.1). For (2.1), we can
determine this bound t̄, and obtain the following theorem.

Theorem 2.2. Let Tb ≥ 1 be a constant,

F (ωk) = (F̄k, f
k
n+1)

T , (2.6)

where fk
n+1 is the (n + 1)-th component of F (ωk) ∈ Rn+1, and Bk be a symmetric and

positive definite matrix. If ωk is not a stationary point of (2.3), then there is T̃k > 0 such
that when t ∈ (0, T̃k], the unique solution d(t) of (2.4) satisfies

∇θ(ωk)
T d(t) < 0, (2.7)

where η ∈ (0, 1),

T̃k=min
{
Tb,

η∇θ(ωk)
TB−1

k ∇θ(ωk)√
n∥∇θ(ωk)∥∥B−1

k ∥∞(∥fk
n+1F̄k∥+ 1

2∥F̄k∥2+ 1
2 (m− 1)(m− 2)∥A∥F (∥xk∥+Tb∥F̄k∥)m−3)

}
.

(2.8)
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Proof. Since ωk is not a stationary point of (2.3), we have ∇θ(ωk) ̸= 0. By direct computa-
tion, we have

F (ωk+tF (ωk))−F (ωk) =

(
A(xk + tF̄k)

m−1 −Axm−1
k − t(λkF̄k + fk

n+1xk)− t2fk
n+1F̄k

−txT
k F̄k − 1

2 t
2∥F̄k∥2

)
.

(2.9)
From (2.2), (2.6) and the symmetry of F ′(ωk), it follows that

A(xk + tF̄k)
m−1 −Axm−1

k

= (m− 1)tAxm−2
k F̄k +

1

2
(m− 1)(m− 2)t2A(xk + ξtF̄k)

m−3F̄ 2
k , (2.10)

∇θ(ωk) = F ′(ωk)F (ωk) =

(
(m− 1)Axm−2

k F̄k − λkF̄k − fk
n+1xk

−xT
k F̄k

)
, (2.11)

where ξ ∈ (0, 1).
From (2.9)-(2.11), we get

qk(t) =
F (ωk + tF (ωk))− F (ωk)

t

= ∇θ(ωk) + t

(
−fk

n+1F̄k + 1
2 (m− 1)(m− 2)A(xk + ξtF̄k)

m−3F̄ 2
k

−1
2∥F̄k∥2

)
. (2.12)

Since Bk is positive definite together with (2.4), (2.12) and ∥B−1
k ∥ ≤

√
n∥B−1

k ∥∞, then we
have

∇θ(ωk)
T d(t) = −∇θ(ωk)

TB−1
k ∇θ(ωk)

+t∇θ(ωk)
TB−1

k

(
−fk

n+1F̄k + 1
2 (m− 1)(m− 2)A(xk + ξtF̄k)

m−3F̄ 2
k

− 1
2∥F̄k∥2

)
≤ −∇θ(ωk)

TB−1
k ∇θ(ωk) + t

√
n∥∇θ(ωk)∥∥B−1

k ∥∞
[
∥fk

n+1F̄k∥+
1

2
∥F̄k∥2

+
1

2
(m− 1)(m− 2)∥A∥F (∥xk∥+ Tb∥F̄k∥)m−3∥F̄k∥2

]
≤ −(1− η)∇θ(ωk)

TB−1
k ∇θ(ωk) < 0, (2.13)

for Tb ≥ 1, t ∈ (0, T̃k], where ∥A∥F is defined in (1.1).

Now we represent a norm descent quasi-Newton algorithm for solving (2.1) in the fol-
lowing.

Algorithm 2.1.

Step 0. Choose ϵ > 0, ω0 ∈ Rn+1. Let B0 ∈ R(n+1)×(n+1) be symmetric and positive
definite. Set k := 0.

