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ℜnk×nk is symmetric. It is easy to see that for any chosen k ∈ {1, . . . , d}, the objective
function in (1.1) can be written briefly as

pA

(
x(1), . . . , x(d)

)
= B(k) •

(
x(k)(x(k))⊤

)
.

Here,

B(k) =

 n1∑
i1,j1=1

· · ·
nk−1∑

ik−1,jk−1=1

nk+1∑
ik+1,jk+1=1

· · ·

nd∑
id,jd=1

ai1j1...idjdx
(1)
i1

x
(1)
j1

· · ·x(k−1)
ik−1

x
(k−1)
jk−1

x
(k+1)
ik+1

x
(k+1)
jk+1

· · ·x(d)
id

x
(d)
jd


is an nk × nk symmetric matrix and X • Y stands for the usual matrix inner product, i.e.,
X • Y = tr(X⊤Y ). From the continuity of pA and the compactness of ∆n1 × · · · × ∆nd

,
it is clear that the optimal value of (1.1), denoted by pmin

A , is attainable. Without loss of
generality, we assume that 2 ≤ n1 ≤ n2 ≤ · · · ≤ nd.

In case that all ai1j1...idjd are independent of the indices i2, j2, . . . , id, jd, i.e., ai1j1...idjd =
bi1j1 for every ik, jk = 1, . . . , nk and k = 1, . . . , d, then the problem (1.1) can be reduced to
the following Standard Quadratic Optimization Problem (StQP)

min


n1∑

i,k=1

bikxixk | x ∈ ∆n1

 , (1.2)

which is known to be NP-hard, but has a polynomial time approximation scheme (PTAS) [6].
On the other hand, if we fix any (d − 1) vectors in {x(1), · · · , x(d)}, then we also obtain a
standard quadratic optimization problem. Due to this reason, (1.1) is called a Standard
Multi-Quadratic Optimization Problem (StMQP). StQPs were well studied, and not only
occur frequently as subproblems in escape procedures for general quadratic optimization
but also have manifold direct applications, e.g., in portfolio selection and in maximum
weight clique problem for undirected graphs. For details, see, e.g., [2, 5, 23, 24, 28] and
references therein. Furthermore, for portfolio selection problems with two groups of securities
whose investment decisions influence each other, a generalized mean-variance model can
be expressed as a standard bi-quadratic optimization problem (StBQP) [7]. In [7], some
optimality conditions of StBQP were studied. To solve it, StBQP was reformulated as an
unconstrained bi-quartic problem. Furthermore, a numerical algorithm was proposed based
on the reformulated problem. As a further generalization, for portfolio selection problems
with d groups of securities whose investment decisions influence each other, the related
mean-variance model can be similarly formulated as StMQP.

Note that StBQP is different from bi-quadratic optimization problems over unit spheres
in [22, 34]. StBQP comes from the mean-variance model in portfolio selection problems,
however the latter problem arises from the strong ellipticity condition problem in solid
mechanics and the entanglement problem in quantum physics; see [7,11,15,16,20,29,30,33]
and the references therein.

Since (1.1) is NP-hard, efficient algorithms to find the approximation solutions and
bounds are very interesting. An important criterion for exact or approximation solution
methods is the availability, which induces to propose a number of bounds for StQP, see,
e.g., [1, 4, 6, 8, 9, 14, 26, 27]. However, for StBQP and StMQP, the approximation bound is
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still not clear until now. Motivated by this, we focus on approximation bounds of (1.1) in
this paper. The main tools employed here are Semidefinite Programming (SDP), decompo-
sition of the objective function into an appropriate form related to quadratic functions, and
optimization of a multi-linear function over the Cartesian product of spheres.

Here are some notations. ℜn stands for the usual Euclidean space of real vectors of length
n, which is equipped with the standard inner product and the Euclidean norm denoted by
∥ · ∥. The i-th coordinate of a vector x is denoted by xi, and the i-th column vector of the
identity matrix In = (δij)1≤i,j≤n in ℜn×n is denoted by ein. We denote by Sn the space
of symmetric matrices, denote by Jn ∈ Sn with all entries being 1. For any 2d-th order
(n1 × n1 × · · · × nd × nd)-dimensional real tensor A, ai1i1...idid (ik = 1, . . . , nk, k = 1, . . . , d)
are called its subdiagonal entries, and i1i1 . . . idid are called the corresponding subdiagonal
subscript. We denote by I the 2d-th order (n1×n1×· · ·×nd×nd)-dimensional tensor whose
entries are zero except for subdiagonal entries being 1, and denote by E the tensor of all one in
ℜn1×n1×···×nd×nd . Diag(A) denotes the tensor which has the same subdiagonal entries to A
and off-subdiagonal entries 0. For any two tensors A and B of the same structure, we denote

A + B = (ai1j1...idjd + bi1j1...idjd). For the given matrices B(k) =
(
b
(k)
ikjk

)
∈ ℜnk×nk (k =

1, . . . , d), we denote by C = B(1) ⊗ · · · ⊗ B(d) the 2d-th order (n1 × n1 × · · · × nd × nd)-
dimensional real tensor with

ci1j1···idjd =
d∏

k=1

b
(k)
ikjk

.

For every ik, jk = 1, . . . , nk and k = 1, . . . , d, the matrix eiknk

(
ejknk

)⊤
+ ejknk

(
eiknk

)⊤
is denoted

by E(k)(ikjk). For any subscript set IJ = {i1, j1, i2, j2, . . . , id, jd} with ik, jk = 1, . . . , nk

and k = 1, . . . , d, we further denote

EIJ =
1

2d
E(1)(i1j1)⊗ · · · ⊗ E(d)(idjd). (1.3)

The rest of this paper is organized as follows. In Section 2, we present three methods
to establish cheap closed-form lower bounds for (1.1), which are generalizations of those
in [9]. By using standard quadratic programming, in Section 3 we further estimate the lower
bounds of StBQP. In Section 4, we present a method for solving approximation solution of
StBQP. Finally, a bi-linear copositive programming problem related to StBQPs is discussed
in Section 5.

2 Cheap Closed-Form Lower Bounds

In this section, we discuss the basic properties of pmin
A . Based upon these properties, we

present some lower bounds for pmin
A , which have simple closed-form representations and

can be computed efficiently. Immediately, we can verify that pmin
A is shift-equivariant with

respect to E , i.e., pmin
A+tE = pmin

A + t for all t ∈ ℜ. Hence, without loss of generality, in this
section we assume that all entries of A are positive.

LetS be the set of all 2d-th order (n1×n1×· · ·×nd×nd)-dimensional partially symmetric
tensors, and P ⊆ S be a convex cone, i.e., αA+βB ∈ P whenever A,B ∈ P and α, β ∈ ℜ+.
On S, we may introduce a partial order related with the given convex cone P. In particular,
if P ⊆ S is the convex cone consisting of all nonnegative tensors, then the corresponding
order “ ≥ ”, is defined by componentwise inequalities, i.e., for A,B ∈ P, A ≥ B if and only
if A− B ∈ P.
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Another frequently used partial order defined on S is Löwner partial order “ ≽ ”, which
is induced by the cone P, consisting of all positive semidefinite tensors. Here,

P :=
{
A ∈ S | pA(x(1), . . . , x(d)) ≥ 0, ∀ x(1) ∈ ℜn1 , . . . , x(d) ∈ ℜnd

}
.

