APPROXIMATION BOUND ANALYSIS FOR THE STANDARD MULTI-QUADRATIC OPTIMIZATION PROBLEM

Chen Ling ${ }^{*}$, Xinzhen Zhang ${ }^{\dagger}$ and Liqun Q ‡

Abstract

A Standard Multi-Quadratic Optimization Problem (StMQP) is studied in this paper, which consists of minimizing a multi-quadratic form over the Cartesian product of several simplices. Several lower bounding techniques for StMQP ranging from very simple and cheap ones to more complex constructions are presented. The main tools employed here are Semidefinite Programming (SDP), decomposition of the objective function into an appropriate form related to quadratic functions, and optimization of a multi-linear function over the Cartesian product of spheres. Especially, the approximation solution and relative approximation ratio of the considered problem are studied. Finally, a related bi-linear copositive programming reformulation is presented.

Key words: standard multi-quadratic optimization, semidefinite programming relaxation, approximation bound, approximation solution

Mathematics Subject Classification: 90C26, 90C59

1 Introduction

In this paper, we consider an optimization problem of the following form

$$
\begin{array}{ll}
\min & p_{\mathcal{A}}\left(x^{(1)}, \ldots, x^{(d)}\right):=\sum_{i_{1}, j_{1}=1}^{n_{1}} \cdots \sum_{i_{d}, j_{d}=1}^{n_{d}} a_{i_{1} j_{1} \ldots i_{d} j_{d}} x_{i_{1}}^{(1)} x_{j_{1}}^{(1)} \cdots x_{i_{d}}^{(d)} x_{j_{d}}^{(d)} \tag{1.1}\\
\text { s.t. } & \left(x^{(1)}, \ldots, x^{(d)}\right) \in \Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}},
\end{array}
$$

where

$$
\Delta_{k}:=\left\{x \in \Re_{+}^{k} \mid \sum_{i=1}^{k} x_{i}=1\right\}
$$

is the standard simplex and $\Re_{+}^{k}=\left\{x \in \Re^{k} \mid x \geq 0\right\}$ denotes the non-negative orthant in k dimensional Euclidean space \Re^{k}. Here, $\mathcal{A}=\left(a_{i_{1} j_{1} \ldots i_{d} j_{d}}\right)$ is a $2 d$-th order $\left(n_{1} \times n_{1} \times \cdots \times n_{d} \times\right.$ $\left.n_{d}\right)$-dimensional real partially symmetric tensor, that is, for any fixed $k(1 \leq k \leq d)$ and indices $\left\{i_{1}, j_{1}, \cdots, i_{k-1}, j_{k-1}, i_{k+1}, j_{k+1}, \cdots, i_{d}, j_{d}\right\}$, the matrix $M_{k}=\left(a_{i_{1} j_{1} \ldots i_{d} j_{d}}\right)_{1 \leq i_{k}, j_{k} \leq n_{k}} \in$

[^0]
(C) 2015 Yokohama Publishers

$\Re^{n_{k} \times n_{k}}$ is symmetric. It is easy to see that for any chosen $k \in\{1, \ldots, d\}$, the objective function in (1.1) can be written briefly as

$$
p_{\mathcal{A}}\left(x^{(1)}, \ldots, x^{(d)}\right)=B^{(k)} \bullet\left(x^{(k)}\left(x^{(k)}\right)^{\top}\right)
$$

Here,

$$
\begin{aligned}
B^{(k)}=\left(\sum_{i_{1}, j_{1}=1}^{n_{1}} \ldots\right. & \sum_{i_{k-1}, j_{k-1}=1}^{n_{k-1}} \sum_{i_{k+1}, j_{k+1}=1}^{n_{k+1}} \cdots \\
& \left.\sum_{i_{d}, j_{d}=1}^{n_{d}} a_{i_{1} j_{1} \ldots i_{d} j_{d}} x_{i_{1}}^{(1)} x_{j_{1}}^{(1)} \cdots x_{i_{k-1}}^{(k-1)} x_{j_{k-1}}^{(k-1)} x_{i_{k+1}}^{(k+1)} x_{j_{k+1}}^{(k+1)} \cdots x_{i_{d}}^{(d)} x_{j_{d}}^{(d)}\right)
\end{aligned}
$$

is an $n_{k} \times n_{k}$ symmetric matrix and $X \bullet Y$ stands for the usual matrix inner product, i.e., $X \bullet Y=\operatorname{tr}\left(X^{\top} Y\right)$. From the continuity of $p_{\mathcal{A}}$ and the compactness of $\Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}}$, it is clear that the optimal value of (1.1), denoted by $p_{\mathcal{A}}^{\min }$, is attainable. Without loss of generality, we assume that $2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{d}$.

In case that all $a_{i_{1} j_{1} \ldots i_{d} j_{d}}$ are independent of the indices $i_{2}, j_{2}, \ldots, i_{d}, j_{d}$, i.e., $a_{i_{1} j_{1} \ldots i_{d} j_{d}}=$ $b_{i_{1} j_{1}}$ for every $i_{k}, j_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$, then the problem (1.1) can be reduced to the following Standard Quadratic Optimization Problem (StQP)

$$
\begin{equation*}
\min \left\{\sum_{i, k=1}^{n_{1}} b_{i k} x_{i} x_{k} \mid x \in \Delta_{n_{1}}\right\} \tag{1.2}
\end{equation*}
$$

which is known to be NP-hard, but has a polynomial time approximation scheme (PTAS) [6]. On the other hand, if we fix any $(d-1)$ vectors in $\left\{x^{(1)}, \cdots, x^{(d)}\right\}$, then we also obtain a standard quadratic optimization problem. Due to this reason, (1.1) is called a Standard Multi-Quadratic Optimization Problem (StMQP). StQPs were well studied, and not only occur frequently as subproblems in escape procedures for general quadratic optimization but also have manifold direct applications, e.g., in portfolio selection and in maximum weight clique problem for undirected graphs. For details, see, e.g., $[2,5,23,24,28]$ and references therein. Furthermore, for portfolio selection problems with two groups of securities whose investment decisions influence each other, a generalized mean-variance model can be expressed as a standard bi-quadratic optimization problem (StBQP) [7]. In [7], some optimality conditions of StBQP were studied. To solve it, StBQP was reformulated as an unconstrained bi-quartic problem. Furthermore, a numerical algorithm was proposed based on the reformulated problem. As a further generalization, for portfolio selection problems with d groups of securities whose investment decisions influence each other, the related mean-variance model can be similarly formulated as StMQP.

Note that StBQP is different from bi-quadratic optimization problems over unit spheres in $[22,34]$. StBQP comes from the mean-variance model in portfolio selection problems, however the latter problem arises from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics; see $[7,11,15,16,20,29,30,33]$ and the references therein.

Since (1.1) is NP-hard, efficient algorithms to find the approximation solutions and bounds are very interesting. An important criterion for exact or approximation solution methods is the availability, which induces to propose a number of bounds for StQP, see, e.g., $[1,4,6,8,9,14,26,27]$. However, for StBQP and StMQP, the approximation bound is
still not clear until now. Motivated by this, we focus on approximation bounds of (1.1) in this paper. The main tools employed here are Semidefinite Programming (SDP), decomposition of the objective function into an appropriate form related to quadratic functions, and optimization of a multi-linear function over the Cartesian product of spheres.

Here are some notations. \Re^{n} stands for the usual Euclidean space of real vectors of length n, which is equipped with the standard inner product and the Euclidean norm denoted by $\|\cdot\|$. The i-th coordinate of a vector x is denoted by x_{i}, and the i-th column vector of the identity matrix $I_{n}=\left(\delta_{i j}\right)_{1 \leq i, j \leq n}$ in $\Re^{n \times n}$ is denoted by e_{n}^{i}. We denote by \mathcal{S}^{n} the space of symmetric matrices, denote by $J_{n} \in \mathcal{S}^{n}$ with all entries being 1 . For any $2 d$-th order $\left(n_{1} \times n_{1} \times \cdots \times n_{d} \times n_{d}\right)$-dimensional real tensor $\mathcal{A}, a_{i_{1} i_{1} \ldots i_{d} i_{d}}\left(i_{k}=1, \ldots, n_{k}, k=1, \ldots, d\right)$ are called its subdiagonal entries, and $i_{1} i_{1} \ldots i_{d} i_{d}$ are called the corresponding subdiagonal subscript. We denote by \mathcal{I} the $2 d$-th order ($n_{1} \times n_{1} \times \cdots \times n_{d} \times n_{d}$)-dimensional tensor whose entries are zero except for subdiagonal entries being 1 , and denote by \mathcal{E} the tensor of all one in $\Re^{n_{1} \times n_{1} \times \cdots \times n_{d} \times n_{d}} . \operatorname{Diag}(\mathcal{A})$ denotes the tensor which has the same subdiagonal entries to \mathcal{A} and off-subdiagonal entries 0 . For any two tensors \mathcal{A} and \mathcal{B} of the same structure, we denote $\mathcal{A}+\mathcal{B}=\left(a_{i_{1} j_{1} \ldots i_{d} j_{d}}+b_{i_{1} j_{1} \ldots i_{d} j_{d}}\right)$. For the given matrices $B^{(k)}=\left(b_{i_{k} j_{k}}^{(k)}\right) \in \Re^{n_{k} \times n_{k}}(k=$ $1, \ldots, d)$, we denote by $\mathcal{C}=B^{(1)} \otimes \cdots \otimes B^{(d)}$ the $2 d$-th order $\left(n_{1} \times n_{1} \times \cdots \times n_{d} \times n_{d}\right)$ dimensional real tensor with

$$
c_{i_{1} j_{1} \cdots i_{d} j_{d}}=\prod_{k=1}^{d} b_{i_{k} j_{k}}^{(k)}
$$

For every $i_{k}, j_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$, the matrix $e_{n_{k}}^{i_{k}}\left(e_{n_{k}}^{j_{k}}\right)^{\top}+e_{n_{k}}^{j_{k}}\left(e_{n_{k}}^{i_{k}}\right)^{\top}$ is denoted by $E^{(k)}\left(i_{k} j_{k}\right)$. For any subscript set $I J=\left\{i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{d}, j_{d}\right\}$ with $i_{k}, j_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$, we further denote

$$
\begin{equation*}
\mathcal{E}^{I J}=\frac{1}{2^{d}} E^{(1)}\left(i_{1} j_{1}\right) \otimes \cdots \otimes E^{(d)}\left(i_{d} j_{d}\right) . \tag{1.3}
\end{equation*}
$$

The rest of this paper is organized as follows. In Section 2, we present three methods to establish cheap closed-form lower bounds for (1.1), which are generalizations of those in [9]. By using standard quadratic programming, in Section 3 we further estimate the lower bounds of StBQP. In Section 4, we present a method for solving approximation solution of StBQP. Finally, a bi-linear copositive programming problem related to StBQPs is discussed in Section 5 .

2 Cheap Closed-Form Lower Bounds

In this section, we discuss the basic properties of $p_{\mathcal{A}}^{\text {min }}$. Based upon these properties, we present some lower bounds for $p_{\mathcal{A}}^{\min }$, which have simple closed-form representations and can be computed efficiently. Immediately, we can verify that $p_{\mathcal{A}}^{\min }$ is shift-equivariant with respect to \mathcal{E}, i.e., $p_{\mathcal{A}+t \mathcal{E}}^{\min }=p_{\mathcal{A}}^{\min }+t$ for all $t \in \Re$. Hence, without loss of generality, in this section we assume that all entries of \mathcal{A} are positive.

Let \mathfrak{S} be the set of all $2 d$-th order $\left(n_{1} \times n_{1} \times \cdots \times n_{d} \times n_{d}\right)$-dimensional partially symmetric tensors, and $\mathcal{P} \subseteq \mathfrak{S}$ be a convex cone, i.e., $\alpha \mathcal{A}+\beta \mathcal{B} \in \mathcal{P}$ whenever $\mathcal{A}, \mathcal{B} \in \mathcal{P}$ and $\alpha, \beta \in \Re_{+}$. On \mathfrak{S}, we may introduce a partial order related with the given convex cone \mathcal{P}. In particular, if $\mathcal{P} \subseteq \mathfrak{S}$ is the convex cone consisting of all nonnegative tensors, then the corresponding order " \geq ", is defined by componentwise inequalities, i.e., for $\mathcal{A}, \mathcal{B} \in \mathcal{P}, \mathcal{A} \geq \mathcal{B}$ if and only if $\mathcal{A}-\mathcal{B} \in \mathcal{P}$.