Step 1. Evaluate Fk, Fk = F (ωk), if ∥Fk∥ ≤ ϵ, terminate.
Step 2. Let Tk be

Tk =

{
T̃k, if k = 0,

min{tk−1, T̃k}, if k ≥ 1,
(2.14)

where T̃k is defined in (2.8), and find dk by (2.4) where t = Tk. Let tk = max{1, ρ, ρ2, . . .}
satisfy

θ(ωk + tkdk)− θ(ωk) ≤ −σ1∥tkdk∥2 − σ2∥tkFk∥2, (2.15)
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where σ1 and σ2 are positive constants. Set ωk+1 = ωk + tkdk.
Step 3. Let sk = ωk+1 − ωk = tkdk, δk = Fk+1 − Fk, yk = F (ωk + δk) − F (ωk). If

yTk sk ≤ 0, then Bk+1 = Bk and go to Step 4. Otherwise, update Bk to get Bk+1 by the
BFGS formula:

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
. (2.16)

Step 4. Let k := k + 1 and go to Step 1.

Remark 2.1. Step 3 of Algorithm 2.1 ensures that Bk is always symmetric and positive
definiteness.

We get the following lemma from Algorithm 2.1.

Lemma 2.3. The sequence {θ(ωk)} is strictly decreasing. In addition, we have

lim
k→∞

∥sk∥ = 0, lim
k→∞

∥tkFk∥ = 0. (2.17)

Proof. From (2.15), it is clear that the sequence {θ(ωk)} is strictly decreasing. Moreover, it
follows

σ1∥tkdk∥2 + σ2∥tkFk∥2 ≤ θ(ωk)− θ(ωk+1),

then

σ1

n∑
k=0

∥sk∥2 + σ2

n∑
k=0

∥tkFk∥2 ≤ θ(ω0)− θ(ωn+1) ≤ θ(ω0).

Hence, equalities (2.17) hold.

3 Convergence Analysis

In this section, we prove the global and superlinear convergence of Algorithm 2.1. In order
to prove the global convergence of Algorithm 2.1, we make the following assumption.

Assumption 3.1. The level set Ω = {ω ∈ Rn+1|θ(ω) ≤ θ(ω0)} is bounded.

Since the level set Ω is bounded on which F is continuously differentiable together with
(2.2), it is not difficult to get that the Jacobian F ′(ω) is bounded on Ω, namely, there is a
constant M > 0 such that ∥F ′(ω)∥ ≤ M for all ω ∈ Ω. Then the following inequalities hold

∥δk∥ ≤ M∥sk∥, ∥yk∥ ≤ M∥δk∥ ≤ M2∥sk∥, (3.1)

for {ωk} ⊂ Ω, where δk = Fk+1 − Fk, yk = F (ωk + δk)− F (ωk). By ∥sk∥ → 0, then there is
a constant m > 0 such that (see Lemma 2.2 in [11])

m∥sk∥2 ≤ yTk sk ≤ M2∥sk∥2. (3.2)

From (3.1) and (3.2), we get the following Lemma 3.2, whose proof is similar to that of
Theorem 2.1 in [1] and is omitted.

Lemma 3.2. Let {Bk} be generated by Algorithm 2.1. If ωk is not a stationary point
of (2.3), then there exist positive constants β1, β2, β3, such that for any positive integer k,
inequalities

β2∥si∥ ≤ ∥Bisi∥ ≤ β1∥si∥, β2∥si∥2 ≤ sTi Bisi ≤ β3∥si∥2 (3.3)

hold for at least [k/2] values of i ≤ k.
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The following theorem shows a global convergence of Algorithm 2.1, its proof is similar
to that of Theorem 3.3 in [5], and is omitted.

Theorem 3.3. Let Assumption 3.1 hold and {ωk} be generated by Algorithm 2.1. Then

lim inf
k→∞

∥∇θ(ωk)∥ = 0 (3.4)

holds.

Theorem 3.3 shows that the iterative sequence has an accumulation point which is a
stationary point of (2.3). It may not be a solution of (2.1) if the Jacobian matrix F ′(ω) is
singular at that point. The next theorem shows a strong global convergence of Algorithm
2.1.

Theorem 3.4. Let Assumption 3.1 hold. Suppose that the sequence {ωk} be generated by
Algorithm 2.1 has a subsequence converging to a stationary ω∗ at which F ′(ω∗) is nonsin-
gular. Then ω∗ is a solution of (2.1), i.e., (x∗, λ∗) is a Z-eigenpair of the symmetric tensor
A. Moreover, the whole sequence {ωk} converges to ω∗.

