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Abstract: A Standard Multi-Quadratic Optimization Problem (StMQP) is studied in this paper, which
consists of minimizing a multi-quadratic form over the Cartesian product of several simplices. Several lower
bounding techniques for StMQP ranging from very simple and cheap ones to more complex constructions
are presented. The main tools employed here are Semidefinite Programming (SDP), decomposition of the
objective function into an appropriate form related to quadratic functions, and optimization of a multi-linear
function over the Cartesian product of spheres. Especially, the approximation solution and relative approx-
imation ratio of the considered problem are studied. Finally, a related bi-linear copositive programming
reformulation is presented.
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Introduction

In this paper, we consider an optimization problem of the following form

ng

. m d)_(d
min  pa (x(l)’ e 7x(d)) =3 ai1j1‘~~idjdx’b(11)'r§}) o xl(d)xg'd)
=l daga=1 (1.1)

s.t. (x(1)7...,x(d)) €Ay, X XAy,
where

k
Ay, = xe%i\ inzl
i=1

is the standard simplex and ®% = {z: eERF | x> 0} denotes the non-negative orthant in k-
dimensional Euclidean space R®*. Here, A = (@iyjy..igjq) 18 @ 2d-th order (ng xnqy X---Xng X
nq)-dimensional real partially symmetric tensor, that is, for any fixed k£ (1 < k < d) and in-
dices {ilajla S Tk—15 Jk—1, U1 150 vidujd}v the matrix M), = (ailjlmidjd)lﬁik;jkﬁnk €
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RmEX1E i symmetric. It is easy to see that for any chosen k € {1,...,d}, the objective
function in (1.1) can be written briefly as

pA (x(l)’ e 7I(d)> =B® o (x(k)(x(k))T> '

Here,
ni Nk —1 NEk+41
B — E E E
i1,j1=1 ik—1,Jk—1=1ik+1,Jk+1=1

nd

§ : ) (k—1) (k—1) (k+1) (k+1) (d),.(d)
Fiyji.dajali, le Ty xjk—l xik+1 xjk+1 Ty, xjd

td,Jja=1

is an ng X ng symmetric matrix and X e Y stands for the usual matrix inner product, i.e.,
X oY = tr(X"Y). From the continuity of p4 and the compactness of A,, X -+ x A,
it is clear that the optimal value of (1.1), denoted by prjir‘7 is attainable. Without loss of
generality, we assume that 2 <n; <ng < -+ < ny.

In case that all a;, j,...5,;, are independent of the indices 2, jo, ..., %d, jd, i-€., Qi1 jy.. iy =
b;,j, for every iy, jr =1,...,n; and k =1,...,d, then the problem (1.1) can be reduced to
the following Standard Quadratic Optimization Problem (StQP)

ny
min Z birxixy | ® € Apy 3, (1.2)
ik=1

which is known to be NP-hard, but has a polynomial time approximation scheme (PTAS) [6].
On the other hand, if we fix any (d — 1) vectors in {z(1), ... 29} then we also obtain a
standard quadratic optimization problem. Due to this reason, (1.1) is called a Standard
Multi-Quadratic Optimization Problem (StMQP). StQPs were well studied, and not only
occur frequently as subproblems in escape procedures for general quadratic optimization
but also have manifold direct applications, e.g., in portfolio selection and in maximum
weight clique problem for undirected graphs. For details, see, e.g., [2,5, 23, 24, 28] and
references therein. Furthermore, for portfolio selection problems with two groups of securities
whose investment decisions influence each other, a generalized mean-variance model can
be expressed as a standard bi-quadratic optimization problem (StBQP) [7]. In [7], some
optimality conditions of StBQP were studied. To solve it, StBQP was reformulated as an
unconstrained bi-quartic problem. Furthermore, a numerical algorithm was proposed based
on the reformulated problem. As a further generalization, for portfolio selection problems
with d groups of securities whose investment decisions influence each other, the related
mean-variance model can be similarly formulated as StMQP.

Note that StBQP is different from bi-quadratic optimization problems over unit spheres
in [22,34]. StBQP comes from the mean-variance model in portfolio selection problems,
however the latter problem arises from the strong ellipticity condition problem in solid
mechanics and the entanglement problem in quantum physics; see [7,11,15,16,20,29, 30, 33
and the references therein.