Another frequently used partial order defined on \mathfrak{S} is Löwner partial order " \succeq ", which is induced by the cone \mathcal{P}, consisting of all positive semidefinite tensors. Here,

$$
\mathcal{P}:=\left\{\mathcal{A} \in \mathfrak{S} \mid p_{\mathcal{A}}\left(x^{(1)}, \ldots, x^{(d)}\right) \geq 0, \quad \forall x^{(1)} \in \Re^{n_{1}}, \ldots, x^{(d)} \in \Re^{n_{d}}\right\} .
$$

In other words, for $\mathcal{A}, \mathcal{B} \in \mathfrak{S}$, we write $\mathcal{A} \succeq \mathcal{B}$ whenever $\mathcal{A}-\mathcal{B} \in \mathcal{P}$. It is straightforward to verify that the minimum $p_{\mathcal{A}}^{\min }$ is isotone with respect to both the standard and Löwner partial orders. That is, if $\mathcal{A} \geq \mathcal{B}$ or $\mathcal{A} \succeq \mathcal{B}$, then $p_{\mathcal{A}}^{\min } \geq p_{\mathcal{B}}^{\min }$.

It is easy to see that every subdiagonal entry $a_{i_{1} i_{1} \ldots i_{d} i_{d}}$ of \mathcal{A} is an upper bound for $p_{\mathcal{A}}^{\min }$, since $e_{n_{k}}^{i_{k}} \in \Delta_{n_{k}}$ and $p_{\mathcal{A}}\left(e_{n_{1}}^{i_{1}}, \ldots, e_{n_{d}}^{i_{d}}\right)=a_{i_{1} i_{1} \ldots i_{d} i_{d}}$. On the other hand, in the case $\mathcal{A}=\operatorname{Diag}(\mathcal{A}), \operatorname{problem}(1.1)$ reduces to the following optimization problem

$$
\begin{array}{ll}
\min & \sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}\left(x_{i_{1}}^{(1)}\right)^{2} \cdots\left(x_{i_{d}}^{(d)}\right)^{2} \\
\text { s.t. } & \left(x^{(1)}, \ldots, x^{(d)}\right) \in \Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}}
\end{array}
$$

which can be relaxed as

$$
\begin{array}{cl}
\min & z^{\top} C z \\
\text { s.t. } & z \in \Delta_{n_{1} \cdots n_{d}} . \tag{2.1}
\end{array}
$$

Here, C is a $\prod_{k=1}^{d} n_{k} \times \prod_{k=1}^{d} n_{k}$ diagonal matrix with the diagonal entries being $a_{i_{1} i_{1} \ldots i_{d} i_{d}}$ $\left(i_{k}=1,2, \ldots, n_{k}, k=1,2, \ldots, d\right)$. Note that (2.1) is a strictly convex program since $a_{i_{1} i_{1} \ldots i_{d} i_{d}}>0$ for $i_{k}=1,2, \ldots, n_{k}$ and $k=1,2, \ldots, d$. From the first-order optimality condition, we obtain a lower bound for $p_{\mathcal{A}}^{\min }$

$$
p_{\mathcal{A}}^{z}=\left[\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}^{-1}\right]^{-1}
$$

Consequently, by shift-equivariance, one immediately knows that for tensor \mathcal{A} with offsubdiagonal entries being $\bar{a} \leq \underset{1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}}{ } a_{i_{1} i_{1} \ldots i_{d} i_{d}}$,

$$
p_{\mathcal{A}}^{z}:=\bar{a}+\left[\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}}\left(a_{i_{1} i_{1} \ldots i_{d} i_{d}}-\bar{a}\right)^{-1}\right]^{-1}
$$

is a lower bound of $p_{\mathcal{A}}^{\min }$. Furthermore, if there exist $b_{i_{1}}^{(1)}>0, \ldots, b_{i_{d}}^{(d)}>0$ such that $a_{i_{1} i_{1} \ldots i_{d} i_{d}}-\bar{a}=b_{i_{1}}^{(1)} \cdots b_{i_{d}}^{(d)}$ for $i_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$, we then have

$$
\begin{equation*}
p_{\mathcal{A}}^{\min }=\bar{a}+\left[\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}}\left(a_{i_{1} i_{1} \ldots i_{d} i_{d}}-\bar{a}\right)^{-1}\right]^{-1} \tag{2.2}
\end{equation*}
$$

Based on these preliminary observations, we are ready to derive our first class of lower bounds. To this end, we need the following lemma.

Lemma 2.1. Consider problem (1.1) with tensor $\mathcal{A} \in \mathfrak{S}$, whose off-subdiagonal entries are all \bar{a} satisfying

$$
\bar{a}<\min _{1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}} .
$$

For any off-subdiagonal subscript $I J=\left\{i_{1}, j_{1}, \ldots, i_{d}, j_{d}\right\}$, we have $p_{\mathcal{A}}^{\min }<p_{\mathcal{A}^{\prime}}^{\min }$, where $\mathcal{A}^{\prime}=\mathcal{A}+\tau \mathcal{E}^{I J}$ and $\tau>0$.

Proof. By shift-equivariance, without loss of generality, we assume that $\bar{a}=0$. Let $\left(\bar{x}^{(1)}, \ldots, \bar{x}^{(d)}\right) \in \Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}}$ such that $p_{\mathcal{A}}^{\min }=p_{\mathcal{A}}\left(\bar{x}^{(1)}, \ldots, \bar{x}^{(d)}\right)$. It is clear that for every $i_{1}=1, \ldots, n_{1}$, it holds

$$
\bar{b}_{i_{1}}:=\sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}\left(\bar{x}_{i_{2}}^{(2)}\right)^{2} \cdots\left(\bar{x}_{i_{d}}^{(d)}\right)^{2}>0
$$

since $\left(\bar{x}^{(2)}, \ldots, \bar{x}^{(d)}\right) \in \Delta_{n_{2}} \times \cdots \times \Delta_{n_{d}}$ and $a_{i_{1} i_{1} \ldots i_{d} i_{d}}>0$ for $i_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$. Consequently, $\bar{x}^{(1)}$ is the unique solution of the following strictly convex program

$$
\begin{array}{ll}
\min & \sum_{i_{1}=1}^{n_{1}} \bar{b}_{i_{1}} x_{i_{1}}^{2} \tag{2.3}\\
\text { s.t. } & x \in \Delta_{n_{1}} .
\end{array}
$$

From the first-order optimality condition, we know that

$$
\bar{x}_{i_{1}}^{(1)}=\frac{\bar{b}_{i_{1}}^{-1}}{\sum_{i_{1}=1}^{n_{1}} \bar{b}_{i_{1}}^{-1}}, \quad i=1,2, \cdots, n_{1}
$$

which implies that $\bar{x}^{(1)}>0$. Similarly, we have that $\bar{x}^{(k)}>0$ for $k=2, \ldots, d$.
Let $\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right) \in \Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}}$ such that

$$
p_{\mathcal{A}^{\prime}}^{\min }=p_{\mathcal{A}^{\prime}}\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right)=p_{\mathcal{A}}\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right)+\tau \hat{x}_{i_{1}}^{(1)} \hat{x}_{j_{1}}^{(1)} \cdots \hat{x}_{i_{d}}^{(d)} \hat{x}_{j_{d}}^{(d)} .
$$

If $\hat{x}_{i_{1}}^{(1)} \hat{x}_{j_{1}}^{(1)} \cdots \hat{x}_{i_{d}}^{(d)} \hat{x}_{j_{d}}^{(d)}=0$, then $\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right)$ is not an optimal solution of (1.1). Hence,

$$
p_{\mathcal{A}^{\prime}}^{\min }=p_{\mathcal{A}}\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right)>p_{\mathcal{A}}^{\min }
$$

If $\hat{x}_{i_{1}}^{(1)} \hat{x}_{j_{1}}^{(1)} \cdots \hat{x}_{i_{d}}^{(d)} \hat{x}_{j_{d}}^{(d)}>0$, then

$$
p_{\mathcal{A}^{\prime}}^{\min }=p_{\mathcal{A}}\left(\hat{x}^{(1)}, \ldots, \hat{x}^{(d)}\right)+\tau \hat{x}_{i_{1}}^{(1)} \hat{x}_{j_{1}}^{(1)} \cdots \hat{x}_{i_{d}}^{(d)} \hat{x}_{j_{d}}^{(d)} \geq p_{\mathcal{A}}^{\min }+\tau \hat{x}_{i_{1}}^{(1)} \hat{x}_{j_{1}}^{(1)} \cdots \hat{x}_{i_{d}}^{(d)} \hat{x}_{j_{d}}^{(d)}>p_{\mathcal{A}}^{\min }
$$

We obtain the desired result and complete the proof.
Let

$$
\begin{equation*}
p_{\mathcal{A}}^{\mathrm{ref}}=p_{\mathcal{A}}^{0}+\left[\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}}\left(a_{i_{1} i_{1} \ldots i_{d} i_{d}}-p_{\mathcal{A}}^{0}\right)^{-1}\right]^{-1} \tag{2.4}
\end{equation*}
$$

where

$$
p_{\mathcal{A}}^{0}=\min _{1 \leq i_{1}, j_{1} \leq n_{1}, \ldots, 1 \leq i_{d}, j_{d} \leq n_{d}} a_{i_{1} j_{1} \ldots i_{d} j_{d}} .
$$

Theorem 2.2. For problem (1.1) with $\mathcal{A} \in \mathfrak{S}$, we have

$$
p_{\mathcal{A}}^{0} \leq p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}}^{\mathrm{min}} .
$$

The equality $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\mathrm{ref}}$ holds if and only if a minimum entry of \mathcal{A} is located on the subdiagonal, which leads to $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\min }$. Furthermore, it holds that all the off-subdiagonal entries of \mathcal{A} are equal to the value $p_{\mathcal{A}}^{0}$ provided $p_{\mathcal{A}}^{\mathrm{ref}}=p_{\mathcal{A}}^{\mathrm{min}}$. Conversely, if all the off-subdiagonal entries of \mathcal{A} are equal to the value \bar{a} satisfying $\bar{a}<\min _{1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}$ and there exist some positive vectors $\left(b_{1}^{(k)}, \ldots, b_{n_{k}}^{(k)}\right)^{\top} \in \Re^{n_{k}}(k=1, \ldots, d)$ such that $a_{i_{1} i_{1} \ldots i_{d} i_{d}}=b_{i_{1}}^{(1)} \cdots b_{i_{d}}^{(d)}+\bar{a}$ for $i_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$, then $p_{\mathcal{A}}^{\mathrm{ref}}=p_{\mathcal{A}}^{\min }$.

Proof. The inequality, $p_{\mathcal{A}}^{0} \leq p_{\mathcal{A}}^{\mathrm{ref}}$, is trivial. Let

$$
\mathcal{A}^{\prime}=\operatorname{Diag}(\mathcal{A})+p_{\mathcal{A}}^{0}(\mathcal{E}-\mathcal{I})
$$

then $p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}^{\prime}}^{\mathrm{min}}$. Consequently, the inequality $p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}}^{\mathrm{min}}$ follows from the isotonicity of $p_{\mathcal{A}}^{\mathrm{min}}$ and the tensor inequality $\mathcal{A}^{\prime} \leq \mathcal{A}$. Next we characterize the cases where one of the cheap bounds is exact. If $a_{\bar{i}_{1} \bar{i}_{1} \ldots \bar{i}_{d} \bar{i}_{d}}=\min _{1 \leq i_{1}, j_{1} \leq n_{1}, \ldots, 1 \leq i_{d}, j_{d} \leq n_{d}} a_{i_{1} j_{1} \ldots i_{d} j_{d}}$ for some indices $\bar{i}_{1}, \ldots, \bar{i}_{d}$, then $a_{\bar{i}_{1} \bar{i}_{1} \ldots \bar{i}_{d} \bar{i}_{d}}=p_{\mathcal{A}}^{0} \leq p_{\mathcal{A}}^{\mathrm{min}} \leq a_{\bar{i}_{1} \bar{i}_{1} \ldots \bar{i}_{d} \bar{i}_{d}}$ because every subdiagonal entry $a_{i_{1} i_{1} \ldots i_{d} i_{d}}$ of \mathcal{A} is an upper bound for $p_{\mathcal{A}}^{\min }$. Consequently, it holds that $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\min }$, which implies that $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\text {ref }}$. Conversely, if $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\text {ref }}$, then

$$
\left[\sum_{i_{1}=1}^{n_{1}} \cdots \sum_{i_{d}=1}^{n_{d}}\left(a_{i_{1} i_{1} \ldots i_{d} i_{d}}-p_{\mathcal{A}}^{0}\right)^{-1}\right]^{-1}=0
$$

So that $a_{\bar{i}_{1} \bar{i}_{1} \ldots \bar{i}_{d} \bar{i}_{d}}=p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{\min }$ for some indices $\bar{i}_{1}, \ldots, \bar{i}_{d}$.
Next, we assume that $p_{\mathcal{A}}^{\text {ref }}=p_{\mathcal{A}}^{\min }$, then $p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}^{\prime}}^{\mathrm{min}}$. Hence, from the fact that $p_{\mathcal{A}}^{\mathrm{ref}}=$ $p_{\mathcal{A}^{\prime}}^{z} \leq p_{\mathcal{A}^{\prime}}^{\min } \leq p_{\mathcal{A}}^{\min }$, it holds that $p_{\mathcal{A}^{\prime}}^{\min }=p_{\mathcal{A}}^{\min }$. If there exists an off-subdiagonal entry $a_{\bar{i}_{1} \bar{j}_{1} \ldots \bar{i}_{d} \bar{j}_{d}}$ of \mathcal{A} such that $a_{\bar{i}_{1} \bar{j}_{1} \ldots \bar{i}_{d} \bar{j}_{d}}>p_{\mathcal{A}}^{0}$, then the tensor $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}+\left(a_{\bar{i}_{1} \bar{j}_{1} \ldots \bar{i}_{d} \bar{j}_{d}}-p_{\mathcal{A}}^{0}\right) \overline{\mathcal{E}}$ satisfies $\mathcal{A}^{\prime} \leq \mathcal{A}^{\prime \prime} \leq \mathcal{A}$, where \mathcal{E} is defined by (1.3) with $\bar{I} \bar{J}=\left\{\bar{i}_{1}, \bar{j}_{1}, \ldots, \bar{i}_{d}, \bar{j}_{d}\right\}$. By Lemma 2.1, $p_{\mathcal{A}^{\prime}}^{\min }<p_{\mathcal{A}^{\prime \prime}}^{\min }$. This contradicts the equality $p_{\mathcal{A}^{\prime}}^{\min }=p_{\mathcal{A}}^{\min }$. Hence, all off-subdiagonal entries of \mathcal{A} must coincide with $p_{\mathcal{A}}^{0}$.