Proof. This theorem follows from Theorem 3.4 in [5].

It is easy to prove that the Jacobian F ′(x, λ) of F (x, λ) in (2.1) is Lipschitz continuous.

Lemma 3.5. Let Assumption 3.1 hold. Then the Jacobian F ′(x, λ) is Lipschitz continuous
in Ω, namely, there exists a constant L > 0 such that

∥F ′(x, λ)− F ′(x̄, λ̄)∥ ≤ L∥(x, λ)− (x̄, λ̄)∥,∀(x, λ), (x̄, λ̄) ∈ Ω. (3.5)

Proof.

F ′(x, λ)− F ′(x̄, λ̄) =

(
(m− 1)(Axm−2 −Ax̄m−2)− (λ− λ̄)In x̄− x

(x̄− x)T 0

)
. (3.6)

By straightforward calculation, we have

Axm−2 −Ax̄m−2 = Axm−2 −Axm−3x̄+Axm−3x̄−Axm−4x̄2

+ · · ·+Axx̄m−3 −Ax̄m−2

= [Axm−3 +Axm−4x̄+ · · ·+Ax̄m−3](x− x̄). (3.7)

Substituting into (3.6) with (3.7), it follows the conclusion of this lemma from basic property
of matrix and vector norm.

It is not difficult to prove the superlinear convergence of Algorithm 2.1.

Theorem 3.6. Let the conditions of Theorem 3.4 hold. Since F ′(x, λ) is Lipschitz contin-
uous in Ω, then

lim
k→∞

∥(Bk − F ′(ω∗)2)sk∥
∥sk∥

= 0. (3.8)

Moreover, {ωk} is superlinearly convergent.

Proof. The proof of (3.8) is similar to that of the Dennis-Moré condition in [12]. In a way
similar to the proof of Lemma 3.5 in [11], we obtain that {ωk} converges superlinearly.
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4 Numerical Experiments

In this section, we discuss numerical test results for Algorithm 2.1 and SS-HOPM.

The parameters are specified as follows. We take ρ = 0.5 in Algorithm 2.1 and σ1 =
σ2 = 10−5 in (2.15). The initial quasi-Newton matrix is set to be B0 = A [11], where A is
an n× n tridiagonal matrix given by

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

For Step 3 of Algorithm 2.1, we update Bk by (2.16) if yTk sk > 10−5, otherwise, we set
Bk+1 = Bk. We stop the iteration process if ∥F (ωk)∥ ≤ 10−4, and stop the program if the
iteration number is larger than 5000 for Examples 4.1 and 4.2. The program is coded in
MATLAB 7.8. For any odd-order tensor (i.e., m odd), if (x, λ) is an eigenpair, (−x,−λ)
is also an eigenpair. For any even-order tensor (i.e., m even), if (x, λ) is an eigenpair,
(−x, λ) is also an eigenpair. Thus for Examples 4.1 and 4.3, we only give their positive real
Z-eigenvalues and the corresponding Z-eigenvectors.

Example 4.1 ( [10], Example 3.6). Let a symmetric tensor A ∈ R[3,3] be defined by

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958,

a123 = −0.1790, a133 = −0.2676, a222 = 0.3251, a223 = 0.2513,

a233 = 0.1773, a333 = 0.0338.

From Theorem 5.3 [10], we know that A has at most 7 eigenpairs. Using Algorithm 2.1,
we ran 39 trials to get all the eigenpairs of the tensor with different random starting points
w0 chosen from a uniform distribution on [−1, 1]n+1. The occurrences of each eigenpair
are summarized in Table 4.1. The comparative numerical results of Example 4.1 are sum-
marized in Table 4.2, Iters is the total number of iterations, Time(s) is the CPU time in
seconds. Under the same initial conditions, 7 eigenpairs are obtained by Algorithm 2.1, only
3 eigenpairs are found by SS-HOMP with the same parameter α = 1, and other eigenpairs
may be obtained by SS-HOMP with different parameter α (see [10]).