In other words, for A,B ∈ S, we write A ≽ B whenever A − B ∈ P. It is straightforward
to verify that the minimum pmin

A is isotone with respect to both the standard and Löwner
partial orders. That is, if A ≥ B or A ≽ B, then pmin

A ≥ pmin
B .

It is easy to see that every subdiagonal entry ai1i1...idid of A is an upper bound for
pmin
A , since eiknk

∈ ∆nk
and pA

(
ei1n1

, . . . , eidnd

)
= ai1i1...idid . On the other hand, in the case

A = Diag(A), problem (1.1) reduces to the following optimization problem

min

n1∑
i1=1

· · ·
nd∑

id=1

ai1i1...idid

(
x
(1)
i1

)2
· · ·
(
x
(d)
id

)2
s.t. (x(1), . . . , x(d)) ∈ ∆n1 × · · · ×∆nd

,

which can be relaxed as
min z⊤Cz
s.t. z ∈ ∆n1···nd

.
(2.1)

Here, C is a
∏d

k=1 nk ×
∏d

k=1 nk diagonal matrix with the diagonal entries being ai1i1...idid
(ik = 1, 2, . . . , nk, k = 1, 2, . . . , d). Note that (2.1) is a strictly convex program since
ai1i1...idid > 0 for ik = 1, 2, . . . , nk and k = 1, 2, . . . , d. From the first-order optimality
condition, we obtain a lower bound for pmin

A

pzA =

[
n1∑

i1=1

· · ·
nd∑

id=1

a−1
i1i1...idid

]−1

.

Consequently, by shift-equivariance, one immediately knows that for tensor A with off-
subdiagonal entries being ā ≤ min

1≤i1≤n1,...,1≤id≤nd

ai1i1...idid ,

pzA := ā+

[
n1∑

i1=1

· · ·
nd∑

id=1

(ai1i1...idid − ā)
−1

]−1

is a lower bound of pmin
A . Furthermore, if there exist b

(1)
i1

> 0, . . . , b
(d)
id

> 0 such that

ai1i1...idid − ā = b
(1)
i1

· · · b(d)id
for ik = 1, . . . , nk and k = 1, . . . , d, we then have

pmin
A = ā+

[
n1∑

i1=1

· · ·
nd∑

id=1

(ai1i1...idid − ā)−1

]−1

. (2.2)

Based on these preliminary observations, we are ready to derive our first class of lower
bounds. To this end, we need the following lemma.

Lemma 2.1. Consider problem (1.1) with tensor A ∈ S, whose off-subdiagonal entries are
all ā satisfying

ā < min
1≤i1≤n1,...,1≤id≤nd

ai1i1...idid .

For any off-subdiagonal subscript IJ = {i1, j1, . . . , id, jd}, we have pmin
A < pmin

A′ , where
A′ = A+ τEIJ and τ > 0.
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Proof. By shift-equivariance, without loss of generality, we assume that ā = 0. Let
(x̄(1), . . . , x̄(d)) ∈ ∆n1 × · · · × ∆nd

such that pmin
A = pA(x̄

(1), . . . , x̄(d)). It is clear that for
every i1 = 1, . . . , n1, it holds

b̄i1 :=

n2∑
i2=1

· · ·
nd∑

id=1

ai1i1...idid

(
x̄
(2)
i2

)2
· · ·
(
x̄
(d)
id

)2
> 0,

since (x̄(2), . . . , x̄(d)) ∈ ∆n2 ×· · ·×∆nd
and ai1i1...idid > 0 for ik = 1, . . . , nk and k = 1, . . . , d.

Consequently, x̄(1) is the unique solution of the following strictly convex program

min

n1∑
i1=1

b̄i1x
2
i1

s.t. x ∈ ∆n1 .

(2.3)

From the first-order optimality condition, we know that

x̄
(1)
i1

=
b̄−1
i1

n1∑
i1=1

b̄−1
i1

, i = 1, 2, · · · , n1

which implies that x̄(1) > 0. Similarly, we have that x̄(k) > 0 for k = 2, . . . , d.
Let

(
x̂(1), . . . , x̂(d)

)
∈ ∆n1 × · · · ×∆nd

such that

pmin
A′ = pA′

(
x̂(1), . . . , x̂(d)

)
= pA

(
x̂(1), . . . , x̂(d)

)
+ τ x̂

(1)
i1

x̂
(1)
j1

· · · x̂(d)
id

x̂
(d)
jd

.

If x̂
(1)
i1

x̂
(1)
j1

· · · x̂(d)
id

x̂
(d)
jd

= 0, then
(
x̂(1), . . . , x̂(d)

)
is not an optimal solution of (1.1). Hence,

pmin
A′ = pA

(
x̂(1), . . . , x̂(d)

)
> pmin

A .

If x̂
(1)
i1

x̂
(1)
j1

· · · x̂(d)
id

x̂
(d)
jd

> 0, then

pmin
A′ = pA

(
x̂(1), . . . , x̂(d)

)
+ τ x̂

(1)
i1

x̂
(1)
j1

· · · x̂(d)
id

x̂
(d)
jd

≥ pmin
A + τ x̂

(1)
i1

x̂
(1)
j1

· · · x̂(d)
id

x̂
(d)
jd

> pmin
A .

We obtain the desired result and complete the proof.

Let

prefA = p0A +

[
n1∑

i1=1

· · ·
nd∑

id=1

(
ai1i1...idid − p0A

)−1

]−1

, (2.4)

where
p0A = min

1≤i1,j1≤n1,...,1≤id,jd≤nd

ai1j1...idjd .

Theorem 2.2. For problem (1.1) with A ∈ S, we have

p0A ≤ prefA ≤ pmin
A .

The equality p0A = prefA holds if and only if a minimum entry of A is located on the subdiago-
nal, which leads to p0A = pmin

A . Furthermore, it holds that all the off-subdiagonal entries of A
are equal to the value p0A provided prefA = pmin

A . Conversely, if all the off-subdiagonal entries
of A are equal to the value ā satisfying ā < min

1≤i1≤n1,...,1≤id≤nd

ai1i1...idid and there exist some

positive vectors (b
(k)
1 , . . . , b

(k)
nk )

⊤ ∈ ℜnk (k = 1, . . . , d) such that ai1i1...idid = b
(1)
i1

· · · b(d)id
+ ā

for ik = 1, . . . , nk and k = 1, . . . , d, then prefA = pmin
A .



262 C. LING, X. ZHANG AND L. QI

Proof. The inequality, p0A ≤ prefA , is trivial. Let

A′ = Diag(A) + p0A(E − I),

then prefA ≤ pmin
A′ . Consequently, the inequality prefA ≤ pmin

A follows from the isotonicity of pmin
A

and the tensor inequality A′ ≤ A. Next we characterize the cases where one of the cheap
bounds is exact. If aī1 ī1...̄id īd = min

1≤i1,j1≤n1,...,1≤id,jd≤nd

ai1j1...idjd for some indices ī1, . . . , īd,

then aī1 ī1...̄id īd = p0A ≤ pmin
A ≤ aī1 ī1...̄id īd because every subdiagonal entry ai1i1...idid of A

is an upper bound for pmin
A . Consequently, it holds that p0A = pmin

A , which implies that
p0A = prefA . Conversely, if p0A = prefA , then[

n1∑
i1=1

· · ·
nd∑

id=1

(
ai1i1...idid − p0A

)−1

]−1

= 0.

So that aī1 ī1...̄id īd = p0A = pmin
A for some indices ī1, . . . , īd.