Assume now that all off-subdiagonal entries of \mathcal{A} are equal to \bar{a} satisfying $\bar{a}<$ $\min _{n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}$, or equivalently $p_{\mathcal{A}}^{0}<p_{\mathcal{A}}^{\text {ref }}$. Then $p_{\mathcal{A}}^{\text {ref }}=p_{\mathcal{A}}^{\text {min }}$ follows immediately from the closed-form expression (2.2). We complete the proof.

From (2.4), it is easy to see that

$$
\begin{aligned}
p_{\mathcal{A}}^{0}+\frac{1}{n_{1} \cdots n_{d}}\left[\min _{1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}-p_{\mathcal{A}}^{0}\right] \leq & \leq p_{\mathcal{A}}^{\mathrm{ref}} \\
& \leq p_{\mathcal{A}}^{0}+\frac{1}{n_{1} \cdots n_{d}}\left[\max _{1 \leq i_{1} \leq n_{1}, \ldots, 1 \leq i_{d} \leq n_{d}} a_{i_{1} i_{1} \ldots i_{d} i_{d}}-p_{\mathcal{A}}^{0}\right]
\end{aligned}
$$

which implies that $p_{\mathcal{A}}^{0}$ and $p_{\mathcal{A}}^{\text {ref }}$ tend to coincide when $\max \left\{n_{1}, \ldots, n_{d}\right\}$ increases. In particular, when all the subdiagonal entries are equal, it holds that

$$
p_{\mathcal{A}}^{\mathrm{ref}}=p_{\mathcal{A}}^{0}+\frac{1}{n_{1} \cdots n_{d}}\left(a_{i_{1} i_{1} \ldots i_{d} i_{d}}-p_{\mathcal{A}}^{0}\right)
$$

Theorem 2.3. Consider the standard multi-quadratic optimization problem (1.1) with $\mathcal{A} \in$ S. We have

$$
p_{\mathcal{A}}^{0} \leq p_{\mathcal{A}}^{x y} \leq p_{\mathcal{A}}^{\min }
$$

where

$$
p_{\mathcal{A}}^{x y}:=\prod_{k=1}^{d}\left[\sqrt[d]{p_{\mathcal{A}}^{0}}+\left(\sum_{i_{k}=1}^{n_{k}}\left(c_{i_{k} i_{k}}^{(k)}-\sqrt[d]{p_{\mathcal{A}}^{0}}\right)^{-1}\right)^{-1}\right]
$$

and

$$
\begin{aligned}
& c_{i_{k} i_{k}}^{(k)}= \\
& 1 \leq i_{1}, j_{1} \leq n_{1}, \ldots, 1 \leq i_{k-1}, j_{k-1} \leq n_{k-1}, 1 \leq i_{k+1}, j_{k+1} \leq n_{k+1}, \ldots, 1 \leq i_{d}, j_{d} \leq n_{d} \\
& \min _{a_{k}} \\
& a_{i_{1} j_{1} \ldots i_{k-1} j_{k-1} i_{k} i_{k} i_{k+1} j_{k+1} \ldots i_{d} j_{d}}
\end{aligned}
$$

Moreover, the equality $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{x y}$ holds if and only if for every $k=1, \ldots, d$, there exists $i_{k} \in\left\{1, \ldots, n_{k}\right\}$ such that $c_{i_{k} i_{k}}^{(k)}=\sqrt[d]{p_{\mathcal{A}}^{0}}$.
Proof. The first inequality, $p_{\mathcal{A}}^{0} \leq p_{\mathcal{A}}^{x y}$, is trivial, because $\sqrt[d]{p_{\mathcal{A}}^{0}} \leq c_{i_{k} i_{k}}^{(k)}$ for $i_{k}=1, \ldots, n_{k}$ and $k=1, \ldots, d$. Now we prove the second inequality. Let $C^{(k)} \in \mathcal{S}^{n_{k}}(k=1, \cdots, d)$ with its entries

$$
\begin{aligned}
& c_{i_{k} j_{k}}^{(k)}= \\
& 1 \leq i_{1}, j_{1} \leq n_{1}, \ldots, 1 \leq i_{k-1}, j_{k-1} \leq n_{k-1}, 1 \leq i_{k+1}, j_{k+1} \leq n_{k+1}, \ldots, 1 \leq i_{d}, j_{d} \leq n_{d} \\
& \min _{d} \sqrt{a_{i_{1} j_{1} \ldots i_{k-1} j_{k-1} i_{k} j_{k} i_{k+1} j_{k+1} \ldots i_{d} j_{d}}}
\end{aligned}
$$

and $\mathcal{C}=\left(c_{i_{1} j_{1} \ldots i_{d} j_{d}}\right) \in \mathfrak{S}$ with $c_{i_{1} j_{1} \ldots i_{d} j_{d}}=\prod_{k=1}^{d} c_{i_{k} j_{k}}^{(k)}$. It follows that $\mathcal{C} \leq \mathcal{A}$, which implies that $p_{\mathcal{C}}\left(x^{(1)}, \ldots, x^{(d)}\right) \leq p_{\mathcal{A}}\left(x^{(1)}, \ldots, x^{(d)}\right)$ for any $\left(x^{(1)}, \ldots, x^{(d)}\right) \in \Delta_{n_{1}} \times \cdots \times \Delta_{n_{d}}$. Moreover, from the special structure of \mathcal{C}, it holds that $p_{\mathcal{C}}\left(x^{(1)}, \ldots, x^{(d)}\right)=\prod_{k=1}^{d}\left(x^{(k)}\right)^{\top} C^{(k)} x^{(k)}$. Now we consider the following StQP

$$
\left\{\begin{array}{cl}
\min & \left(x^{(k)}\right)^{\top} C^{(k)} x^{(k)} \tag{2.5}\\
\text { s.t. } & x^{(k)} \in \Delta_{n_{k}} .
\end{array}\right.
$$

It is easy to see that $\sqrt[d]{p_{\mathcal{A}}^{0}}=\min _{1 \leq i_{k}, j_{k} \leq n_{k}} c_{i_{k} j_{k}}^{(k)}$. Consequently, by Theorem 2 in [9], we know that $\sqrt[d]{p_{\mathcal{A}}^{0}}+\left[\sum_{i_{k}=1}^{n_{k}}\left(c_{i_{k} i_{k}}^{(k)}-\sqrt[d]{p_{\mathcal{A}}^{0}}\right)^{-1}\right]^{-1}$ is a lower bound of the optimal value of (2.5). Hence, the second inequality holds.

If $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{x y}$, then

$$
\left[\sum_{i_{k}=1}^{n_{k}}\left(c_{i_{i} i_{k}}^{(k)}-\sqrt[d]{p_{\mathcal{A}}^{0}}\right)^{-1}\right]^{-1}=0, \quad k=1, \cdots, d
$$

Hence, $c_{i_{k} i_{k}}^{(k)}=\sqrt[d]{p_{\mathcal{A}}^{0}}$ for some index $i_{k} \in\left\{1, \ldots, n_{k}\right\}$. Conversely, if for every $k=1, \ldots, d$, there exists $i_{k} \in\left\{1, \ldots, n_{k}\right\}$ such that $c_{i_{k} i_{k}}^{(k)}=\sqrt[d]{p_{\mathcal{A}}^{0}}$, we may prove that $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{x y}$ by using the same way as above. We complete the proof of the theorem.

Now we state and prove the last theorem in this section. For the sake of simplicity, we only study the case $d=2$. In fact, the obtained result can be extended to the case where $d \geq 3$. We denote $a_{i_{1} j_{1}}^{(1)}=\min \left\{a_{i_{1} j_{1} i_{2} j_{2}} \mid 1 \leq i_{2}, j_{2} \leq n_{2}\right\}$ for $i_{1}, j_{1}=1, \ldots, n_{1}$, $a_{i_{2} j_{2}}^{(2)}=\min \left\{a_{i_{1} j_{1} i_{2} j_{2}} \mid 1 \leq i_{1}, j_{1} \leq n_{1}\right\}$ for $i_{2}, j_{2}=1, \ldots, n_{2}$, and
$p_{i_{1} j_{1}}^{(1)}=a_{i_{1} j_{1}}^{(1)}+\left[\sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} j_{1} i_{2} i_{2}}-a_{i_{1} j_{1}}^{(1)}\right)^{-1}\right]^{-1}, \quad p_{i_{2} j_{2}}^{(2)}=a_{i_{2} j_{2}}^{(2)}+\left[\sum_{i_{1}=1}^{n_{1}}\left(a_{i_{1} i_{1} i_{2} j_{2}}-a_{i_{2} j_{2}}^{(2)}\right)^{-1}\right]^{-1}$.
Furthermore, we denote by $B^{\left(i_{1} j_{1}\right)} \in \mathcal{S}^{n_{2}}$ with its entries being $a_{i_{1} j_{1} i_{2} j_{2}}$ for $i_{1}, j_{1}=1, \ldots, n_{1}$, and denote by $C^{\left(i_{2} j_{2}\right)} \in \mathcal{S}^{n_{1}}$ with the entries being $a_{i_{1} j_{1} i_{2} j_{2}}$ for $i_{2}, j_{2}=1, \ldots, n_{2}$.

Theorem 2.4. Consider the standard multi-quadratic optimization problem (1.1) with $d=2$ and $\mathcal{A} \in \mathfrak{S}$. It holds that $p_{\mathcal{A}}^{\text {ref }} \leq p_{\mathcal{A}}^{a b} \leq p_{\mathcal{A}}^{\min }$, where

$$
p_{\mathcal{A}}^{a b}:=\max \left\{p_{\mathcal{A}}^{(1)}+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{(1)}\right)^{-1}\right]^{-1}, p_{\mathcal{A}}^{(2)}+\left[\sum_{i_{2}=1}^{n_{2}}\left(p_{i_{2} i_{2}}^{(2)}-p_{\mathcal{A}}^{(2)}\right)^{-1}\right]^{-1}\right\}
$$

with $p_{\mathcal{A}}^{(1)}=\min \left\{p_{i_{1} j_{1}}^{(1)} \mid 1 \leq i_{1}, j_{1} \leq n_{1}\right\}$ and $p_{\mathcal{A}}^{(2)}=\min \left\{p_{i_{2}, j_{2}}^{(2)} \mid 1 \leq i_{2}, j_{2} \leq n_{2}\right\}$.
Proof. We only prove that

$$
\begin{equation*}
p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}}^{(1)}+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{(1)}\right)^{-1}\right]^{-1} \leq p_{\mathcal{A}}^{\min } \tag{2.7}
\end{equation*}
$$

The proof of

$$
p_{\mathcal{A}}^{\mathrm{ref}} \leq p_{\mathcal{A}}^{(2)}+\left[\sum_{i_{2}=1}^{n_{2}}\left(p_{i_{2} i_{2}}^{(2)}-p_{\mathcal{A}}^{(2)}\right)^{-1}\right]^{-1} \leq p_{\mathcal{A}}^{\min }
$$

is similar. We now consider

$$
\begin{equation*}
\operatorname{StQP}\left(i_{1}, j_{1}\right): \quad \min \left\{\left(x^{(2)}\right)^{\top} B^{\left(i_{1} j_{1}\right)} x^{(2)} \mid x^{(2)} \in \Delta_{n_{2}}\right\} . \tag{2.8}
\end{equation*}
$$