Table 4.1: Eigenpairs for A ∈ R[3,3] from Example 4.1 computed by Algorithm 2.1 with 39
random starts.

Occurrences λ xT

5 0.8729 [-0.3922 0.7248 0.5664]
7 0.4306 [-0.7128 -0.1243 -0.6842]
9 0.2294 [-0.8448 0.4384 -0.3068]
9 0.0180 [ 0.7126 0.5097 -0.4820]
1 0.0033 [ 0.4470 0.7740 -0.4485]
6 0.0018 [ 0.3300 0.6319 -0.7013]
2 0.0006 [ 0.2914 0.7359 -0.6112]
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Table 4.2: Numerical results for A ∈ R[3,3] from Example 4.1

Algorithm 2.1 SS-HOPM
λ xT Iters Time(s) λ xT Iters Time(s)

0.8729 [-0.3922 0.7248 0.5664] 18 0.0040 0.8730 [-0.3922 0.7249 0.5664] 39 0.0018
0.4306 [-0.7128 -0.1243 -0.6842] 53 0.0119 0.4306 [-0.7187 -0.1245 -0.6840] 74 0.0014
0.2294 [-0.8448 0.4384 -0.3068] 124 0.0170 0.4306 [-0.7187 -0.1245 -0.6840] 92 0.0036
0.0180 [ 0.7126 0.5097 -0.4820] 491 0.0502 0.0180 [ 0.7132 0.5093 -0.4817] 179 0.0067
0.0033 [ 0.4470 0.7740 -0.4485] 599 0.0905 0.8730 [ 0.3922 0.7249 0.5664] 70 0.0031
0.0018 [ 0.3300 0.6319 -0.7013] 204 0.0336 0.4306 [-0.7187 -0.1245 -0.6840] 123 0.0049
0.0006 [ 0.2914 0.7359 -0.6112] 610 0.0496 0.0180 [ 0.7132 0.5093 -0.4817] 282 0.0106

Example 4.2 ( [10], Example 3.5). As a second illustrative example, A ∈ R[4,3] is the
symmetric tensor defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,

a1123 = −0.2939, a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862,

a1133 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,

a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

From Theorem 5.3 [10], this problem has at most 13 eigenpairs. Using Algorithm 2.1, we ran
70 trials to get all real eigenpairs of the tensor as described for Example 4.1, where 7 trials
are failure. The occurrences of each eigenpair are summarized in Table 4.3. The comparative
numerical results of Example 4.2 are summarized in Table 4.4, where Iters and Time(s) are
the same as those in Table 4.2. Under the same initial conditions, 11 real eigenpairs are
obtained by Algorithm 2.1, only 3 real eigenpairs are found by SS-HOMP with the same
parameter α = 2.

Table 4.3: Eigenpairs for A ∈ R[4,3] from Example 4.2 computed by Algorithm 2.1 with 70
random starts.

Occurrences λ xT

1 0.8893 [0.6672 0.2471 -0.7027]
6 0.8169 [0.8412 -0.2635 0.4722]
8 0.5104 [0.3598 -0.7779 0.5150]
10 0.3633 [0.2675 0.6448 0.7160]
10 0.2682 [0.6099 0.4362 0.6616]
5 0.2428 [0.1318 -0.4425 -0.8870]
2 0.2434 [0.9896 0.0947 -0.1088]
7 0.1734 [0.3357 0.9073 0.2532]
8 -0.0451 [0.7798 0.6136 0.1250]
5 -0.5630 [0.1762 -0.1796 0.9679]
1 -1.0953 [0.5915 -0.7467 -0.3043]

Example 4.3 Let A be the m-order n-dimensional diagonal tensor whose entries are

aii···i =

{
i, if i ∈ {1, 2, · · · , n},
0, otherwise.