Since (1.1) is NP-hard, efficient algorithms to find the approximation solutions and
bounds are very interesting. An important criterion for exact or approximation solution
methods is the availability, which induces to propose a number of bounds for StQP, see,
e.g., [1,4,6,8,9,14,26,27]. However, for SSBQP and StMQP, the approximation bound is
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still not clear until now. Motivated by this, we focus on approximation bounds of (1.1) in
this paper. The main tools employed here are Semidefinite Programming (SDP), decompo-
sition of the objective function into an appropriate form related to quadratic functions, and
optimization of a multi-linear function over the Cartesian product of spheres.

Here are some notations. " stands for the usual Euclidean space of real vectors of length
n, which is equipped with the standard inner product and the Euclidean norm denoted by
Il - |- The i-th coordinate of a vector z is denoted by x;, and the i-th column vector of the
identity matrix I, = (0ij)1<i,j<n in X" is denoted by el . We denote by S™ the space
of symmetric matrices, denote by J, € 8™ with all entries being 1. For any 2d-th order
(n1 X ny X -+ X ng X ng)-dimensional real tensor A, a; 4, iy, (i =1,...,nk,k=1,...,d)
are called its subdiagonal entries, and 414 ...44%4 are called the corresponding subdiagonal
subscript. We denote by Z the 2d-th order (n; Xnq X -+ - X ng X ng)-dimensional tensor whose
entries are zero except for subdiagonal entries being 1, and denote by £ the tensor of all one in
Rraxnixoxnaxna Piag( A) denotes the tensor which has the same subdiagonal entries to A
and off-subdiagonal entries 0. For any two tensors A and 5 of the same structure, we denote

A+ B = (a/iljlu.idjd + bi1j1...idjd)' For the given matrices B(k) = (bgllj;k) SR (k =
1,...,d), we denote by C = BM) @ ... @ B@ the 2d-th order (ny X ny x --- X ng X ng)-
dimensional real tensor with

d
R 0
Cirji-iaja = | | Dinty-
k=1
F ik = 1 dk=1,....d the matrix e (eft ) +edt (ei* )" is denoted
or every i, jr = 1,...,ng an =1,...,d, the matrix e;* (enk) +elk (enk) is denote

by E® (iyji,). For any subscript set I.J = {i1,j1,%2, 2, . . . ,id, ja} With ig,jx = 1,..., 74
and kK =1,...,d, we further denote

1 . .
gl _ 27E(1)(21J1) R ® E(d)(zdjd). (1.3)

The rest of this paper is organized as follows. In Section 2, we present three methods
to establish cheap closed-form lower bounds for (1.1), which are generalizations of those
in [9]. By using standard quadratic programming, in Section 3 we further estimate the lower
bounds of StBQP. In Section 4, we present a method for solving approximation solution of
StBQP. Finally, a bi-linear copositive programming problem related to StBQPs is discussed
in Section 5.

Cheap Closed-Form Lower Bounds

min

In this section, we discuss the basic properties of p’j'". Based upon these properties, we

min

present some lower bounds for p’y", which have simple closed-form representations and
can be computed efficiently. Immediately, we can verify that pﬂi“ is shift-equivariant with
respect to &, i.e., pilte = pi'™ + ¢ for all t € R. Hence, without loss of generality, in this
section we assume that all entries of A are positive.

Let & be the set of all 2d-th order (n; xnj X- - - Xngxng)-dimensional partially symmetric
tensors, and P C & be a convex cone, i.e., « A+ B € P whenever A, B € P and «, 5 € R.
On G, we may introduce a partial order related with the given convex cone P. In particular,
if P C & is the convex cone consisting of all nonnegative tensors, then the corresponding
order “ > 7, is defined by componentwise inequalities, i.e., for A, B € P, A > B if and only
ifA-BeP.
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Another frequently used partial order defined on & is Lowner partial order “ > 7, which
is induced by the cone P, consisting of all positive semidefinite tensors. Here,

= {AE G] \pA(m(l),...,x(d)) >0, Vel epm, .. 2@ e %”d}.

In other words, for A, B € &, we write A = B whenever A — B € P. It is straightforward
to verify that the minimum pmln is isotone with respect to both the standard and Lowner
partial orders. That is, if A > B or A > B, then pﬁi“ > pgﬁn.