Next, we assume that prefA = pmin
A , then prefA ≤ pmin

A′ . Hence, from the fact that prefA =
pzA′ ≤ pmin

A′ ≤ pmin
A , it holds that pmin

A′ = pmin
A . If there exists an off-subdiagonal entry

aī1 j̄1...̄id j̄d of A such that aī1 j̄1...̄id j̄d > p0A, then the tensor A′′ = A′ + (aī1j̄1...̄id j̄d − p0A)Ē
satisfies A′ ≤ A′′ ≤ A, where Ē is defined by (1.3) with Ī J̄ = {̄i1, j̄1, . . . , īd, j̄d}. By Lemma
2.1, pmin

A′ < pmin
A′′ . This contradicts the equality pmin

A′ = pmin
A . Hence, all off-subdiagonal

entries of A must coincide with p0A.
Assume now that all off-subdiagonal entries of A are equal to ā satisfying ā <

min
1≤i1≤n1,...,1≤id≤nd

ai1i1...idid , or equivalently p0A < prefA . Then prefA = pmin
A follows immediately

from the closed-form expression (2.2). We complete the proof.

From (2.4), it is easy to see that

p0A + 1
n1···nd

[
min

1≤i1≤n1,...,1≤id≤nd

ai1i1...idid − p0A

]
≤ prefA

≤ p0A + 1
n1···nd

[
max

1≤i1≤n1,...,1≤id≤nd

ai1i1...idid − p0A

]
,

which implies that p0A and prefA tend to coincide when max{n1, . . . , nd} increases. In partic-
ular, when all the subdiagonal entries are equal, it holds that

prefA = p0A +
1

n1 · · ·nd

(
ai1i1...idid − p0A

)
.

Theorem 2.3. Consider the standard multi-quadratic optimization problem (1.1) with A ∈
S. We have

p0A ≤ pxyA ≤ pmin
A ,

where

pxyA :=
d∏

k=1

 d

√
p0A +

(
nk∑

ik=1

(
c
(k)
ikik

− d

√
p0A

)−1
)−1

 ,

and

c
(k)
ikik

=

min
1≤i1,j1≤n1,...,1≤ik−1,jk−1≤nk−1,1≤ik+1,jk+1≤nk+1,...,1≤id,jd≤nd

d
√
ai1j1...ik−1jk−1ikikik+1jk+1...idjd .
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Moreover, the equality p0A = pxyA holds if and only if for every k = 1, . . . , d, there exists

ik ∈ {1, . . . , nk} such that c
(k)
ikik

= d
√

p0A.

Proof. The first inequality, p0A ≤ pxyA , is trivial, because d
√
p0A ≤ c

(k)
ikik

for ik = 1, . . . , nk and

k = 1, . . . , d. Now we prove the second inequality. Let C(k) ∈ Snk (k = 1, · · · , d) with its
entries

c
(k)
ikjk

=

min
1≤i1,j1≤n1,...,1≤ik−1,jk−1≤nk−1,1≤ik+1,jk+1≤nk+1,...,1≤id,jd≤nd

d
√
ai1j1...ik−1jk−1ikjkik+1jk+1...idjd

and C = (ci1j1...idjd) ∈ S with ci1j1...idjd =
∏d

k=1 c
(k)
ikjk

. It follows that C ≤ A, which implies

that pC
(
x(1), . . . , x(d)

)
≤ pA

(
x(1), . . . , x(d)

)
for any

(
x(1), . . . , x(d)

)
∈ ∆n1×· · ·×∆nd

. More-

over, from the special structure of C, it holds that pC
(
x(1), . . . , x(d)

)
=
∏d

k=1

(
x(k)

)⊤
C(k)x(k).

Now we consider the following StQP{
min (x(k))⊤C(k)x(k)

s.t. x(k) ∈ ∆nk
.

(2.5)

It is easy to see that d
√

p0A = min
1≤ik,jk≤nk

c
(k)
ikjk

. Consequently, by Theorem 2 in [9], we know

that d
√

p0A +

[∑nk

ik=1

(
c
(k)
ikik

− d
√
p0A

)−1
]−1

is a lower bound of the optimal value of (2.5).

Hence, the second inequality holds.
If p0A = pxyA , then [

nk∑
ik=1

(
c
(k)
iiik

− d

√
p0A

)−1
]−1

= 0, k = 1, · · · , d.

Hence, c
(k)
ikik

= d
√
p0A for some index ik ∈ {1, . . . , nk}. Conversely, if for every k = 1, . . . , d,

there exists ik ∈ {1, . . . , nk} such that c
(k)
ikik

= d
√

p0A, we may prove that p0A = pxyA by using
the same way as above. We complete the proof of the theorem.

Now we state and prove the last theorem in this section. For the sake of simplicity,
we only study the case d = 2. In fact, the obtained result can be extended to the case

where d ≥ 3. We denote a
(1)
i1j1

= min{ai1j1i2j2 | 1 ≤ i2, j2 ≤ n2} for i1, j1 = 1, . . . , n1,

a
(2)
i2j2

= min{ai1j1i2j2 | 1 ≤ i1, j1 ≤ n1} for i2, j2 = 1, . . . , n2, and

p
(1)
i1j1

= a
(1)
i1j1

+

[
n2∑

i2=1

(
ai1j1i2i2 − a

(1)
i1j1

)−1
]−1

, p
(2)
i2j2

= a
(2)
i2j2

+

[
n1∑

i1=1

(
ai1i1i2j2 − a

(2)
i2j2

)−1
]−1

.

(2.6)
Furthermore, we denote by B(i1j1) ∈ Sn2 with its entries being ai1j1i2j2 for i1, j1 = 1, . . . , n1,
and denote by C(i2j2) ∈ Sn1 with the entries being ai1j1i2j2 for i2, j2 = 1, . . . , n2.

Theorem 2.4. Consider the standard multi-quadratic optimization problem (1.1) with d = 2
and A ∈ S. It holds that prefA ≤ pabA ≤ pmin

A , where

pabA := max

p
(1)
A +

[
n1∑

i1=1

(
p
(1)
i1i1

− p
(1)
A

)−1
]−1

, p
(2)
A +

[
n2∑

i2=1

(
p
(2)
i2i2

− p
(2)
A

)−1
]−1


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with p
(1)
A = min

{
p
(1)
i1j1

| 1 ≤ i1, j1 ≤ n1

}
and p

(2)
A = min

{
p
(2)
i2,j2

| 1 ≤ i2, j2 ≤ n2

}
.

Proof. We only prove that

prefA ≤ p
(1)
A +

[
n1∑

i1=1

(
p
(1)
i1i1

− p
(1)
A

)−1
]−1

≤ pmin
A . (2.7)

The proof of

prefA ≤ p
(2)
A +

[
n2∑

i2=1

(
p
(2)
i2i2

− p
(2)
A

)−1
]−1

≤ pmin
A

is similar. We now consider

StQP(i1, j1) : min
{
(x(2))⊤B(i1j1)x(2) | x(2) ∈ ∆n2

}
. (2.8)

By Theorem 2 in [9], we know that

p
(1)
i1j1

= a
(1)
i1j1

+

[
n2∑

i2=1

(
ai1j1i2i2 − a

(1)
i1j1

)−1
]−1

is a lower bound of StQP(i1, j1), which implies that p
(1)
i1j1

≤
(
x(2)

)⊤
B(i1j1)x(2) for any

x(2) ∈ ∆n2 . Hence, (
x(1)

)⊤
P (1)x(1) ≤ pA(x

(1), x(2)) (2.9)

for
(
x(1), x(2)

)
∈ ∆n1 × ∆n2 , where P (1) =

(
p
(1)
i1j1

)
1≤i1,j1≤n1

∈ Sn1 . By Theorem 2 in [9]

again, we know that for any x(1) ∈ ∆n1 ,

p
(1)
A +

[
n1∑

i1=1

(
p
(1)
i1i1

− p
(1)
A

)−1
]−1

≤
(
x(1)

)⊤
P (1)x(1),

which implies, together with (2.9), that the right inequality in (2.7) holds.