By Theorem 2 in [9], we know that

$$
p_{i_{1} j_{1}}^{(1)}=a_{i_{1} j_{1}}^{(1)}+\left[\sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} j_{1} i_{2} i_{2}}-a_{i_{1} j_{1}}^{(1)}\right)^{-1}\right]^{-1}
$$

is a lower bound of $\operatorname{StQP}\left(i_{1}, j_{1}\right)$, which implies that $p_{i_{1} j_{1}}^{(1)} \leq\left(x^{(2)}\right)^{\top} B^{\left(i_{1} j_{1}\right)} x^{(2)}$ for any $x^{(2)} \in \Delta_{n_{2}}$. Hence,

$$
\begin{equation*}
\left(x^{(1)}\right)^{\top} P^{(1)} x^{(1)} \leq p_{\mathcal{A}}\left(x^{(1)}, x^{(2)}\right) \tag{2.9}
\end{equation*}
$$

for $\left(x^{(1)}, x^{(2)}\right) \in \Delta_{n_{1}} \times \Delta_{n_{2}}$, where $P^{(1)}=\left(p_{i_{1} j_{1}}^{(1)}\right)_{1 \leq i_{1}, j_{1} \leq n_{1}} \in \mathcal{S}^{n_{1}}$. By Theorem 2 in [9] again, we know that for any $x^{(1)} \in \Delta_{n_{1}}$,

$$
p_{\mathcal{A}}^{(1)}+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{(1)}\right)^{-1}\right]^{-1} \leq\left(x^{(1)}\right)^{\top} P^{(1)} x^{(1)}
$$

which implies, together with (2.9), that the right inequality in (2.7) holds.
By (2.6), it is obvious that $p_{i_{1} j_{1}}^{(1)} \geq a_{i_{1} j_{1}}^{(1)}$ for every $\left(i_{1}, j_{1}\right)$, which implies that $p_{\mathcal{A}}^{(1)} \geq p_{\mathcal{A}}^{0}$, where $p_{\mathcal{A}}^{0}$ is denoted in (2.4). Furthermore, since $f(x):=x+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-x\right)^{-1}\right]^{-1}$ is monotone increasing on $\bigcap_{i_{1}=1}^{n_{1}}\left(-\infty, p_{i_{1} i_{1}}^{(1)}\right]$, we have

$$
\begin{equation*}
p_{\mathcal{A}}^{(1)}+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{(1)}\right)^{-1}\right]^{-1} \geq p_{\mathcal{A}}^{0}+\left[\sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{0}\right)^{-1}\right]^{-1} \tag{2.10}
\end{equation*}
$$

On the other hand, we have that for every $i_{1}=1, \ldots, n_{1}$,

$$
\begin{aligned}
p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{0} & =a_{i_{1} i_{1}}^{(1)}+\left[\sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} i_{1} i_{2} i_{2}}-a_{i_{1} i_{1}}^{(1)}\right)^{-1}\right]^{-1}-p_{\mathcal{A}}^{0} \\
& \geq p_{\mathcal{A}}^{0}+\left[\sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} i_{1} i_{2} i_{2}}-p_{\mathcal{A}}^{0}\right)^{-1}\right]^{-1}-p_{\mathcal{A}}^{0} \\
& =\left[\sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} i_{1} i_{2} i_{2}}-p_{\mathcal{A}}^{0}\right)^{-1}\right]^{-1},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}}\left(a_{i_{1} i_{1} i_{2} i_{2}}-p_{\mathcal{A}}^{0}\right)^{-1} \geq \sum_{i_{1}=1}^{n_{1}}\left(p_{i_{1} i_{1}}^{(1)}-p_{\mathcal{A}}^{0}\right)^{-1} \tag{2.11}
\end{equation*}
$$

By (2.10) and (2.11), we know that the left inequality in (2.7) holds. We complete the proof.

From Theorems 2.2 and 2.3, we know that $p_{\mathcal{A}}^{\mathrm{ref}}=p_{\mathcal{A}}^{0}$ implies $p_{\mathcal{A}}^{x y}=p_{\mathcal{A}}^{0}$. However, the following examples show that $p_{\mathcal{A}}^{x y}=p_{\mathcal{A}}^{0}$ does not imply $p_{\mathcal{A}}^{\text {ref }}=p_{\mathcal{A}}^{0}, p_{\mathcal{A}}^{\text {ref }}$ and $p_{\mathcal{A}}^{x y}$ are incomparable.

Example 2.5. Consider problem (1.1) with $d=n_{1}=n_{2}=2$. Let $a_{1112}=a_{1121}=a_{1222}=$ $a_{2122}=1$, and other entries be 4. In this case, it is easy to see that

$$
C^{(1)}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \quad \text { and } \quad C^{(2)}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

Consequently, it follows that $p_{\mathcal{A}}^{0}=p_{\mathcal{A}}^{x y}=1$ but $p_{\mathcal{A}}^{\text {ref }}=1.75$. On the other hand, by a direct computation, we may obtain $p_{\mathcal{A}}^{a b}=2$.

Example 2.6. Consider problem (1.1) with $d=n_{1}=n_{2}=2$. Let $a_{1212}=a_{2112}=a_{1221}=$ $a_{2121}=1$, and other entries be 4. In this case, it is easy to see that

$$
C^{(1)}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \text { and } \quad C^{(2)}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Consequently, it follows that $p_{\mathcal{A}}^{0}=1<p_{\mathcal{A}}^{\text {ref }}=1.75<p_{\mathcal{A}}^{x y}=2.25$. On the other hand, by a direct computation, we obtain $p_{\mathcal{A}}^{(1)}=p_{\mathcal{A}}^{(2)}=2.5$, and hence $p_{\mathcal{A}}^{a b}=3.25$.

3 Bounds Based Upon Standard Quadratic Programming

In this section, we further present some methods to find lower bounds on optimal value of (1.1). For the sake of simplicity, we only discuss the case that $d=2$ in (1.1), of the following form

$$
\begin{array}{ll}
\min & p_{\mathcal{A}}(x, y):=\sum_{i, j=1}^{n} \sum_{k, l=1}^{m} a_{i j k l} x_{i} x_{j} y_{k} y_{l} \tag{3.1}\\
\text { s.t. } & (x, y) \in \Delta_{n} \times \Delta_{m}
\end{array}
$$

which is also studied in [7]. We first present two results on the lower bounds of (3.1).
Theorem 3.1. Let $b_{i j}=\min _{1 \leq k \leq m} a_{i j k k}$ for $i, j=1, \ldots, n$ and $c_{k l}=\min _{1 \leq i \leq n} a_{i i k l}$ for $k, l=$ $1, \ldots, m$. Then, we have

$$
\begin{equation*}
p_{\mathcal{A}}^{0}+\max \left\{\frac{1}{m}\left(v_{B}^{\min }-p_{\mathcal{A}}^{0}\right), \frac{1}{n}\left(v_{C}^{\min }-p_{\mathcal{A}}^{0}\right)\right\} \leq p_{\mathcal{A}}^{\min } \tag{3.2}
\end{equation*}
$$

where $v_{B}^{\min }$ and $v_{C}^{\min }$ are the optimal values of the following standard quadratic optimization problems

$$
\left\{\begin{array} { c l }
{ \operatorname { m i n } _ { x \in \Re ^ { n } } } & { \sum _ { i , j = 1 } ^ { n } b _ { i j } x _ { i } x _ { j } } \\
{ \text { s.t. } } & { x \in \Delta _ { n } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{cl}
\min _{y \in \Re^{m}} & \sum_{k, l=1}^{n} c_{k l} y_{k} y_{l} \\
\text { s.t. } & y \in \Delta_{m},
\end{array}\right.\right.
$$

respectively.

Proof. It suffices to show that $p_{\mathcal{A}}^{0}+\frac{1}{m}\left(v_{B}^{\min }-p_{\mathcal{A}}^{0}\right) \leq p_{\mathcal{A}}^{\min }$ holds. By shift-equivariance, we have that for $x \in \Delta_{n}$ and $y \in \Delta_{m}$,

$$
\begin{aligned}
p_{\mathcal{A}}(x, y) & =p_{\mathcal{A}}^{0}+\sum_{i, j=1}^{n} \sum_{k, l=1}^{m}\left(a_{i j k l}-p_{\mathcal{A}}^{0}\right) x_{i} x_{j} y_{k} y_{l} \\
& \geq p_{\mathcal{A}}^{0}+\sum_{i, j=1}^{n} \sum_{k=1}^{m}\left(a_{i j k k}-p_{\mathcal{A}}^{0}\right) x_{i} x_{j} y_{k}^{2} \\
& \geq p_{\mathcal{A}}^{0}+\sum_{k=1}^{m} y_{k}^{2} \sum_{i, j=1}^{n}\left(b_{i j}-p_{\mathcal{A}}^{0}\right) x_{i} x_{j} \\
& \geq p_{\mathcal{A}}^{0}+\frac{1}{m} \sum_{i, j=1}^{n}\left(b_{i j}-p_{\mathcal{A}}^{0}\right) x_{i} x_{j} \\
& =p_{\mathcal{A}}^{0}+\frac{1}{m}\left(\sum_{i, j=1}^{n} b_{i j} x_{i} x_{j}-p_{\mathcal{A}}^{0}\right)
\end{aligned}
$$

where the second inequality comes from the fact $b_{i j} \leq a_{i j k k}$ for every $k=1, \ldots, m$, and the last inequality is due to the fact that $\sum_{k=1}^{m} y_{k}^{2} \geq 1 / m$ for any $y \in \Delta_{m}$. By this, it follows that $p_{\mathcal{A}}^{0}+\frac{1}{m}\left(v_{B}^{\min }-p_{\mathcal{A}}^{0}\right) \leq p_{\mathcal{A}}^{\min }$ holds. We complete the proof of the theorem.
Theorem 3.2. Let $g_{i j}=t_{i j} \min _{1 \leq k, l \leq m} a_{i j k l}$ with $t_{i j} \in(0,1)$ and $h_{k l}=\min _{1 \leq i, j \leq n}\left(a_{i j k l}-g_{i j}\right)$. Then, we have

$$
v_{G}^{\min }+v_{H}^{\min } \leq p_{\mathcal{A}}^{\min },
$$

where $v_{G}^{\min }$ and $v_{H}^{\min }$ are the global minimums of the following standard quadratic optimization problems

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } _ { x \in \Re } } & { \sum _ { i , j = 1 } ^ { n } g _ { i j } x _ { i } x _ { j } } \\
{ \text { s.t. } } & { x \in \Delta _ { n } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{cl}
\min _{y \in \Re \Re^{m}} & \sum_{k, l=1}^{m} h_{k l} y_{k} y_{l} \\
\text { s.t. } & y \in \Delta_{m}
\end{array}\right.\right.
$$

respectively.
Proof. Since $0<t_{i j}<1$, it follows that $g_{i j}>0$ and $h_{k l}>0$ for every $i, j=1, \ldots, n$ and $k, l=1, \ldots, m$. Moreover, it is easy to see that for $i, j=1, \ldots, n$ and $k, l=1, \ldots, m$, $a_{i j k l}=a_{i j k l}-g_{i j}+g_{i j} \geq h_{k l}+g_{i j}$. Consequently, we know that for $x \in \Delta_{n}$ and $y \in \Delta_{m}$,

$$
p_{\mathcal{A}}(x, y) \geq \sum_{i, j=1}^{n} g_{i j} x_{i} x_{j}+\sum_{k, l=1}^{m} h_{k l} y_{k} y_{l} .
$$

Based upon this, we obtain the desired result and complete the proof.
Remark 3.3. Note that the standard quadratic optimization problems in Theorems 3.1 and 3.2 are also NP-hard themselves. However, based upon Theorems 3.1 and 3.2, we may obtain some lower bounds for $p_{\mathcal{A}}^{\mathrm{min}}$ by solving approximately the corresponding quadratic problems in polynomial time.
Example 3.4. Consider Example 2.5. We first estimate its lower bound for $p_{\mathcal{A}}^{\min }$ by the method presented in Theorem 3.1. It is easy to know that the two matrices mentioned in Theorem 3.1 are

$$
B=C=\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

Based upon this, we can obtain $v_{B}^{\min }=v_{C}^{\min }=2.5$. Hence, by Theorem 3.1, we know that $1.75 \leq p_{\mathcal{A}}^{\min }$ since $p_{\mathcal{A}}^{0}=1$ and $m=n=2$.