It is easy to see that every subdiagonal entry a;,q,..i,i, of A is an upper bound for
pj‘“, since e“‘,c € A,, and pA( m’...,e}fd) = @iyiy..igiq- OnN the other hand, in the case
A = Diag(A), problem (1.1) reduces to the following optimization problem

. nd (1) 2 (d) 2
min Z . Z Ajyiy...igig (‘Til ) . (mid )

i1=1 ig=1

st (@M, x D) e A, x o x A,

which can be relaxed as
min z'Cz

st. z€ Apny- (21)

Here, C'is a szl ng X HZ:1 ni diagonal matrix with the diagonal entries being a;,4;. i i,
(ix, = 1,2,...,nk,k = 1,2,...,d). Note that (2.1) is a strictly convex program since
Qiyiy..igig > 0 for i = 1,2,...,np and k = 1,2,...,d. From the first-order optimality
condition, we obtain a lower bound for pmm

=[S ]

’Ll— Zd 1
Consequently, by shift-equivariance, one immediately knows that for tensor A with off-

subdiagonal entries being a < min Qi iy
1<ii<ni,...,1<ig<nqg

n1 ng -1
j : j : —\—1
e (ailil...idid - a’)

i1=1 ig=1

o ldtdo

Yy =a+

is a lower bound of pmm Furthermore, if there exist bl(-ll) > 0,.. .,bl(-j) > 0 such that

Qiviq..igiqg — Q@ = bz(-ll) . ~~b§j) forix =1,...,n and k =1,...,d, we then have
ni -1
it =a+ |y - Z (i igiy — a)1] ) (2.2)
21— ld 1

Based on these preliminary observations, we are ready to derive our first class of lower
bounds. To this end, we need the following lemma.

Lemma 2.1. Consider problem (1.1) with tensor A € &, whose off-subdiagonal entries are
all a satisfying
P s L R

min min

For any off-subdiagonal subscript IJ = {ii,j1,...,iq,ja}, we have p3™ < p*, where

A=A+ 7E and T > 0.
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Proof. By shift-equivariance, without loss of generality7 we assume that @ = 0. Let
(W, ..,z D) € A, x -+ x A, such that p§™ = pa(zD, ..., 2D). It is clear that for
every i1 = 1,...,nq, it holds

Z Z Qiyiy..igia ( 52))

io=1 iq=1

: (555‘1))2 >0,

d

since (f(z) fd)) € Ay, X x Ay, and a;4,..555, > 0foripg=1,... ,npandk=1,...,d.
Consequently #(1) is the unique solution of the following strictly convex program

Z bi, (2.3)

111

st. zeA,,.

From the first-order optimality condition, we know that

o
i1

b
ni B
>
i1=1
which implies that Z(!) > 0. Similarly, we have that z*) > 0 for k = 2,...,d.
Let (2V,...,2@) € A,, x -+ x A, such that
P = pa (30, 0@) = pa (30,8 @) D) a( e,

Ifz A(l) (}) LDl = 0, then ( 1) ...,:T:(d)) is not an optimal solution of (1.1). Hence,

Tia Tja
P =pa (80,0 @) > g
(1) A1) A(d) 5(d)
It &; “&; "2, %; " >0, then

min - S ~(d) ~(d min - ~(d d min
Pt _pA(x(l)?“_7x(d))_~_Tx(1) ~(1) .,xl(d)x()>pA 1 i W)z 4d) s ()>PA )

Jd  — i1 ]1 'Ld Jd
We obtain the desired result and complete the proof. O
Let
—1
1
ff _p.A+ Z Z (iyiy .. iaiq pA) ‘| ) (24)
l] 1 7,d 1
where
Pu = min @iy ..iaja:

1<iy,j1<na,...,1<04,ja<na
Theorem 2.2. For problem (1.1) with A € &, we have

p < pref < pii\lin-

The equality p% = pref holds z'f and only if a minimum entry of A is located on the subdiago-

nal, which leads to p% = p’™. Furthermore, it holds that all the off-subdiagonal entries of A
ref __

are equal to the value pA pmvzdedp pﬁi“. Conversely, if all the off-subdiagonal entries

of A are equal to the value a satisfying a < min Qiyiy..igiqg and there exist some
1<ii <ng,...,1<ig<nq
positive vectors (bgk), .. b(k)) e R (k=1,...,d) such that a;,4, . iy, = bl(»ll) . b(d) +a

min

forig=1,....np and k=1,...,d, thenpffff—pA
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Proof. The inequality, p% < p's!, is trivial. Let
A’ = Diag(A) + p% (€ - T),

then pref < pm”“ Consequently, the inequality pmf < pm”l follows from the isotonicity of p3™
and the tensor inequality A’ < A. Next we characterize the cases where one of the cheap

bounds is exact. If a; s = min a; for some indices i1, ...,iq

BT GGy 1 g jasng e

then a;;, i, = 71i,..i,i, Decause every subdiagonal entry a;,j, .. i, of A

1s an upper bound for p’} Consequently, it holds that pg‘ = pif{“‘, which implies that
ref