By (2.6), it is obvious that p
(1)
i1j1

≥ a
(1)
i1j1

for every (i1, j1), which implies that p
(1)
A ≥ p0A,

where p0A is denoted in (2.4). Furthermore, since f(x) := x +

[∑n1

i1=1

(
p
(1)
i1i1

− x
)−1

]−1

is

monotone increasing on
∩n1

i1=1

(
−∞, p

(1)
i1i1

]
, we have

p
(1)
A +

[
n1∑

i1=1

(
p
(1)
i1i1

− p
(1)
A

)−1
]−1

≥ p0A +

[
n1∑

i1=1

(
p
(1)
i1i1

− p0A

)−1
]−1

. (2.10)

On the other hand, we have that for every i1 = 1, . . . , n1,

p
(1)
i1i1

− p0A = a
(1)
i1i1

+

[
n2∑

i2=1

(
ai1i1i2i2 − a

(1)
i1i1

)−1
]−1

− p0A

≥ p0A +

[
n2∑

i2=1

(
ai1i1i2i2 − p0A

)−1

]−1

− p0A

=

[
n2∑

i2=1

(
ai1i1i2i2 − p0A

)−1

]−1

,
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which implies
n1∑

i1=1

n2∑
i2=1

(
ai1i1i2i2 − p0A

)−1 ≥
n1∑

i1=1

(
p
(1)
i1i1

− p0A

)−1

. (2.11)

By (2.10) and (2.11), we know that the left inequality in (2.7) holds. We complete the
proof.

From Theorems 2.2 and 2.3, we know that prefA = p0A implies pxyA = p0A. However,
the following examples show that pxyA = p0A does not imply prefA = p0A, prefA and pxyA are
incomparable.

Example 2.5. Consider problem (1.1) with d = n1 = n2 = 2. Let a1112 = a1121 = a1222 =
a2122 = 1, and other entries be 4. In this case, it is easy to see that

C(1) =

[
1 1
1 2

]
and C(2) =

[
2 1
1 1

]
.

Consequently, it follows that p0A = pxyA = 1 but prefA = 1.75. On the other hand, by a direct
computation, we may obtain pabA = 2.

Example 2.6. Consider problem (1.1) with d = n1 = n2 = 2. Let a1212 = a2112 = a1221 =
a2121 = 1, and other entries be 4. In this case, it is easy to see that

C(1) =

[
2 1
1 2

]
and C(2) =

[
2 1
1 2

]
.

Consequently, it follows that p0A = 1 < prefA = 1.75 < pxyA = 2.25. On the other hand, by a

direct computation, we obtain p
(1)
A = p

(2)
A = 2.5, and hence pabA = 3.25.

3 Bounds Based Upon Standard Quadratic Programming

In this section, we further present some methods to find lower bounds on optimal value of
(1.1). For the sake of simplicity, we only discuss the case that d = 2 in (1.1), of the following
form

min pA(x, y) :=
n∑

i,j=1

m∑
k,l=1

aijklxixjykyl

s.t. (x, y) ∈ ∆n ×∆m,
(3.1)

which is also studied in [7]. We first present two results on the lower bounds of (3.1).

Theorem 3.1. Let bij = min
1≤k≤m

aijkk for i, j = 1, . . . , n and ckl = min
1≤i≤n

aiikl for k, l =

1, . . . ,m. Then, we have

p0A +max

{
1

m

(
vmin
B − p0A

)
,
1

n

(
vmin
C − p0A

)}
≤ pmin

A , (3.2)

where vmin
B and vmin

C are the optimal values of the following standard quadratic optimization
problems  min

x∈ℜn

n∑
i,j=1

bijxixj

s.t. x ∈ ∆n

and

 min
y∈ℜm

n∑
k,l=1

cklykyl

s.t. y ∈ ∆m,

respectively.
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Proof. It suffices to show that p0A + 1
m

(
vmin
B − p0A

)
≤ pmin

A holds. By shift-equivariance, we
have that for x ∈ ∆n and y ∈ ∆m,

pA(x, y) = p0A +
n∑

i,j=1

m∑
k,l=1

(aijkl − p0A)xixjykyl

≥ p0A +
n∑

i,j=1

m∑
k=1

(aijkk − p0A)xixjy
2
k

≥ p0A +
m∑

k=1

y2k

n∑
i,j=1

(bij − p0A)xixj

≥ p0A +
1

m

n∑
i,j=1

(bij − p0A)xixj

= p0A +
1

m

 n∑
i,j=1

bijxixj − p0A

 ,

where the second inequality comes from the fact bij ≤ aijkk for every k = 1, . . . ,m, and the
last inequality is due to the fact that

∑m
k=1 y

2
k ≥ 1/m for any y ∈ ∆m. By this, it follows

that p0A + 1
m

(
vmin
B − p0A

)
≤ pmin

A holds. We complete the proof of the theorem.

Theorem 3.2. Let gij = tij min
1≤k,l≤m

aijkl with tij ∈ (0, 1) and hkl = min
1≤i,j≤n

(aijkl − gij).

Then, we have
vmin
G + vmin

H ≤ pmin
A ,

where vmin
G and vmin

H are the global minimums of the following standard quadratic optimiza-
tion problems  min

x∈ℜn

n∑
i,j=1

gijxixj

s.t. x ∈ ∆n

and

 min
y∈ℜm

m∑
k,l=1

hklykyl

s.t. y ∈ ∆m,

respectively.

Proof. Since 0 < tij < 1, it follows that gij > 0 and hkl > 0 for every i, j = 1, . . . , n and
k, l = 1, . . . ,m. Moreover, it is easy to see that for i, j = 1, . . . , n and k, l = 1, . . . ,m,
aijkl = aijkl − gij + gij ≥ hkl + gij . Consequently, we know that for x ∈ ∆n and y ∈ ∆m,

pA(x, y) ≥
n∑

i,j=1

gijxixj +
m∑

k,l=1

hklykyl.

Based upon this, we obtain the desired result and complete the proof.

Remark 3.3. Note that the standard quadratic optimization problems in Theorems 3.1
and 3.2 are also NP-hard themselves. However, based upon Theorems 3.1 and 3.2, we may
obtain some lower bounds for pmin

A by solving approximately the corresponding quadratic
problems in polynomial time.

Example 3.4. Consider Example 2.5. We first estimate its lower bound for pmin
A by the

method presented in Theorem 3.1. It is easy to know that the two matrices mentioned in
Theorem 3.1 are

B = C =

[
4 1
1 4

]
.
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Based upon this, we can obtain vmin
B = vmin

C = 2.5. Hence, by Theorem 3.1, we know that
1.75 ≤ pmin

A since p0A = 1 and m = n = 2.
We continue to estimate pmin

A by Theorem 3.2. We take t11 = t12 = t21 = t22 = 0.25.
Then, we have

G = (gij) =
1

4

[
1 1
1 1

]
and H = (hkl) =

3

4

[
1 1
1 1

]
.