We continue to estimate $p_{\mathcal{A}}^{\min }$ by Theorem 3.2. We take $t_{11}=t_{12}=t_{21}=t_{22}=0.25$. Then, we have

$$
G=\left(g_{i j}\right)=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad H=\left(h_{k l}\right)=\frac{3}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

Based upon this, it is easy to know that $v_{G}^{\min }=0.25$ and $v_{H}^{\min }=0.75$, which implies $1 \leq p_{\mathcal{A}}^{\text {min }}$ by Theorem 3.2.
Example 3.5. Consider Example 2.6. We first estimate its lower bound for $p_{\mathcal{A}}^{\min }$ by Theorem 3.1. It is easy to know that the two matrices mentioned in Theorem 3.1 are

$$
B:=\left(b_{i j}\right)=\left[\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right] \quad \text { and } \quad C:=\left(c_{k l}\right)=\left[\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right]
$$

respectively. Based upon this, it follows that $v_{B}^{\min }=v_{C}^{\min }=4$. Hence, we obtain $2.5 \leq p_{\mathcal{A}}^{\min }$, which is larger than $p_{\mathcal{A}}^{\text {ref }}$ and $p_{\mathcal{A}}^{x y}$ obtained in Example 2.6. We continue to estimate the lower bound for $p_{\mathcal{A}}^{\min }$ in Example 2.6 by using the result obtained in Theorem 3.2. We take $t_{11}=t_{22}=1 / 4$ and $t_{12}=t_{21}=1 / 2$. By a simple computation, it is easy to see that

$$
G:=\left(g_{i j}\right)=\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right] \quad \text { and } \quad H:=\left(h_{k l}\right)=\left[\begin{array}{cc}
3 & 1 / 2 \\
1 / 2 & 3
\end{array}\right] .
$$

Consequently, we obtain $v_{G}^{\min }=0.75$ and $v_{H}^{\min }=1.75$. It follows that $2.5 \leq p_{\mathcal{A}}^{\min }$.
Example 3.6. Consider the case where $n_{1}=d=l=2$ and $n_{2}=3$. Let $a_{1112}=a_{1121}=$ $a_{2213}=a_{2231}=1$ and other entries be 2 .

In this case, it is obvious that $p_{\mathcal{A}}^{0}=1$. Consequently, it is easy to see that $p_{\mathcal{A}}^{\mathrm{ref}}=7 / 6$ by Theorem 2.2. By a simple computation, we know that $p_{\mathcal{A}}^{x y}=(2+\sqrt{2}) / 3$, by Theorem 2.3. At the same time, by Theorem 2.4, we have that $p_{\mathcal{A}}^{a b}=4 / 3$. On the other hand, by Theorem 3.1, we can obtain $1.5 \leq p_{\mathcal{A}}^{\min }$. Finally, we estimate the lower bound for $p_{\mathcal{A}}^{\min }$ by Theorem 3.2. Take $t_{11}=t_{12}=t_{21}=t_{22}=0.5$. It is easy to see that

$$
G=\frac{1}{2}\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \quad \text { and } \quad H=\frac{1}{2}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

Hence, we can obtain that $v_{G}^{\min }=0.5$ and $v_{H}^{\min }=0.75$, which implies $1.25 \leq p_{\mathcal{A}}^{\text {min }}$ by Theorem 3.2.
Example 3.7. Consider the case that $\mathcal{A}=\left(a_{i j k l}\right)$, where $i, j=1,2, \ldots, n, k, l=1,2, \ldots, m$ and

$$
a_{i j k l}= \begin{cases}a, & \text { if } i=j \text { and } k=l \\ b, & \text { otherwise }\end{cases}
$$

It is obvious that $p_{\mathcal{A}}^{\min }=a$ when $a=b$.
When $a<b$, it is obvious that $p_{\mathcal{A}}^{0}=a$. Furthermore, we can obtain a tight lower bound a of $p_{\mathcal{A}}^{\min }$, i.e, $p_{\mathcal{A}}^{\min }=a$, by all the methods in Theorems 2.2-2.4, 3.1 and Theorem 3.2 with $t_{i j}=a / b(i, j=1,2, \ldots, n)$.

When $a>b$, by a direct computation, we obtain a tight lower bound $b+\frac{a-b}{n_{1} n_{2}}$ of $p_{\mathcal{A}}^{\min }$, i.e., $p_{\mathcal{A}}^{\min }=b+\frac{a-b}{n m}$, by the methods in Theorems 2.2, 2.4 and 3.1. On the other hand, we can obtain another lower bound b of $p_{\mathcal{A}}^{\min }$ by Theorem 2.3 and Theorem 3.2 with $t_{i j}=b / a(i, j=1,2, \ldots, n)$.

The above examples also show that the approximation bounds presented in Sections 2 and 3 are incomparable in general.

We now consider the following optimization problem

$$
\begin{array}{cl}
p_{Z}^{*}:=\min _{Z \in \Re^{n \times m}} & \mathcal{A} \bullet(Z \otimes Z) \tag{3.3}\\
\text { s.t. } & J_{n, m} \bullet Z=1, \\
& Z \geq 0, \operatorname{rank}(Z)=1,
\end{array}
$$

where $\mathcal{A}=\left(a_{i j k l}\right)$ is a fourth order $(n \times n \times m \times m)$-dimensional real partially symmetric tensor, $J_{n, m}$ is the $n \times m$ matrix of all ones in $\Re^{n \times m}$.

The following statement characterizes the relationship between (3.1) and (3.3).
Proposition 3.8. The problems (3.1) and (3.3) are equivalent.
Proof. Since $Z=x y^{\top}$ is a feasible solution of (3.3) for every $(x, y) \in \Delta_{n} \times \Delta_{m}$, it is clear that $p_{Z}^{*} \leq p_{\mathcal{A}}^{\min }$. On the other hand, let \bar{Z} be an optimal solution of (3.3), then there exist $\bar{x} \in \Re^{n}$ and $\bar{y} \in \Re^{m}$ such that $\bar{Z}=\bar{x} \bar{y}^{\top}$. It is clear that $\left(\sum_{i=1}^{n} \bar{x}_{i}\right)\left(\sum_{j=1}^{m} \bar{y}_{j}\right)=J_{n, m} \bullet \bar{Z}=1$. Denote $x^{*}=\bar{x} / \sum_{i=1}^{n} \bar{x}_{i}$ and $y^{*}=\bar{y} / \sum_{j=1}^{m} \bar{y}_{j}$. Since $x^{*} y^{* \top}=\bar{Z} \geq 0$, it is easy to see that $\bar{x}_{i}\left(\sum_{j=1}^{m} \bar{y}_{j}\right) \geq 0$ for $i=1,2, \ldots, n$ and $\bar{y}_{j}\left(\sum_{i=1}^{n} \bar{x}_{i}\right) \geq 0$ for $j=1,2, \ldots, m$. Consequently, we know that $x^{*} \geq 0$ and $y^{*} \geq 0$. Hence, $\left(x^{*}, y^{*}\right) \in \Delta_{n} \times \Delta_{m}$. Furthermore, we can verify that $\mathcal{A} \bullet\left(x^{*} y^{* \top} \otimes x^{*} y^{* \top}\right)=p_{Z}^{*}$, which implies $p_{\mathcal{A}}^{\min } \leq p_{Z}^{*}$. The desired result is obtained.

By removing the rank constraint in (3.3), we have the following relaxation of problem (3.1):

$$
\begin{array}{cl}
\min _{Z \in \Re^{n \times m}} & \mathcal{A} \bullet(Z \otimes Z) \\
\text { s.t. } & J_{n, m} \bullet Z=1, \tag{3.4}\\
& Z \geq 0 .
\end{array}
$$

Let $z=\operatorname{vec}(Z)$, where the operator "vec" is defined as

$$
\operatorname{vec}(Z)=\left(Z_{11}, \ldots, Z_{n 1}, \ldots, Z_{1 m}, \ldots, Z_{n m}\right)^{\top}
$$

Then $z \in \Delta_{m n}$ and (3.4) can be rewritten as the following standard quadratic programming

$$
\begin{array}{rlr}
v_{\mathrm{sqp}}^{*}:=\min _{z \in \Re^{m n}} & z^{\top} \bar{A} z \tag{3.5}\\
\text { s.t. } & z \in \Delta_{m n},
\end{array}
$$

where $\bar{A}=\left(\bar{a}_{i j}\right) \in \mathcal{S}^{m n}$, generated by rearranging the entries of \mathcal{A}. It is clear that $v_{\mathrm{sqp}}^{*} \leq$ $p_{\mathcal{A}}^{\min }$ and the smallest element in \bar{A} is exactly $p_{\mathcal{A}}^{0}$. Let z^{*} be an optimal solution of (3.5). We pack z^{*} back into an $n \times m$ matrix $\bar{Z}=\operatorname{mat}\left(z^{*}\right)$ by columns, i.e., the n elements in the j-th column of \bar{Z} consist of $z_{(j-1) n+1}^{*}, \ldots, z_{j n}^{*}$ of $z^{*}, j=1, \ldots, m$. If $\operatorname{rank}(\bar{Z})=1$, then by the proof of Proposition 3.8, there exist $\bar{x} \in \Delta_{n}$ and $\bar{y} \in \Delta_{m}$ such that $\bar{Z}=\bar{x} \bar{y}^{\top}$, which implies that (\bar{x}, \bar{y}) is an optimal solution of (3.1). However, since \bar{A} is indefinite in general, (3.5) is an NP-hard problem with $m n$ dimension variables, which will bring higher computational cost when n or m is very large. In [27], Nowak proposed a method for solving the lower bound p_{z}^{nb} of the global minimum of (3.5), which is based upon the following semidefinite programming (SDP)

$$
\begin{array}{cl}
\min _{G \in \mathcal{S}^{m n}} & J_{m n} \bullet(\bar{A}-G) \\
\text { s.t. } & G \leq \bar{A}, \Phi(G) \succeq 0, \tag{3.6}\\
& \operatorname{diag}(G)=\operatorname{diag}(\bar{A})
\end{array}
$$

and the following quadratic optimization problem

$$
\begin{array}{rll}
v_{G^{*}}:= & \min & z^{\top} G^{*} z \tag{3.7}\\
\text { s.t. } & z \in \Delta_{m n} .
\end{array}
$$

Here $\Phi: \Re^{m n \times m n} \rightarrow \Re^{(m n-1) \times(m n-1)}$ is the linear map defined by

$$
\Phi(G)_{i, j}:=G_{i, j}-G_{m n, i}-G_{m n, j}+G_{m n, m n}, \quad i, j=1, \ldots, m n-1
$$

and G^{*} is an optimal solution of (3.6). Since $\Phi\left(G^{*}\right) \succeq 0$, by Lemma 2 in [27], we know that (3.7) is a convex optimization problem, which can be solved in polynomial time. Moreover, if $z^{\top} \bar{A} z$ is concave on the edges of the simplex $\Delta_{m n}$, then $G^{*}=\left(g_{i j}^{*}\right)_{1 \leq i, j \leq m n}$ with

$$
g_{i j}^{*}=\frac{1}{2}\left(\bar{a}_{i i}+\bar{a}_{j j}\right), \quad i, j=1, \ldots, m n
$$

and $v_{G^{*}}$ is exact, see [27] for details.

4 Approximation Solutions and Relative Approximation Ratio

In this section, we present a polynomial time approximation algorithm for solving (3.1), which can be extended to the case where $d \geq 3$. As mentioned in Section 2, it holds that $p_{\mathcal{A}+t \mathcal{E}}^{\min }=p_{\mathcal{A}}^{\min }+t$ for all $t \in \Re$. Hence, in this section we assume that all entries of \mathcal{A} are negative. We first introduce the following definition to characterize the quality measure of approximation ratio.
Definition 4.1. Let $1 \geq \varepsilon>0$ and \mathfrak{A} be an approximation algorithm for (3.1). We say \mathfrak{A} is a ε-approximation algorithm for (3.1) if for any instance of (3.1) the algorithm \mathfrak{A} returns a feasible pair (\bar{x}, \bar{y}) of (3.1) such that

$$
p_{\mathcal{A}}(\bar{x}, \bar{y})-p_{\mathcal{A}}^{\min } \leq(1-\varepsilon)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)
$$

Here, $p_{\mathcal{A}}^{\min }$ (resp., $p_{\mathcal{A}}^{\max }$) is the minimum (resp., maximum) value of the objective in (3.1).
To get rid of the sign constraints $x \geq 0$ and $y \geq 0$ in (3.1), motivated by [10], we replace the variables x_{i} and y_{j} with z_{i}^{2} and w_{j}^{2}, respectively. Then the conditions $\sum_{i=1}^{n} x_{i}=1$ and $\sum_{j=1}^{m} y_{j}=1$ become to $\|z\|^{2}=1$ and $\|w\|^{2}=1$, respectively. Therefore, the considered problem (3.1) can be equivalently written as

$$
\begin{array}{ll}
\min & g(z, w):=\sum_{i, j=1}^{n} \sum_{k, l=1}^{m} a_{i j k l} z_{i}^{2} z_{j}^{2} w_{k}^{2} w_{l}^{2} \tag{4.1}\\
\text { s.t. } & \|z\|^{2}=1,\|w\|^{2}=1,(z, w) \in \Re^{n} \times \Re^{m} .
\end{array}
$$