Iy o =% Conversely, if 2 0= pref then

pA < pmm < a=

min

-1

Z Z Aiqiq..igiq p_A) ! =0.

11— ld 1

So that a;,3, 7,i, = P% = p4™ for some indices i1,. .., iq.

Next, we assume that prEf = pﬂ““ then pref pm‘“. Hence, from the fact that prEf =
Py < pﬁ}“ < p“““, it holds that pmm = pﬁm. If there exists an off-subdiagonal entry

3,7, .5, of A such that azj 7,5, > p%, then the tensor A” = A’ + (a Aijr . iaja - %€
satisfies A’ < A” < A, where £ is defined by (1.3) with I.J = {i,j1,.-.,14,j4d}- By Lemma
2.1, pi® < p%ir. This COHtI'adlCtb the equality p4® = p%a™. Hence7 all off-subdiagonal

entries of A must coincide with p%.
Assume now that all off-subdiagonal entries of A are equal to a satisfying a <

min Qiyiy..igig> OT equivalently p¥ < pref Then pff{f = piﬁ”“ follows immediately
1<ii<ni,...,1<ig<ngq )
from the closed-form expression (2.2). We complete the proof. O

From (2.4), it is easy to see that

0 1 : 0 ref
min Qiyiy.digiq — <
PAT 2mms [ 1<i, <ni iy, it pA} =Pa
<pY+ max Qiyiy. igig — DO
Pt L<z’1<n1,.u,1<id<nd iindaia = PA
which implies that p% and pf}{‘f tend to coincide when max{n,...,nq} increases. In partic-
ular, when all the subdiagonal entries are equal, it holds that
1

ref

0
P =%+ P (@iriy.igia — PA) -

Theorem 2.3. Consider the standard multi-quadratic optimization problem (1.1) with A €
&. We have

p_A < p_A < pmm

=T | (35 (- vm) ) |

ip=1

where

and

(k) _
Cinir —

min

. . . . . . 211k —1Jk -1tk klk+1Jk+1---2d]d "
1S7/11.71§"17---71§Zk—1Jk—lfnk—lvlf'tkwrlJk+1Snk+1»---7lfid73d§nd\/
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Moreover, the equality p% = pd holds if and only if for every k = 1,...,d, there exists
in € {1,...,ng} such that ¥} = ¢ Y-

1kl

Proof. The first inequality, p?4 < p%, is trivial, because {/p% < c( ) for iy, = 1,...,n; and

k=1,...,d. Now we prove the second inequality. Let C*) ¢ S"’c (k =1,---,d) with its
entries
(k) _

Civje =

min

U - X N . - .
o ) . ) . o 1151 ik —1Jk— 19k ki +1Tk+1---dJd
1§117]1Sn17-~»71§2k—17]k—1§nk—171S'Lk+17]k+1Snk+17~-71§1d7ﬂd§nd\/ R

and C = (¢, jy...i450) € © With ¢, 450 = HZ:I cﬁfjjk It follows that C < A, which implies
that pc (z(M,...,2@D) <py (zW, ... 2@) for any (2, ..., 2(D) € A, x---xA,,. More-
over, from the special structure of C, it holds that p¢ (:1:(1), e ,:c(d)) = szl (x(k))—r C k) g (k)
Now we consider the following StQP

min  (z®)TCF z®)
2.
{ st. 2 e A, (25)
It is easy to see that {/p min Efgk Consequently, by Theorem 2 in [9], we know

1<1k Je<ng

-t
that {/p% + [Zlk L ( Ciri = p&) ] is a lower bound of the optimal value of (2.5).