Based upon this, it is easy to know that vmin
G = 0.25 and vmin

H = 0.75, which implies 1 ≤ pmin
A

by Theorem 3.2.

Example 3.5. Consider Example 2.6. We first estimate its lower bound for pmin
A by Theorem

3.1. It is easy to know that the two matrices mentioned in Theorem 3.1 are

B := (bij) =

[
4 4
4 4

]
and C := (ckl) =

[
4 4
4 4

]
,

respectively. Based upon this, it follows that vmin
B = vmin

C = 4. Hence, we obtain 2.5 ≤ pmin
A ,

which is larger than prefA and pxyA obtained in Example 2.6. We continue to estimate the
lower bound for pmin

A in Example 2.6 by using the result obtained in Theorem 3.2. We take
t11 = t22 = 1/4 and t12 = t21 = 1/2. By a simple computation, it is easy to see that

G := (gij) =

[
1 1/2
1/2 1

]
and H := (hkl) =

[
3 1/2
1/2 3

]
.

Consequently, we obtain vmin
G = 0.75 and vmin

H = 1.75. It follows that 2.5 ≤ pmin
A .

Example 3.6. Consider the case where n1 = d = l = 2 and n2 = 3. Let a1112 = a1121 =
a2213 = a2231 = 1 and other entries be 2.

In this case, it is obvious that p0A = 1. Consequently, it is easy to see that prefA = 7/6
by Theorem 2.2. By a simple computation, we know that pxyA = (2 +

√
2)/3, by Theorem

2.3. At the same time, by Theorem 2.4, we have that pabA = 4/3. On the other hand, by
Theorem 3.1, we can obtain 1.5 ≤ pmin

A . Finally, we estimate the lower bound for pmin
A by

Theorem 3.2. Take t11 = t12 = t21 = t22 = 0.5. It is easy to see that

G =
1

2

[
1 2
2 1

]
and H =

1

2

 2 1 1
1 2 2
1 2 2

 .

Hence, we can obtain that vmin
G = 0.5 and vmin

H = 0.75, which implies 1.25 ≤ pmin
A by

Theorem 3.2.

Example 3.7. Consider the case that A = (aijkl), where i, j = 1, 2, . . . , n, k, l = 1, 2, . . . ,m
and

aijkl =

{
a, if i = j and k = l,
b, otherwise.

It is obvious that pmin
A = a when a = b.

When a < b, it is obvious that p0A = a. Furthermore, we can obtain a tight lower bound
a of pmin

A , i.e, pmin
A = a, by all the methods in Theorems 2.2-2.4, 3.1 and Theorem 3.2 with

tij = a/b (i, j = 1, 2, . . . , n).
When a > b, by a direct computation, we obtain a tight lower bound b + a−b

n1n2
of

pmin
A , i.e., pmin

A = b + a−b
nm , by the methods in Theorems 2.2, 2.4 and 3.1. On the other

hand, we can obtain another lower bound b of pmin
A by Theorem 2.3 and Theorem 3.2 with

tij = b/a (i, j = 1, 2, . . . , n).
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The above examples also show that the approximation bounds presented in Sections 2
and 3 are incomparable in general.

We now consider the following optimization problem

p∗Z := min
Z∈ℜn×m

A • (Z ⊗ Z)

s.t. Jn,m • Z = 1,
Z ≥ 0, rank(Z) = 1,

(3.3)

where A = (aijkl) is a fourth order (n × n ×m ×m)-dimensional real partially symmetric
tensor, Jn,m is the n×m matrix of all ones in ℜn×m.

The following statement characterizes the relationship between (3.1) and (3.3).

Proposition 3.8. The problems (3.1) and (3.3) are equivalent.

Proof. Since Z = xy⊤ is a feasible solution of (3.3) for every (x, y) ∈ ∆n ×∆m, it is clear
that p∗Z ≤ pmin

A . On the other hand, let Z̄ be an optimal solution of (3.3), then there exist
x̄ ∈ ℜn and ȳ ∈ ℜm such that Z̄ = x̄ȳ⊤. It is clear that (

∑n
i=1 x̄i)(

∑m
j=1 ȳj) = Jn,m • Z̄ = 1.

Denote x∗ = x̄/
∑n

i=1 x̄i and y∗ = ȳ/
∑m

j=1 ȳj . Since x∗y∗⊤ = Z̄ ≥ 0, it is easy to see that

x̄i(
∑m

j=1 ȳj) ≥ 0 for i = 1, 2, . . . , n and ȳj(
∑n

i=1 x̄i) ≥ 0 for j = 1, 2, . . . ,m. Consequently,
we know that x∗ ≥ 0 and y∗ ≥ 0. Hence, (x∗, y∗) ∈ ∆n ×∆m. Furthermore, we can verify
that A•(x∗y∗⊤⊗x∗y∗⊤) = p∗Z , which implies pmin

A ≤ p∗Z . The desired result is obtained.

By removing the rank constraint in (3.3), we have the following relaxation of problem
(3.1):

min
Z∈ℜn×m

A • (Z ⊗ Z)

s.t. Jn,m • Z = 1,
Z ≥ 0.

(3.4)

Let z = vec(Z), where the operator “vec” is defined as

vec(Z) = (Z11, . . . , Zn1, . . . , Z1m, . . . , Znm)⊤.

Then z ∈ ∆mn and (3.4) can be rewritten as the following standard quadratic programming

v∗sqp := min
z∈ℜmn

z⊤Āz

s.t. z ∈ ∆mn,
(3.5)

where Ā = (āij) ∈ Smn, generated by rearranging the entries of A. It is clear that v∗sqp ≤
pmin
A and the smallest element in Ā is exactly p0A. Let z

∗ be an optimal solution of (3.5) . We
pack z∗ back into an n×m matrix Z̄ = mat(z∗) by columns, i.e., the n elements in the j-th
column of Z̄ consist of z∗(j−1)n+1, . . . , z

∗
jn of z∗, j = 1, . . . ,m. If rank(Z̄) = 1, then by the

proof of Proposition 3.8, there exist x̄ ∈ ∆n and ȳ ∈ ∆m such that Z̄ = x̄ȳ⊤, which implies
that (x̄, ȳ) is an optimal solution of (3.1). However, since Ā is indefinite in general, (3.5) is
an NP-hard problem with mn dimension variables, which will bring higher computational
cost when n or m is very large. In [27], Nowak proposed a method for solving the lower
bound pnbz of the global minimum of (3.5), which is based upon the following semidefinite
programming (SDP)

min
G∈Smn

Jmn • (Ā−G)

s.t. G ≤ Ā,Φ(G) ≽ 0,
diag(G) = diag(Ā)

(3.6)
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and the following quadratic optimization problem

vG∗ := min z⊤G∗z
s.t. z ∈ ∆mn.

(3.7)

Here Φ : ℜmn×mn → ℜ(mn−1)×(mn−1) is the linear map defined by

Φ(G)i,j := Gi,j −Gmn,i −Gmn,j +Gmn,mn, i, j = 1, . . . ,mn− 1,

and G∗ is an optimal solution of (3.6). Since Φ(G∗) ≽ 0, by Lemma 2 in [27], we know that
(3.7) is a convex optimization problem, which can be solved in polynomial time. Moreover,
if z⊤Āz is concave on the edges of the simplex ∆mn, then G∗ = (g∗ij)1≤i,j≤mn with

g∗ij =
1

2
(āii + ājj), i, j = 1, . . . ,mn,

and vG∗ is exact, see [27] for details.