Furthermore, by introducing a suitable 8-th order ($n \times n \times n \times n \times m \times m \times m \times m$)-dimensional tensor $\overline{\mathcal{A}}=\left(\bar{a}_{i_{1} i_{2} i_{3} i_{4} j_{1} j_{2} j_{3} j_{4}}\right)$, the above problem can be rewritten as

$$
\begin{array}{ll}
\min & g(z, w):=\sum_{1 \leq i_{1}, \ldots, i_{4} \leq n} \sum_{1 \leq j_{1}, \ldots, j_{4} \leq m} \bar{a}_{i_{1} i_{2} i_{3} i_{4} j_{1} j_{2} j_{3} j_{4}} z_{i_{1}} z_{i_{2}} z_{i_{3}} z_{i_{4}} w_{j_{1}} w_{j_{2}} w_{j_{3}} w_{j_{4}} \tag{4.2}\\
\text { s.t. } & \|z\|^{2}=1,\|w\|^{2}=1,(z, w) \in \Re^{n} \times \Re^{m},
\end{array}
$$

one of whose relaxations is

$$
\begin{array}{ll}
\min & F\left(z^{(1)}, \ldots, z^{(4)}, w^{(1)}, \ldots, w^{(4)}\right) \\
& :=\sum_{1 \leq i_{1}, \ldots, i_{4} \leq n} \bar{a}_{i_{1} i_{2} i_{3} i_{4} j_{1} j_{2} j_{3} j_{4}} z_{i_{1}}^{(1)} z_{i_{2}}^{(2)} z_{i_{3}}^{(3)} z_{i_{4}}^{(4)} w_{j_{1}}^{(1)} w_{j_{2}}^{(2)} w_{j_{3}}^{(3)} w_{j_{4}}^{(4)} \tag{4.3}\\
\text { s.t. } & \left\|z^{(k)}\right\|^{2}=1,\left\|w^{(k)}\right\|^{2}=1,\left(z^{(k)}, w^{(k)}\right) \in \Re^{n} \times \Re^{m}, k=1, \ldots, 4 .
\end{array}
$$

In the sequel of this section, we study the approximation bound of (3.1), based upon the obtained approximation solution of (4.3). To this end, we first consider the following general multi-linear function

$$
\begin{equation*}
F\left(z^{(1)}, \ldots, z^{(r)}, w^{(1)}, \ldots, w^{(l)}\right)=\sum_{\substack{1 \leq i_{1}, \ldots, i_{r} \leq n \\ 1 \leq j_{1}, \ldots, j_{l} \leq m}} \hat{a}_{i_{1} \ldots i_{r} j_{1} \ldots j_{l}} z_{i_{1}}^{(1)} \cdots z_{i_{r}}^{(r)} w_{j_{1}}^{(1)} \cdots w_{j_{l}}^{(l)}, \tag{4.4}
\end{equation*}
$$

where $z^{(k)} \in \Re^{n}(k=1,2, \ldots, r)$ and $w^{(s)} \in \Re^{m}(s=1,2, \ldots, l)$. In the shorthand notation we shall denote $\hat{\mathcal{A}}=\left(\hat{a}_{i_{1} \ldots i_{r} j_{1} \ldots j_{l}}\right)$ to be a $(r+l)$-th order tensor. We call the tensor $\hat{\mathcal{A}}$ partially symmetric with respect to the subscript set $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ (resp., $\left\{j_{1}, j_{2}, \ldots, j_{l}\right\}$), if $\hat{a}_{i_{1} \ldots i_{r} j_{1} \ldots j_{l}}$ is invariant under all permutations of $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ (resp., $\left\{j_{1}, j_{2}, \ldots, j_{l}\right\}$). Closely related to the tensor $\hat{\mathcal{A}}$ is a general homogeneous polynomial function $f(z, w):=$ $F(z, \ldots, z, w, \ldots, w)$, where $z \in \Re^{n}$ and $w \in \Re^{m}$. As any quadratic function uniquely determines a symmetric matrix, a given homogeneous polynomial function $f(z, w)$ of degree $(r+l)$ also uniquely determines a partially symmetric tensor form. For F in (4.4) and the related homogeneous polynomial function f, we have the following lemma, which is a special case of Lemma 2.3.3 of [21] and is an extension of Proposition 5 in [32].

Lemma 4.2. Suppose that $z^{(1)}, \ldots, z^{(r)} \in \Re^{n}, w^{(1)}, \ldots, w^{(l)} \in \Re^{m}$, and that ξ_{1}, \ldots, ξ_{r} and $\zeta_{1}, \ldots, \zeta_{l}$ are i.i.d. random variables, each takes values 1 and -1 with equal probability $1 / 2$. For any partially symmetric multi-linear function $F\left(z^{(1)}, \ldots, z^{(r)}, w^{(1)}, \ldots, w^{(l)}\right)$ and function $f(z, w)=F(z, \ldots, z, w, \ldots, w)$, it holds that

$$
\mathrm{E}\left[\prod_{i=1}^{r} \xi_{i} \prod_{j=1}^{l} \zeta_{j} f\left(\sum_{k=1}^{r} \xi_{k} z^{(k)}, \sum_{s=1}^{l} \zeta_{s} w^{(s)}\right)\right]=(r!)(l!) F\left(z^{(1)}, \ldots, z^{(r)}, w^{(1)}, \ldots, w^{(l)}\right)
$$

By applying Lemma 4.2 to the special case where $r=l=4$, i.e., (4.2) and (4.3), we have the following theorem.

Theorem 4.3. Problem (3.1) admits a polynomial-time approximation algorithm with relative approximation ratio ε, i.e. there exists a feasible solution (\hat{x}, \hat{y}) of (3.1) such that

$$
\begin{equation*}
p_{\mathcal{A}}(\hat{x}, \hat{y})-p_{\mathcal{A}}^{\min } \leq(1-\varepsilon)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right) \tag{4.5}
\end{equation*}
$$

where $\varepsilon=\Omega\left(\frac{\log m \log n}{m n} \phi(n, m)\right)$ with

$$
\phi(n, m)= \begin{cases}\frac{\log n}{n}, & \text { if } n \leq m \\ \frac{\log m}{m}, & \text { otherwise }\end{cases}
$$

Proof. In order to obtain (4.5), we only prove that $p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}(\hat{x}, \hat{y}) \geq \varepsilon\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)$. Denote $\mathbf{z}=(z, z, z, z), \mathbf{z}^{(1,4)}=\left(z^{(1)}, z^{(2)}, z^{(3)}, z^{(4)}\right) \in \Re^{n} \times \Re^{n} \times \Re^{n} \times \Re^{n}$ and $\mathbf{w}=$ $(w, w, w, w), \mathbf{w}^{(1,4)}=\left(w^{(1)}, w^{(2)}, w^{(3)}, w^{(4)}\right) \in \Re^{m} \times \Re^{m} \times \Re^{m} \times \Re^{m}$. Denote $H(\mathbf{z}, \mathbf{w})$ to be the partially symmetric form with respect to the function $h(z, w):=\|z\|^{4}\|w\|^{4}$. Pick any fixed $\left(z^{0}, w^{0}\right)$ with $\left\|z^{0}\right\|=\left\|w^{0}\right\|=1$, and consider the following problem

$$
\begin{aligned}
p_{H}^{\max }=\max & g\left(z^{0}, w^{0}\right) H\left(\mathbf{z}^{(1,4)}, \mathbf{w}^{(1,4)}\right)-F\left(\mathbf{z}^{(1,4)}, \mathbf{w}^{(1,4)}\right) \\
\text { s.t. } & \left\|z^{(k)}\right\|=1,\left\|w^{(k)}\right\|=1, \\
& z^{(k)} \in \Re^{n}, w^{(k)} \in \Re^{m}, k=1, \ldots, 4 .
\end{aligned}
$$

It is clear that $p_{H}^{\max } \geq 0$. By Theorem 4 in [32], we can obtain a solution $\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)$ in polynomial time such that

$$
\begin{equation*}
g\left(z^{0}, w^{0}\right) H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)-F\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right) \geq \varepsilon_{1} p_{H}^{\max } \tag{4.6}
\end{equation*}
$$

where $\varepsilon_{1}=\Omega\left(\frac{\log m \log n}{m n} \phi(n, m)\right)$.
If $p_{\mathcal{A}}^{\max }-g\left(z^{0}, w^{0}\right)>\left(\varepsilon_{1} / 4\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)$, then we have $p_{\mathcal{A}}^{\max }-g\left(z^{0}, w^{0}\right)>\varepsilon\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)$ since $\varepsilon_{1} / 4>\varepsilon$. Consequently, by letting $\hat{x}=\left(\left(z_{1}^{0}\right)^{2}, \ldots,\left(z_{n}^{0}\right)^{2}\right)^{\top}$ and $\hat{y}=\left(\left(w_{1}^{0}\right)^{2}, \ldots,\left(w_{m}^{0}\right)^{2}\right)^{\top}$, we have obtained the desired result. Now we suppose that

$$
\begin{equation*}
p_{\mathcal{A}}^{\max }-g\left(z^{0}, w^{0}\right) \leq\left(\varepsilon_{1} / 4\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right) \tag{4.7}
\end{equation*}
$$

Notice that $\left|H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)\right| \leq 1$, by (4.6), we have

$$
\begin{aligned}
p_{\mathcal{A}}^{\max } H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)-F\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)= & g\left(z^{0}, w^{0}\right) H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)-F\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right) \\
& +\left(p_{\mathcal{A}}^{\max }-g\left(z^{0}, w^{0}\right)\right) H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right) \\
& \geq \varepsilon_{1} p_{H}^{\max }-\left(p_{\mathcal{A}}^{\max }-g\left(z^{0}, w^{0}\right)\right) \\
& \geq \varepsilon_{1}\left(g\left(z^{0}, w^{0}\right)-p_{\mathcal{A}}^{\min }\right)-\left(\varepsilon_{1} / 4\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right) \\
& \geq\left(\varepsilon_{1}\left(1-\varepsilon_{1} / 4\right)-\varepsilon_{1} / 4\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right) \\
& \geq\left(\varepsilon_{1} / 2\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right),
\end{aligned}
$$

where the second inequality comes from (4.7) and the fact $p_{H}^{\min } \geq g\left(z_{0}, w_{0}\right)-p_{\mathcal{A}}^{\min }$, the third inequality is due to (4.7). On the other hand, it holds that

$$
\begin{aligned}
& (4!)^{2}\left[p_{\mathcal{A}}^{\max } H\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)-F\left(\hat{\mathbf{z}}^{(1,4)}, \hat{\mathbf{w}}^{(1,4)}\right)\right] \\
& =E\left[\prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)\left(p_{\mathcal{A}}^{\max } h(\hat{Z} \xi, \hat{W} \zeta)-g(\hat{Z} \xi, \hat{W} \zeta)\right)\right] \\
& =E\left[p_{\mathcal{A}}^{\max } h(\hat{Z} \xi, \hat{W} \zeta)-g(\hat{Z} \xi, \hat{W} \zeta) \mid \prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)=1\right] \operatorname{Prob}\left\{\prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)=1\right\} \\
& \quad-E\left[p_{\mathcal{A}}^{\max } h(\hat{Z} \xi, \hat{W} \zeta)-g(\hat{Z} \xi, \hat{W} \zeta) \mid \prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)=-1\right] \operatorname{Prob}\left\{\prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)=-1\right\} \\
& \leq \frac{1}{2} E\left[p_{\mathcal{A}}^{\max } h(\hat{Z} \xi, \hat{W} \zeta)-g(\hat{Z} \xi, \hat{W} \zeta) \mid \prod_{i=1}^{4}\left(\xi_{i} \zeta_{i}\right)=1\right],
\end{aligned}
$$

where $\hat{Z}=\left[\hat{z}^{(1)}, \hat{z}^{(2)}, \hat{z}^{(3)}, \hat{z}^{(4)}\right], \hat{W}=\left[\hat{w}^{(1)}, \hat{w}^{(2)}, \hat{w}^{(3)}, \hat{w}^{(4)}\right], \xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right)^{\top}$ and $\zeta=$ $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right)^{\top}$. Thus there exists two vectors $\beta=\left(\beta_{1}, \ldots, \beta_{4}\right), \gamma=\left(\gamma_{1}, \ldots, \gamma_{4}\right)$ with $\beta_{i}^{2}=$ $\gamma_{i}^{2}=1(i=1, \ldots, 4)$ and $\prod_{i=1}^{4} \beta_{i} \gamma_{i}=1$, such that

$$
\frac{1}{2}\left(p_{\mathcal{A}}^{\max } h(\hat{Z} \beta, \hat{W} \gamma)-g(\hat{Z} \beta, \hat{W} \gamma)\right) \geq(4!)^{2}\left(\varepsilon_{1} / 2\right)\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)
$$

Letting $\hat{z}=\hat{Z} \beta /\|\hat{Z} \beta\|$ and $\hat{w}=\hat{W} \gamma /\|\hat{W} \gamma\|$, we have

$$
p_{\mathcal{A}}^{\max }-g(\hat{z}, \hat{w}) \geq \frac{(4!)^{2} \varepsilon_{1}\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)}{\|\hat{Z} \beta\|^{4}\|\hat{W} \gamma\|^{4}} \geq \varepsilon\left(p_{\mathcal{A}}^{\max }-p_{\mathcal{A}}^{\min }\right)
$$

where the second inequality comes from the fact that $\|\hat{Z} \beta\| \leq 4$ and $\|\hat{W} \gamma\| \leq 4$. Here $\varepsilon:=\frac{(4!)^{2}}{4^{8}} \varepsilon_{1}$. By taking $\hat{x}=\left(\hat{z}_{1}^{2}, \ldots, \hat{z}_{n}^{2}\right)^{\top}$ and $\hat{y}=\left(\hat{w}_{1}^{2}, \ldots, \hat{w}_{m}^{2}\right)^{\top}$, we obtain the desired result under the assumption (4.7). We complete the proof.