(4.1)

Let P = I− 2uuT be an n×n Household matrix, u is a unit vector in Rn. Define B = PmA
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Table 4.4: Numerical results for A ∈ R[4,3] from Example 4.2

Algorithm 2.1 SS-HOPM
λ xT Iters Time(s) λ xT Iters Time(s)

0.8893 [0.6672 0.2471 -0.7027] 14 0.0064 0.8893 [ 0.6672 0.2471 -0.7027] 44 0.0038
0.8169 [0.8412 -0.2635 0.4722] 11 0.0037 0.8169 [ 0.8412 -0.2635 0.4722] 41 0.0025
0.5104 [0.3598 -0.7779 0.5150] 16 0.0042 0.8893 [-0.6672 -0.2471 0.7027] 158 0.0078
0.3633 [0.2675 0.6448 0.7160] 14 0.0036 0.3633 [ 0.2676 0.6447 0.7160] 55 0.0030
0.2682 [0.6099 0.4362 0.6616] 8 0.0023 0.8169 [ 0.8412 -0.2635 0.4722] 63 0.0034
0.2428 [0.1318 -0.4425 -0.8870] 11 0.0049 0.3633 [-0.2676 -0.6447 -0.7160] 76 0.0033
0.2434 [0.9896 0.0947 -0.1088] 8 0.0024 0.8893 [ 0.6672 0.2471 -0.7027] 54 0.0016
0.1734 [0.3357 0.9073 0.2532] 7 0.0021 0.8893 [ 0.6672 0.2471 -0.7027] 130 0.0064
-0.0451 [0.7798 0.6136 0.1250] 9 0.0029 0.8893 [ 0.6672 0.2471 -0.7027] 83 0.0043
-0.5630 [0.1762 -0.1796 0.9679] 10 0.0032 0.8169 [ 0.8412 -0.2635 0.4722] 49 0.0014
-1.0953 [0.5915 -0.7467 -0.3043] 10 0.0033 0.8893 [ 0.6672 0.2471 -0.7027] 50 0.0014

as an m-order n-dimensional tensor with its entries as

bi1,··· ,im =
n∑

j1,··· ,jm=1

pi1j1 · · · pimjmaj1,··· ,jm .

Let m = 11, n = 5, u = 1√
2
(1, 1, 0, 0, 0)T . Using Algorithm 2.1, we find 5 real Z-eigenpairs

of B, where we stop the iteration process if ∥F (ωk)∥ ≤ 10−2, and stop the program if the
iteration number is larger than 5000. The five real Z-eigenvalues and the corresponding
Z-eigenvectors are shown in Table 4.5.

Table 4.5: Eigenpairs for B ∈ R[11,5] from Example 4.3

λ xT

1.0131 [-0.0005 -1.0009 0.0002 -0.0012 0.0005]
1.9347 [-0.9963 0.0003 0.0002 0.0001 -0.0001]
3.0003 [-0.0001 0.0002 1.0000 -0.0001 0.0002]
4.0253 [ 0.0001 -0.0017 -0.0005 1.0008 -0.0010]
4.8576 [ 0.0000 0.0001 0.0001 0.0001 0.9968]

5 Comparison to Other Methods

From Tables 4.2 and 4.4, we see that Algorithm 2.1 is able to find eigenpairs not found
by SS-HOPM. For fixed m and large n, the computational complexity of each iteration of
Algorithm 2.1 is O(nm). The work for computing ∥B−1

k ∥∞ is O(n3), and for m ≥ 3 it
doesn’t affect the complexity scale, which remains O(nm). The computational complexity
of each iteration of SS-HOPM is O(nm), which is the work of computing Axm−1. The
computational cost of Algorithm 2.1 is higher than that of SS-HOPM in each iteration,
which may be balanced by the superlinear convergence of Algorithm 2.1.

The sequential semidefinite programming method in [6] can compute the largest or small-
est Z-eigenvalues for even order tensors. Jacobian SDP relaxations method in [4] can find all
real eigenvalues theoretically, and may become computationally expensive for large m and
n. Algorithm 2.1 is a simple method for computing a Z-eigenpair of a symmetric tensor. For
small tensor, Algorithm 2.1 may compute out all the Z-eigenpairs by choosing the different
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initial points. For large m and n, Algorithm 2.1 cannot guarantee to compute out all the
Z-eigenpairs. If we combine the sequential technique and some constrained conditions in [4]
and [6] to Algorithm 2.1, then an efficient method may be obtained. This can be further
studied in the future.
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