4 Approximation Solutions and Relative Approximation Ratio

In this section, we present a polynomial time approximation algorithm for solving (3.1),
which can be extended to the case where d ≥ 3. As mentioned in Section 2, it holds that
pmin
A+tE = pmin

A + t for all t ∈ ℜ. Hence, in this section we assume that all entries of A are
negative. We first introduce the following definition to characterize the quality measure of
approximation ratio.

Definition 4.1. Let 1 ≥ ε > 0 and A be an approximation algorithm for (3.1). We say A
is a ε-approximation algorithm for (3.1) if for any instance of (3.1) the algorithm A returns
a feasible pair (x̄, ȳ) of (3.1) such that

pA(x̄, ȳ)− pmin
A ≤ (1− ε)(pmax

A − pmin
A ).

Here, pmin
A (resp., pmax

A ) is the minimum (resp., maximum) value of the objective in (3.1).

To get rid of the sign constraints x ≥ 0 and y ≥ 0 in (3.1), motivated by [10], we replace
the variables xi and yj with z2i and w2

j , respectively. Then the conditions
∑n

i=1 xi = 1 and∑m
j=1 yj = 1 become to ∥z∥2 = 1 and ∥w∥2 = 1, respectively. Therefore, the considered

problem (3.1) can be equivalently written as

min g(z, w) :=
n∑

i,j=1

m∑
k,l=1

aijklz
2
i z

2
jw

2
kw

2
l

s.t. ∥z∥2 = 1, ∥w∥2 = 1 , (z, w) ∈ ℜn ×ℜm.

(4.1)

Furthermore, by introducing a suitable 8-th order (n×n×n×n×m×m×m×m)-dimensional
tensor Ā = (āi1i2i3i4j1j2j3j4), the above problem can be rewritten as

min g(z, w) :=
∑

1≤i1,...,i4≤n

∑
1≤j1,...,j4≤m

āi1i2i3i4j1j2j3j4zi1zi2zi3zi4wj1wj2wj3wj4

s.t. ∥z∥2 = 1, ∥w∥2 = 1 , (z, w) ∈ ℜn ×ℜm,
(4.2)

one of whose relaxations is

min F (z(1), . . . , z(4), w(1), . . . , w(4))

:=
∑

1≤i1,...,i4≤n

∑
1≤j1,...,j4≤m

āi1i2i3i4j1j2j3j4z
(1)
i1

z
(2)
i2

z
(3)
i3

z
(4)
i4

w
(1)
j1

w
(2)
j2

w
(3)
j3

w
(4)
j4

s.t. ∥z(k)∥2 = 1, ∥w(k)∥2 = 1 , (z(k), w(k)) ∈ ℜn ×ℜm, k = 1, . . . , 4.

(4.3)
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In the sequel of this section, we study the approximation bound of (3.1), based upon
the obtained approximation solution of (4.3). To this end, we first consider the following
general multi-linear function

F (z(1), . . . , z(r), w(1), . . . , w(l)) =
∑

1≤i1,...,ir≤n
1≤j1,...,jl≤m

âi1...irj1...jlz
(1)
i1

· · · z(r)ir
w

(1)
j1

· · ·w(l)
jl
, (4.4)

where z(k) ∈ ℜn (k = 1, 2, . . . , r) and w(s) ∈ ℜm (s = 1, 2, . . . , l). In the shorthand notation
we shall denote Â = (âi1...irj1...jl) to be a (r + l)-th order tensor. We call the tensor Â
partially symmetric with respect to the subscript set {i1, i2, . . . , ir} (resp., {j1, j2, . . . , jl}),
if âi1...irj1...jl is invariant under all permutations of {i1, i2, . . . , ir} (resp., {j1, j2, . . . , jl}).
Closely related to the tensor Â is a general homogeneous polynomial function f(z, w) :=
F (z, . . . , z, w, . . . , w), where z ∈ ℜn and w ∈ ℜm. As any quadratic function uniquely
determines a symmetric matrix, a given homogeneous polynomial function f(z, w) of degree
(r + l) also uniquely determines a partially symmetric tensor form. For F in (4.4) and the
related homogeneous polynomial function f , we have the following lemma, which is a special
case of Lemma 2.3.3 of [21] and is an extension of Proposition 5 in [32].

Lemma 4.2. Suppose that z(1), . . . , z(r) ∈ ℜn, w(1), . . . , w(l) ∈ ℜm, and that ξ1, . . . , ξr and
ζ1, . . . , ζl are i.i.d. random variables, each takes values 1 and −1 with equal probability
1/2. For any partially symmetric multi-linear function F (z(1), . . . , z(r), w(1), . . . , w(l)) and
function f(z, w) = F (z, . . . , z, w, . . . , w), it holds that

E

 r∏
i=1

ξi

l∏
j=1

ζjf

(
r∑

k=1

ξkz
(k),

l∑
s=1

ζsw
(s)

) = (r!)(l!)F (z(1), . . . , z(r), w(1), . . . , w(l)).

By applying Lemma 4.2 to the special case where r = l = 4, i.e., (4.2) and (4.3), we have
the following theorem.

Theorem 4.3. Problem (3.1) admits a polynomial-time approximation algorithm with rel-
ative approximation ratio ε, i.e. there exists a feasible solution (x̂, ŷ) of (3.1) such that

pA(x̂, ŷ)− pmin
A ≤ (1− ε)(pmax

A − pmin
A ), (4.5)

where ε = Ω
(

logm logn
mn ϕ(n,m)

)
with

ϕ(n,m) =

{
logn
n , if n ≤ m

logm
m , otherwise.

Proof. In order to obtain (4.5), we only prove that pmax
A − pA(x̂, ŷ) ≥ ε(pmax

A − pmin
A ).

Denote z = (z, z, z, z), z(1,4) = (z(1), z(2), z(3), z(4)) ∈ ℜn × ℜn × ℜn × ℜn and w =
(w,w,w,w),w(1,4) = (w(1), w(2), w(3), w(4)) ∈ ℜm × ℜm × ℜm × ℜm. Denote H(z,w) to
be the partially symmetric form with respect to the function h(z, w) := ∥z∥4∥w∥4. Pick any
fixed (z0, w0) with ∥z0∥ = ∥w0∥ = 1, and consider the following problem

pmax
H = max g(z0, w0)H(z(1,4),w(1,4))− F (z(1,4),w(1,4))

s.t. ∥z(k)∥ = 1, ∥w(k)∥ = 1,
z(k) ∈ ℜn, w(k) ∈ ℜm, k = 1, . . . , 4.
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It is clear that pmax
H ≥ 0. By Theorem 4 in [32], we can obtain a solution (ẑ(1,4), ŵ(1,4)) in

polynomial time such that

g(z0, w0)H(ẑ(1,4), ŵ(1,4))− F (ẑ(1,4), ŵ(1,4)) ≥ ε1p
max
H , (4.6)

where ε1 = Ω
(

logm logn
mn ϕ(n,m)

)
.