5 The Related Bi-Linear Copositive Programming

In this section, we still consider the problem (3.1). Recall that $M \in \mathcal{S}^{n}$ is said to be copositive (more precisely, \Re_{+}^{n}-copositive), if $x^{\top} M x \geq 0$ for any $x \in \Re_{+}^{n}$. Denote by \mathcal{K}_{n} the cone of all $n \times n$ copositive matrices, i.e.,

$$
\mathcal{K}_{n}=\left\{M \in \mathcal{S}^{n} \mid x^{\top} M x \geq 0 \text { for any } x \in \Re_{+}^{n}\right\}
$$

and denote by \mathcal{K}_{n}^{*} the cone of all completely positive matrices, i.e., $\mathcal{K}_{n}^{*}=\left\{N \in \mathcal{S}^{n} \mid N=\sum_{i=1}^{k} x^{i}\left(x^{i}\right)^{\top}\right.$ for some positive integer k and $\left.x^{i} \in \Re_{+}^{n}, i=1, \ldots, k\right\}$.

It is well known that \mathcal{K}_{n}^{*} is the dual of the copositive cone \mathcal{K}_{n} (which justifies the notation $\left.\mathcal{K}_{n}^{*}\right)$ with respect to the matrix inner product.

Consider the following conic bi-linear programming

$$
\begin{array}{cl}
\min _{X \in \mathcal{K}_{n}^{*}, Y \in \mathcal{K}_{m}^{*}} & (\mathcal{A} X) \bullet Y \tag{5.1}\\
\text { s.t. } & J_{n} \bullet X=1, \\
& J_{m} \bullet Y=1,
\end{array}
$$

where $\mathcal{A} X \in \mathcal{S}^{m}$ with $(\mathcal{A} X)_{k l}=\sum_{i, j=1}^{n} a_{i j k l} X_{i j}(k, l=1, \ldots m)$. Denoted by $v_{\min }^{\text {cop }}$ the optimal value of (5.1). It follows that $v_{\min }^{\operatorname{cop}} \leq p_{\mathcal{A}}^{\min }$ since $\left\{x x^{\top} \mid x \in \Delta_{n}\right\} \subseteq\left\{X \in \mathcal{K}_{n} \mid J_{n} \bullet X=1\right\}$. However, (5.1) is not a relaxation but indeed an exact reformulation of problem (3.1), which is shown in the following theorem.

Theorem 5.1. The bi-quadratic optimization (3.1) and bi-linear copositive programming (5.1) are equivalent, that is, (3.1) and (5.1) have the same optimal value and one optimal solution pair of (3.1) can be obtained from the optimal solution pair of (5.1).

Proof. Let $\left(X^{*}, Y^{*}\right)$ be an optimal solution pair of (5.1) with the objective value $v_{\text {min }}^{\mathrm{cop}}$. By the definition of \mathcal{K}_{n}^{*}, there exists a positive integer r_{1} such that $X^{*}=\sum_{i=1}^{r_{1}} x^{(i)}\left(x^{(i)}\right)^{\top}$ with $x^{(i)} \in \Re_{+}^{n} \backslash\{0\}$. Let $\lambda_{i}=\left(\sum_{k=1}^{n} x_{k}^{(i)}\right)^{2}$. Then $\lambda_{i}>0$ for $i=1,2, \ldots, r_{1}$, as well as $\sum_{i=1}^{r_{1}} \lambda_{i}=1$ since $J_{n} \bullet X^{*}=1$. Moreover, it is easy to see that $X^{*}=\sum_{i=1}^{r_{1}} \lambda_{i} \bar{x}^{(i)}\left(\bar{x}^{(i)}\right)^{\top}$, where $\bar{x}^{(i)}=x^{(i)} / \sum_{k=1}^{n} x_{k}^{(i)} \in \Delta_{n}$. Since $v_{\min }^{\text {cop }}=\left(Y^{*} \mathcal{A}\right) \bullet X^{*}$, where $Y^{*} \mathcal{A} \in \mathcal{S}^{n}$ with $\left(Y^{*} \mathcal{A}\right)_{i j}=\sum_{k, l=1}^{m} a_{i j k l} Y_{k l}^{*}(i, j=1, \ldots n)$, it follows that $v_{\min }^{\mathrm{cop}}=\sum_{i=1}^{r_{1}} \lambda_{i}\left(Y^{*} \mathcal{A}\right) \bullet \bar{x}^{(i)}\left(\bar{x}^{(i)}\right)^{\top}$, which implies that there must exist an index, say 1 , such that

$$
\begin{equation*}
\left(Y^{*} \mathcal{A}\right) \bullet \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top} \leq v_{\min }^{\mathrm{cop}} . \tag{5.2}
\end{equation*}
$$

Similarly, there exists a positive integer r_{2} such that $Y^{*}=\sum_{j=1}^{r_{2}} \mu_{j} \bar{y}^{(j)}\left(\bar{y}^{(j)}\right)^{\top}$, where $\bar{y}^{(j)} \in \Delta_{m}$ and $\mu_{j}>0$ for $j=1,2, \ldots, r_{2}$ satisfying $\sum_{j=1}^{r_{2}} \mu_{j}=1$. By (5.2), it holds that $\left(\mathcal{A} \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top}\right) \bullet Y^{*}=\left(Y^{*} \mathcal{A}\right) \bullet \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top} \leq v_{\min }^{\mathrm{cop}}$. Continue the above process on Y^{*}. There must be an index, say 1 , such that

$$
\begin{equation*}
\left(\mathcal{A} \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top}\right) \bullet \bar{y}^{(1)}\left(\bar{y}^{(1)}\right)^{\top} \leq v_{\min }^{\operatorname{cop}} . \tag{5.3}
\end{equation*}
$$

On the other hand, since $\bar{x}^{(1)} \in \Delta_{n}$ and $\bar{y}^{(1)} \in \Delta_{m}$, it is clear that

$$
p_{\mathcal{A}}^{\min } \leq\left(\mathcal{A} \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top}\right) \bullet \bar{y}^{(1)}\left(\bar{y}^{(1)}\right)^{\top}
$$

which implies, together with (5.3) and the fact that $v_{\min }^{\mathrm{cop}} \leq p_{\mathcal{A}}^{\min }$, that $p_{\mathcal{A}}^{\min }=\left(\mathcal{A} \bar{x}^{(1)}\left(\bar{x}^{(1)}\right)^{\top}\right) \bullet$ $\bar{y}^{(1)}\left(\bar{y}^{(1)}\right)^{\top}=v_{\min }^{\mathrm{cop}}$. We obtain the desired result and complete the proof.
Remark 5.2. (1) By Lemma 5 in [3], we know that the extremal points of the feasible set of (5.1) are exactly $\left(x x^{\top}, y y^{\top}\right)$, the rank-one matrix pairs based on vectors $x \in \Delta_{n}$ and $y \in \Delta_{m}$. Theorem 5.1 shows that a solution of the problem (5.1) is attained at an extremal point of the feasible set.
(2) Copositive programming is a useful tool in dealing with all sorts of optimization problems. However, it also has very complex structures in terms of computational solvability, since checking whether a symmetric matrix belongs to \mathcal{K}_{n} or not (the strong membership problem for \mathcal{K}_{n}) is co-NP-complete [25]. Due to the facts that the objective function in (5.1) is bilinear and the strong membership problem for the completely positive cone is NPhard [13], we know that (5.1) is also NP-hard. Consequently, by Theorem 5.1, there exists no polynomial time algorithm for solving (3.1).

To obtain the lower bounds of (5.1), we consider two aspects mentioned earlier. We first focus on approximating \mathcal{K}_{n}^{*} and \mathcal{K}_{m}^{*}.

Let us denote by \mathcal{S}_{+}^{n} the cone of all $n \times n$ positive semidefinite symmetric matrices, and denote by \mathcal{N}_{n} the cone of all nonnegative symmetric matrices. It is well known that the nonnegative and semidefinite cones are self-dual, i.e., $\left(\mathcal{S}_{+}^{n}\right)^{*}=\mathcal{S}_{+}^{n}$ and $\mathcal{N}_{n}^{*}=\mathcal{N}_{n}$. Recall that $\mathcal{C}_{n}=\mathcal{S}_{+}^{n}+\mathcal{N}_{n}$ is a (zero-order) inner approximation [6] of the copositive cone: $\mathcal{C}_{n} \subseteq \mathcal{K}_{n}$, with $\mathcal{C}_{n}=\mathcal{K}_{n}$ if and only if $n \leq 4$, see [12]. Hence, we have

$$
\mathcal{K}_{n}^{*} \subseteq \mathcal{C}_{n}^{*}=\left(\mathcal{S}_{+}^{n}+\mathcal{N}_{n}\right)^{*}=\mathcal{S}_{+}^{n} \cap \mathcal{N}_{n}
$$

Consider the following positive semidefinite programming

$$
\begin{align*}
v_{\min }^{\mathrm{SN}}:=\min _{X, Y} & (\mathcal{A} X) \bullet Y \\
\text { s.t. } & J_{n} \bullet X=1, X \in \mathcal{S}_{+}^{n} \cap \mathcal{N}_{n} \tag{5.4}\\
& J_{m} \bullet Y=1, Y \in \mathcal{S}_{+}^{m} \cap \mathcal{N}_{m}
\end{align*}
$$

which is a relaxation of (5.1). It is clear that $v_{\min }^{\mathrm{SN}} \leq v_{\min }^{\mathrm{cop}}=p_{\mathcal{A}}^{\min }$.
Furthermore, we choose two finite sets $\left\{P_{1}, \ldots, P_{s}\right\}$ and $\left\{Q_{1}, \ldots, Q_{t}\right\}$ from \mathcal{K}_{n} and \mathcal{K}_{m} respectively, and consider two generated cones

$$
\mathcal{D}_{n}=\left\{\sum_{i=1}^{s} a_{i} P_{i} \mid a_{i} \in \Re_{+}\right\} \text {and } \mathcal{D}_{m}=\left\{\sum_{j=1}^{t} b_{j} Q_{j} \mid b_{j} \in \Re_{+}\right\}
$$

It is easy to see that $\mathcal{C}_{n} \subseteq \mathcal{C}_{n}+\mathcal{D}_{n} \subseteq \mathcal{K}_{n}$ and $\mathcal{C}_{m} \subseteq \mathcal{C}_{m}+\mathcal{D}_{m} \subseteq \mathcal{K}_{m}$, since $\mathcal{K}_{n}, \mathcal{K}_{m}$ are convex and $0 \in \mathcal{D}_{n}, 0 \in \mathcal{D}_{m}$. Hence, problem

$$
\begin{align*}
v_{\text {sdp }}^{\mathcal{D}}:=\min _{X, Y} & (\mathcal{A} X) \bullet Y \\
\text { s.t. } & J_{n} \bullet X=1 \\
& X \in \mathcal{S}_{+}^{n} \cap \mathcal{N}_{n} \cap \mathcal{D}_{n}^{*} \tag{5.5}\\
& J_{m} \bullet Y=1, \\
& Y \in \mathcal{S}_{+}^{m} \cap \mathcal{N}_{m} \cap \mathcal{D}_{m}^{*}
\end{align*}
$$

can be used to improve bound $v_{\min }^{\mathrm{SN}}$. That is, $v_{\min }^{\mathrm{SN}} \leq v_{\mathrm{sdp}}^{\mathcal{D}}$ and $v_{\mathrm{sdp}}^{\mathcal{D}}$ is a valid lower bound for $p_{\mathcal{A}}^{\min }$. From the structure of \mathcal{D}_{n} and \mathcal{D}_{m}, it follows that (5.5) can be rewritten as

$$
\begin{align*}
v_{\mathrm{sdp}}^{\mathcal{D}}:=\min _{X, Y} & (\mathcal{A} X) \bullet Y \\
\text { s.t. } & J_{n} \bullet X=1, \\
& P_{i} \bullet X \geq 0, \forall i=1, \ldots, s \\
& X \in \mathcal{S}_{+}^{n} \cap \mathcal{N}_{n} \tag{5.6}\\
& J_{m} \bullet Y=1, \\
& Q_{j} \bullet Y \geq 0, \forall j=1, \ldots, t \\
& Y \in \mathcal{S}_{+}^{m} \cap \mathcal{N}_{m}
\end{align*}
$$

which is a special type of conic optimization problem, but is also NP-hard itself.
Let $C=\left(c_{k l}\right)_{1 \leq k, l \leq m} \in \mathcal{S}^{m}$ with $c_{k l}=\min _{1 \leq i, j \leq n}\left\{a_{i j k l}\right\}$. Then, it is ready to see that $\mathcal{A} X \geq C$ for any X satisfying $J_{n} \bullet X=1$ and $X \in \mathcal{N}_{n}$. We consider the following SDP problem

$$
\begin{array}{rl}
v_{\mathrm{sdp}}^{Y \mathcal{D}}:=\min _{Y} & C \bullet Y \\
\text { s.t. } & J_{m} \bullet Y=1, \\
& Q_{j} \bullet Y \geq 0, \forall j=1, \ldots, t, \\
& Y \in \mathcal{S}_{+}^{m} \cap \mathcal{N}_{m}
\end{array}
$$

which can be solved in polynomial time. It is clear that $v_{\mathrm{sdp}}^{Y \mathcal{D}} \leq v_{\mathrm{sdp}}^{\mathcal{D}}$. Similarly, we have that $v_{\mathrm{sdp}}^{X \mathcal{D}} \leq v_{\mathrm{sdp}}^{\mathcal{D}}$, where $v_{\mathrm{sdp}}^{X \mathcal{D}}$ is the optimal value of the following problem

$$
\begin{array}{cl}
\min _{X} & D \bullet X \\
\text { s.t. } & J_{n} \bullet X=1, \\
& P_{i} \bullet X \geq 0, \forall i=1, \ldots, s, \\
& X \in \mathcal{S}_{+}^{n} \cap \mathcal{N}_{n},
\end{array}
$$

and $D=\left(d_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{S}^{n}$ with $d_{i j}=\min _{1 \leq k, l \leq m}\left\{a_{i j k l}\right\}$. Therefore, it holds that

$$
\max \left\{v_{\mathrm{sdp}}^{X \mathcal{D}}, v_{\mathrm{sdp}}^{Y \mathcal{D}}\right\} \leq v_{\mathrm{sdp}}^{\mathcal{D}}
$$

Furthermore, from the fact that $C \geq p_{\mathcal{A}}^{0} J_{m}$, we know that $C \bullet Y \geq p_{\mathcal{A}}^{0}$ for any $Y \in \mathcal{N}_{m}$ satisfying $J_{m} \bullet Y=1$, which implies that $v_{\mathrm{sdp}}^{Y \mathcal{D}} \geq p_{\mathcal{A}}^{0}$. Similarly, it holds that $v_{\mathrm{sd}}^{X \mathcal{D}} \geq p_{\mathcal{A}}^{0}$. Therefore, we have

$$
p_{\mathcal{A}}^{0} \leq \min \left\{v_{\mathrm{sdp}}^{X \mathcal{D}}, v_{\mathrm{sdp}}^{Y \mathcal{D}}\right\} .
$$

On the other hand, we notice that relaxation problem (3.5) can be reformulated as the following instance of a linear optimization problem over the cone $\mathcal{K}_{n m}^{*}$ [3]:

$$
\begin{align*}
\nu(Q)= & \min \tag{5.7}\\
\text { s.t. } & Q \bullet Z \\
& J_{n m} \bullet Z=1, \\
& Z \in \mathcal{K}_{n m}^{*} .
\end{align*}
$$

Let us define

$$
\Theta_{n m}^{r}=\left\{z \in \mathbb{N}^{n m} \mid \sum_{i=1}^{n m} z_{i}=r+2\right\}, \quad r=0,1,2, \ldots
$$

where $\mathbb{N}^{n m}$ denotes the set of $n m$-dimensional nonnegative integer vectors. Define

$$
\mathfrak{O}_{r}=\left\{\sum_{z \in \Theta_{n m}^{r}} \beta_{z}\left(z z^{\top}-\operatorname{Diag}(z)\right) \mid \beta_{z} \geq 0 \text { for all } z \in \Theta_{n m}^{r}\right\}, \quad r=0,1,2, \ldots
$$

In [17], it was established that $\mathcal{K}_{n m}^{*} \subseteq \cdots \subseteq \mathfrak{O}_{1} \subseteq \mathfrak{O}_{0}$ and $\mathcal{K}_{n m}^{*}=\bigcap_{r=0}^{\infty} \mathfrak{O}_{r}$. We consider

$$
\begin{array}{rll}
l_{r}(Q)= & \min & Q \bullet Z \\
\text { s.t. } & J_{n m} \bullet Z=1, \tag{5.8}\\
& Z \in \mathfrak{O}_{r},
\end{array}
$$

which can be solved in polynomial time, for each fixed $r=0,1,2, \ldots$. It is obvious that $l_{r}(Q) \leq \nu(Q) \leq p_{\mathcal{A}}^{\min }$ for any $r=0,1, \ldots$, as $\nu(Q) \leq p_{\mathcal{A}}^{\min }$ and $l_{r}(Q)$ is a lower bound on $\nu(Q)$ for every $r=0,1, \ldots$, see $[6,31,35]$ for details.

It is worth pointing out that, how to choose appropriate matrices $P_{i}(i=1, \ldots, s)$ and $Q_{j}(j=1, \ldots, t)$ in (5.5) is very important to obtain better lower bounds of (1.1). Furthermore, after the choice of P_{i} and Q_{j}, how to obtain an approximation solution of (5.6) is also very interesting. These remain as topics for further research.

6 Final Remarks

In this paper, some preliminary lower bounds for the optimal value of StMQP are presented. Furthermore, a relative approximation ratio and a bi-linear copositive optimization reformulation for StBQP are also studied. Based on these, it is hopeful to design suitable approximation algorithms for the problem (1.1) and study the related approximation ratio properties. Indeed, it is well known that StQP has a PTAS [6]. For fixed degree polynomial optimization over the simplex, De Klerk, Laurent and Parrilo [18] considered sequences of hierarchical lower and upper bounds and showed a PTAS. More recently, by using the properties of Bernstein approximation on the simplex, a new proof of a PTAS for fixed-degree polynomial optimization over the simplex was presented in [19]. These naturally raise the question - whether the same holds for StMQP. However, the appearance of Cartesian product of several simplices results in that designing a PTAS for the considered problem becomes a more complex task, which also differs from the problems considered in $[6,18]$. We will focus on studying PTAS for StMQP in another paper.

Acknowledgments

We thank the editor and two anonymous referees for their valuable comments and suggestions, which are much helpful to improve the quality of the paper.

References

[1] K. Anstreicher and S. Burer, D.C. Versus copositive bounds for standard QP, J. Global Optim. 33 (2005) 299-312.
[2] I.M. Bomze, On standard quadratic optimization problems, J. Global Optim. 13 (1998) 369-387.
[3] I.M. Bomze, M. Dür, E. de Klerk, C. Roos, A.J. Quist and T. Terlaky, On copositive programming and standard quadratic optimization problems, J. Global Optim. 18 (2000) 301-320.
[4] I.M. Bomze, Branch-and-bound approaches to standard quadratic optimization problems, J. Global Optim. 22 (2002) 17-37.
[5] I.M. Bomze, M. Budinich, P. Pardalos and M. Pelillo, The maximum clique problem, in Handbook of Combinatorial Optimization (supp. A), D.-Z. Du, P.M. Pardalos (eds.), Kluwer, Dordrecht, 1999, pp. 1-74. de Klerk, E., Quist, A., Roos, C., Terlaky,
[6] I.M. Bomze and E. de Klerk, Solving standard quadratic optimization problems via linear, semidefinite and copositive programming, J. Global Optim. 24 (2002) 163-185.
[7] I.M. Bomze, C. Ling, L. Qi and X.Z. Zhang, Standard bi-quadratic optimization problems and unconstrained polynomial reformulations, J. Global Optim. 52 (2012) 663-687.
[8] I.M. Bomze and M. Locatelli, Undominated d.c. decompositions of quadratic functions and applications to branch-and-bound approaches, Comput. Optim. Appl. 28 (2004) 227-245.
[9] I.M. Bomze, M. Locatelli and F. Tardella, New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability, Math. Program. 115 (2008) 31-64.
[10] I.M. Bomze and L. Palagi, Quartic formulation of standard quadratic optimization problems, J. Global Optim. 32 (2005) 181-205.
[11] G. Dahl, J.M. Leinaas, J. Myrheim and E. Ovrum, A tensor product matrix aproximation problem in quantum physics, Linear Algebra Appl. 420 (2007) 711-725.
[12] P.H. Diananda, On non-negative forms in real variables some or all of which are nonnegative, Proc. Cambridge Philos. Soc. 58 (1962) 17-25.
[13] P.J.C. Dickinson and L. Gijben, On the computational complexity of membership problems for the completely positive cone and its dual, Comput. Optim. Appl. 57 (2014) 403-415.
[14] M. Dür, A class of problems where dual bounds beat underestimation bounds, J. Global Optim. 22 (2002) 49-57.
[15] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 (1935) 777-780.
[16] D. Han, H. H. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity 97 (2009) 1-13.
[17] E. de Klerk and D. V. Pasechnik, Approximation of the stability number of a graph via copositive programming, SIAM J. Optim. 12 (2002) 875-892.
[18] E. de Klerk, M. Laurent and P.A. Parrilo, A PTAS for the minimization of polynomials of fixed degree over the simplex, Theoret. Comput. Sci. 361 (2006) 210-225.
[19] E. de Klerk, M. Laurent and Z. Sun, An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex, Math. Program. DOI 10.1007/s10107-014-0825-6.
[20] J.K. Knowles and E. Sternberg, On the ellipticity of the equations of the equations for finite elastostatics for a special material, J. Elasticity. 5 (1975) 341-361.
[21] Z. Li, S. He and S. Zhang, Approximation Methods for Polynomial Optimization: Models, Algorithms, and Applications, Springer, New York, 2012.
[22] C. Ling, J. Nie, L. Qi and Y. Ye, Bi-quadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optim. 20 (2009) 1286-1310.
[23] H.M. Markowitz, Portfolio selection, The Journal of Finance 7 (1952) 77-91.
[24] H.M. Markowitz, The general mean-variance portfolio selection problem, in Mathematical Models in Finance, S.D. Howison, F.P. Kelly and P. Wilmott (eds.), London, 1995, pp. 93-99.
[25] K.G. Murty and S N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Program. 39 (1987) 117-129.
[26] Y.E. Nesterov, Global quadratic optimization on the sets with simplex structure, Discussion paper 9915, CORE. Catholic University of Louvain, Belgium 1999.
[27] I. Nowak, A new semidefinite programming bound for indefinite quadratic forms over a simplex, J. Global Optim. 14 (1999) 357-364.
[28] J.S. Pang A new and efficient algorithm for a class of portfolio selection problems, Oper. Res. 8 (1980) 754-767.
[29] L. Qi, H.H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China 4 (2009), 349-364.
[30] P. Rosakis, Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics, Arch. Ration. Mech. Anal. 109 (1990) 1-37.
[31] G. Sagol and E.A. Yildirim, Analysis of copositive optimization based bounds on standard quadratic optimization, Technical Report, Department of Industrial Engineering, Koc University, Sariyer, Istanbul, Turkey 2013.
[32] A.M.C. So, Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems, Math. Program. 129 (2011) 357-382.
[33] Y. Wang and M. Aron, A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media, J. Elasticity. 44 (1996) 89-96.
[34] Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest Meigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl. 16 (2009) 589-601.
[35] E.A. Yildirim, On the accuracy of uniform polyhedral approximations of the copositive cone, Optim. Methods Softw. 27 (2012) 155-173.

[^1]Xinzhen Zhang
Department of Mathematics, School of Science
Tianjin University, Tianjin, 300072, China
E-mail address: xzzhang@tju.edu.cn
Liqun Qi
Department of Applied Mathematics
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
E-mail address: maqilq@polyu.edu.hk

[^0]: *This author is supported by the National Natural Science Foundation of China (Grant No. 11171083 and 11301123), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ14A010003).
 ${ }^{\dagger}$ The corresponding author. This author is supported by the National Natural Science Foundation of China (Grant No. 11101303, 11471242 and 11171180).
 ${ }^{\ddagger}$ This author is supported by the Hong Kong Research Grant Council (Grant No. PolyU 502510, 502111, 501212 and 501913).

[^1]: Chen Ling
 School of Science, Hangzhou Dianzi University
 Hangzhou, 310018, China
 E-mail address: macling@hdu.edu.cn