If pmax
A −g(z0, w0) > (ε1/4)(p

max
A −pmin

A ), then we have pmax
A −g(z0, w0) > ε(pmax

A −pmin
A )

since ε1/4 > ε. Consequently, by letting x̂ =
(
(z01)

2, . . . , (z0n)
2
)⊤

and ŷ =
(
(w0

1)
2, . . . , (w0

m)2
)⊤

,
we have obtained the desired result. Now we suppose that

pmax
A − g(z0, w0) ≤ (ε1/4)(p

max
A − pmin

A ). (4.7)

Notice that |H(ẑ(1,4), ŵ(1,4))| ≤ 1, by (4.6), we have

pmax
A H(ẑ(1,4), ŵ(1,4))− F (ẑ(1,4), ŵ(1,4)) = g(z0, w0)H(ẑ(1,4), ŵ(1,4))− F (ẑ(1,4), ŵ(1,4))

+(pmax
A − g(z0, w0))H(ẑ(1,4), ŵ(1,4))

≥ ε1p
max
H − (pmax

A − g(z0, w0))
≥ ε1(g(z

0, w0)− pmin
A )− (ε1/4)(p

max
A − pmin

A )
≥ (ε1(1− ε1/4)− ε1/4)(p

max
A − pmin

A )
≥ (ε1/2)(p

max
A − pmin

A ),

where the second inequality comes from (4.7) and the fact pmin
H ≥ g(z0, w0)−pmin

A , the third
inequality is due to (4.7). On the other hand, it holds that

(4!)2[pmax
A H(ẑ(1,4), ŵ(1,4))− F (ẑ(1,4), ŵ(1,4))]

= E
[∏4

i=1(ξiζi)
(
pmax
A h(Ẑξ, Ŵ ζ)− g(Ẑξ, Ŵ ζ)

)]
= E

[
pmax
A h(Ẑξ, Ŵ ζ)− g(Ẑξ, Ŵ ζ)|

∏4
i=1(ξiζi) = 1

]
Prob

{∏4
i=1(ξiζi) = 1

}
− E

[
pmax
A h(Ẑξ, Ŵ ζ)− g(Ẑξ, Ŵ ζ)|

∏4
i=1(ξiζi) = −1

]
Prob

{∏4
i=1(ξiζi) = −1

}
≤ 1

2E
[
pmax
A h(Ẑξ, Ŵ ζ)− g(Ẑξ, Ŵ ζ)|

∏4
i=1(ξiζi) = 1

]
,

where Ẑ =
[
ẑ(1), ẑ(2), ẑ(3), ẑ(4)

]
, Ŵ =

[
ŵ(1), ŵ(2), ŵ(3), ŵ(4)

]
, ξ = (ξ1, ξ2, ξ3, ξ4)

⊤ and ζ =
(ζ1, ζ2, ζ3, ζ4)

⊤. Thus there exists two vectors β = (β1, . . . , β4), γ = (γ1, . . . , γ4) with β2
i =

γ2
i = 1 (i = 1, . . . , 4) and

∏4
i=1 βiγi = 1, such that

1

2

(
pmax
A h(Ẑβ, Ŵγ)− g(Ẑβ, Ŵγ)

)
≥ (4!)2(ε1/2)(p

max
A − pmin

A ).

Letting ẑ = Ẑβ/∥Ẑβ∥ and ŵ = Ŵγ/∥Ŵγ∥, we have

pmax
A − g(ẑ, ŵ) ≥ (4!)2ε1(p

max
A − pmin

A )

∥Ẑβ∥4∥Ŵγ∥4
≥ ε(pmax

A − pmin
A ),

where the second inequality comes from the fact that ∥Ẑβ∥ ≤ 4 and ∥Ŵγ∥ ≤ 4. Here

ε := (4!)2

48 ε1. By taking x̂ = (ẑ21 , . . . , ẑ
2
n)

⊤ and ŷ = (ŵ2
1, . . . , ŵ

2
m)⊤, we obtain the desired

result under the assumption (4.7). We complete the proof.
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5 The Related Bi-Linear Copositive Programming

In this section, we still consider the problem (3.1). Recall that M ∈ Sn is said to be
copositive (more precisely, ℜn

+-copositive), if x
⊤Mx ≥ 0 for any x ∈ ℜn

+. Denote by Kn the
cone of all n× n copositive matrices, i.e.,

Kn =
{
M ∈ Sn | x⊤Mx ≥ 0 for any x ∈ ℜn

+

}
,

and denote by K∗
n the cone of all completely positive matrices, i.e.,

K∗
n =

{
N ∈ Sn | N =

k∑
i=1

xi(xi)⊤ for some positive integer k and xi ∈ ℜn
+, i = 1, . . . , k

}
.

It is well known that K∗
n is the dual of the copositive cone Kn (which justifies the notation

K∗
n) with respect to the matrix inner product.
Consider the following conic bi-linear programming

min
X∈K∗

n,Y ∈K∗
m

(AX) • Y

s.t. Jn •X = 1,
Jm • Y = 1,

(5.1)

where AX ∈ Sm with (AX)kl =
n∑

i,j=1

aijklXij (k, l = 1, . . .m). Denoted by vcopmin the optimal

value of (5.1). It follows that vcopmin ≤ pmin
A since {xx⊤ | x ∈ ∆n} ⊆ {X ∈ Kn | Jn •X = 1}.

However, (5.1) is not a relaxation but indeed an exact reformulation of problem (3.1), which
is shown in the following theorem.

Theorem 5.1. The bi-quadratic optimization (3.1) and bi-linear copositive programming
(5.1) are equivalent, that is, (3.1) and (5.1) have the same optimal value and one optimal
solution pair of (3.1) can be obtained from the optimal solution pair of (5.1).

Proof. Let (X∗, Y ∗) be an optimal solution pair of (5.1) with the objective value vcopmin. By
the definition of K∗

n, there exists a positive integer r1 such that X∗ =
∑r1

i=1 x
(i)(x(i))⊤

with x(i) ∈ ℜn
+\{0}. Let λi =

(∑n
k=1 x

(i)
k

)2
. Then λi > 0 for i = 1, 2, . . . , r1, as well as∑r1

i=1 λi = 1 since Jn •X∗ = 1. Moreover, it is easy to see that X∗ =
∑r1

i=1 λix̄
(i)(x̄(i))⊤,

where x̄(i) = x(i)/
∑n

k=1 x
(i)
k ∈ ∆n. Since vcopmin = (Y ∗A) • X∗, where Y ∗A ∈ Sn with

(Y ∗A)ij =
m∑

k,l=1

aijklY
∗
kl (i, j = 1, . . . n), it follows that vcopmin =

∑r1
i=1 λi(Y

∗A) • x̄(i)(x̄(i))⊤,

which implies that there must exist an index, say 1, such that

(Y ∗A) • x̄(1)(x̄(1))⊤ ≤ vcopmin. (5.2)

Similarly, there exists a positive integer r2 such that Y ∗ =
∑r2

j=1 µj ȳ
(j)(ȳ(j))⊤, where

ȳ(j) ∈ ∆m and µj > 0 for j = 1, 2, . . . , r2 satisfying
∑r2

j=1 µj = 1. By (5.2), it holds

that (Ax̄(1)(x̄(1))⊤) • Y ∗ = (Y ∗A) • x̄(1)(x̄(1))⊤ ≤ vcopmin. Continue the above process on Y ∗.
There must be an index, say 1, such that

(Ax̄(1)(x̄(1))⊤) • ȳ(1)(ȳ(1))⊤ ≤ vcopmin. (5.3)
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On the other hand, since x̄(1) ∈ ∆n and ȳ(1) ∈ ∆m, it is clear that

pmin
A ≤ (Ax̄(1)(x̄(1))⊤) • ȳ(1)(ȳ(1))⊤,

which implies, together with (5.3) and the fact that vcopmin ≤ pmin
A , that pmin

A = (Ax̄(1)(x̄(1))⊤)•
ȳ(1)(ȳ(1))⊤ = vcopmin. We obtain the desired result and complete the proof.

Remark 5.2. (1) By Lemma 5 in [3], we know that the extremal points of the feasible set
of (5.1) are exactly (xx⊤, yy⊤), the rank-one matrix pairs based on vectors x ∈ ∆n and
y ∈ ∆m. Theorem 5.1 shows that a solution of the problem (5.1) is attained at an extremal
point of the feasible set.

(2) Copositive programming is a useful tool in dealing with all sorts of optimization
problems. However, it also has very complex structures in terms of computational solvability,
since checking whether a symmetric matrix belongs to Kn or not (the strong membership
problem for Kn) is co-NP-complete [25]. Due to the facts that the objective function in
(5.1) is bilinear and the strong membership problem for the completely positive cone is NP-
hard [13], we know that (5.1) is also NP-hard. Consequently, by Theorem 5.1, there exists
no polynomial time algorithm for solving (3.1).

To obtain the lower bounds of (5.1), we consider two aspects mentioned earlier. We first
focus on approximating K∗

n and K∗
m.

Let us denote by Sn
+ the cone of all n× n positive semidefinite symmetric matrices, and

denote by Nn the cone of all nonnegative symmetric matrices. It is well known that the
nonnegative and semidefinite cones are self-dual, i.e., (Sn

+)
∗ = Sn

+ and N ∗
n = Nn. Recall

that Cn = Sn
++Nn is a (zero-order) inner approximation [6] of the copositive cone: Cn ⊆ Kn,

with Cn = Kn if and only if n ≤ 4, see [12]. Hence, we have

K∗
n ⊆ C∗

n = (Sn
+ +Nn)

∗ = Sn
+ ∩Nn.

Consider the following positive semidefinite programming

vSNmin := min
X,Y

(AX) • Y

s.t. Jn •X = 1, X ∈ Sn
+ ∩Nn,

Jm • Y = 1, Y ∈ Sm
+ ∩Nm,

(5.4)

which is a relaxation of (5.1). It is clear that vSNmin ≤ vcopmin = pmin
A .

Furthermore, we choose two finite sets {P1, . . . , Ps} and {Q1, . . . , Qt} from Kn and Km

respectively, and consider two generated cones

Dn =

{
s∑

i=1

aiPi | ai ∈ ℜ+

}
and Dm =


t∑

j=1

bjQj | bj ∈ ℜ+

 .

It is easy to see that Cn ⊆ Cn + Dn ⊆ Kn and Cm ⊆ Cm + Dm ⊆ Km, since Kn,Km are
convex and 0 ∈ Dn, 0 ∈ Dm. Hence, problem

vDsdp := min
X,Y

(AX) • Y

s.t. Jn •X = 1,
X ∈ Sn

+ ∩Nn ∩ D∗
n,

Jm • Y = 1,
Y ∈ Sm

+ ∩Nm ∩ D∗
m,

(5.5)
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can be used to improve bound vSNmin. That is, vSNmin ≤ vDsdp and vDsdp is a valid lower bound

for pmin
A . From the structure of Dn and Dm, it follows that (5.5) can be rewritten as

vDsdp := min
X,Y

(AX) • Y

s.t. Jn •X = 1,
Pi •X ≥ 0, ∀ i = 1, . . . , s,
X ∈ Sn

+ ∩Nn,
Jm • Y = 1,
Qj • Y ≥ 0, ∀ j = 1, . . . , t,
Y ∈ Sm

+ ∩Nm,

(5.6)

which is a special type of conic optimization problem, but is also NP-hard itself.
Let C = (ckl)1≤k,l≤m ∈ Sm with ckl = min

1≤i,j≤n
{aijkl}. Then, it is ready to see that

AX ≥ C for any X satisfying Jn • X = 1 and X ∈ Nn. We consider the following SDP
problem

vYD
sdp := min

Y
C • Y

s.t. Jm • Y = 1,
Qj • Y ≥ 0, ∀ j = 1, . . . , t,
Y ∈ Sm

+ ∩Nm,

which can be solved in polynomial time. It is clear that vYD
sdp ≤ vDsdp. Similarly, we have that

vXD
sdp ≤ vDsdp, where vXD

sdp is the optimal value of the following problem

min
X

D •X
s.t. Jn •X = 1,

Pi •X ≥ 0, ∀ i = 1, . . . , s,
X ∈ Sn

+ ∩Nn,

and D = (dij)1≤i,j≤n ∈ Sn with dij = min
1≤k,l≤m

{aijkl}. Therefore, it holds that

max
{
vXD
sdp , v

YD
sdp

}
≤ vDsdp.

Furthermore, from the fact that C ≥ p0AJm, we know that C • Y ≥ p0A for any Y ∈ Nm

satisfying Jm • Y = 1, which implies that vYD
sdp ≥ p0A. Similarly, it holds that vXD

sdp ≥ p0A.
Therefore, we have

p0A ≤ min
{
vXD
sdp , v

YD
sdp

}
.

On the other hand, we notice that relaxation problem (3.5) can be reformulated as the
following instance of a linear optimization problem over the cone K∗

nm [3]:

ν(Q) = min Q • Z
s.t. Jnm • Z = 1,

Z ∈ K∗
nm.

(5.7)

Let us define

Θr
nm =

{
z ∈ Nnm |

nm∑
i=1

zi = r + 2

}
, r = 0, 1, 2, . . . ,

where Nnm denotes the set of nm-dimensional nonnegative integer vectors. Define

Or =

 ∑
z∈Θr

nm

βz

(
zz⊤ −Diag(z)

)
| βz ≥ 0 for all z ∈ Θr

nm

 , r = 0, 1, 2, . . . .
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In [17], it was established that K∗
nm ⊆ · · · ⊆ O1 ⊆ O0 and K∗

nm =
∩∞

r=0 Or. We consider

lr(Q) = min Q • Z
s.t. Jnm • Z = 1,

Z ∈ Or,
(5.8)

which can be solved in polynomial time, for each fixed r = 0, 1, 2, . . .. It is obvious that
lr(Q) ≤ ν(Q) ≤ pmin

A for any r = 0, 1, . . ., as ν(Q) ≤ pmin
A and lr(Q) is a lower bound on

ν(Q) for every r = 0, 1, . . ., see [6, 31,35] for details.
It is worth pointing out that, how to choose appropriate matrices Pi(i = 1, . . . , s) and

Qj (j = 1, . . . , t) in (5.5) is very important to obtain better lower bounds of (1.1). Further-
more, after the choice of Pi and Qj , how to obtain an approximation solution of (5.6) is also
very interesting. These remain as topics for further research.

6 Final Remarks

In this paper, some preliminary lower bounds for the optimal value of StMQP are pre-
sented. Furthermore, a relative approximation ratio and a bi-linear copositive optimization
reformulation for StBQP are also studied. Based on these, it is hopeful to design suitable
approximation algorithms for the problem (1.1) and study the related approximation ratio
properties. Indeed, it is well known that StQP has a PTAS [6]. For fixed degree polynomial
optimization over the simplex, De Klerk, Laurent and Parrilo [18] considered sequences of
hierarchical lower and upper bounds and showed a PTAS. More recently, by using the prop-
erties of Bernstein approximation on the simplex, a new proof of a PTAS for fixed-degree
polynomial optimization over the simplex was presented in [19]. These naturally raise the
question— whether the same holds for StMQP. However, the appearance of Cartesian prod-
uct of several simplices results in that designing a PTAS for the considered problem becomes
a more complex task, which also differs from the problems considered in [6,18]. We will focus
on studying PTAS for StMQP in another paper.
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