Hence, the second inequality holds.
If p% = p, then

Nk —1 -1
[Z <Cz('fi)k_ dp?A) ‘| :Ov k:1a7d
ip=1

Hence, F = {/pY for some index i € {1,...,n}. Conversely, if for every k =1,...,d,

Zklk
there exists i € {1, ,nk} such that cgfzk /P, we may prove that pA = p by using
the same way as above. We complete the proof of the theorem. O

Now we state and prove the last theorem in this section. For the sake of simplicity,
we only study the case d = 2. In fact, the obtained result can be extended to the case

where d > 3. We denote aglgl = min{a;, jip5, | 1 < d2,72 < ng} for i1,51 = 1,...,n4,
2 o
lll(»2;2 = mln{ailjlbb | 1 S 7,1,]1 S ’/7,1} fOI‘ 12, )2 = 1, .oy Na, and
o _ .|\ oy e e [ oy
1 1 1 2 2 2
Piyjy = %yt Z (ailjlizia - ama) ] » Piyjy = Ginjy T Z (ailm‘zjz - aizjz) ] .
ig=1 i1=1
(2.6)
Furthermore, we denote by B("171) € §"2 with its entries being Qi jrisgs fOT i1, 1 =1,...,n1,
and denote by C(1272) € §™ with the entries being @iy jyiggs TOT 12,52 =1,...,na.

Theorem 2.4. Consider the standard multi-quadratic optimization problem (1.1) withd = 2
and A € &. It holds that p'§t < p% < pii, where

n -1
1 1
(o) | e

i1=1

p“A ‘= max p&l)

i ( (@) (2)) 11 -
Piyi, —Pa

ig=1
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. 1 . o 2 . 2 .
with p;) = min {pg;l |1<i1,51 < nl} and p54) = min {p§23j2 | 1<ig,j2 < ng}.

Proof. We only prove that

—1
n -1 .
<ol | 30 (v ) ] < pa™. (2.7)
11=1
The proof of
1
n2 -1 .
<P+ (Y (pﬁffz —pff)) ] < pi"
in=1

is similar. We now consider
StQP (i1, j1) : min{(x@))TB(m’ﬂx(?) | 2® e Am}. (2.8)

By Theorem 2 in [9], we know that

1 _ (1)
pi1j1 - ailjl +

n2 ) _1 -1
1
E (a’iljliziz - ai1j1>

ia=1

is a lower bound of StQP(i, 1), which implies that pgllg-l < (m(Q))TB(iljl)x@) for any
z? € A,,. Hence,

T
(60)7 P90 50,5 20

for (z,2) € A,, x A,,, where P = (pﬂ;l € §™. By Theorem 2 in [9]

>1§i17J1S’ﬂ1
again, we know that for any () € A, ,

-1
2l -1 T

|3 ()| s ()
i1=1

which implies, together with (2.9), that the right inequality in (2.7) holds.
By (2.6), it is obvious that p > el for every (i1, 1), which implies that pfi) > Y,

i1j1 = i1
111
where pY is denoted in (2.4). Furthermore, since f(z) := x + [E"l (pgllzl - 33) } is

i1=1

. . 1
monotone increasing on ﬂzlzl (—oo,pz(-lzl}, we have

-1 _1
ni _1 ni .
1 1 1 1
pa+ Z (Pz(u)l —P(A)) ] > pl + Z (p§131 —pOA) ] : (2.10)
=1 i=1
On the other hand, we have that for every iy =1,...,n1,
(1) (1) 2 (1) -1 !
Piii, _P& = a;; +t Z (ailmm - ahh) —p94
=1
no ) —1
z p& + Z (ai1i1i2i2 _p?A) ] —pg‘
=1

na 1 -1
= [Z (ai1i1i2i2 _p.(/)‘l) ‘| )

io=1
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which implies
Z’“ Z"Q 1 Zm o o)
0\
(aililigiz _pA) 2 (pilil _pA) . (2'11)
i1=1iy=1 i1=1

By (2.10) and (2.11), we know that the left inequality in (2.7) holds. We complete the
proof. O

From Theorems 2.2 and 2.3, we know that pfff = p& implies p’} = pOA However,

Ty ref

the following examples show that p’y/ = pOA does not imply piy' = p94, prj{f and p?} are
incomparable.

Example 2.5. Consider problem (1.1) with d = n; = ny = 2. Let a1112 = a1121 = @122 =
as122 = 1, and other entries be 4. In this case, it is easy to see that

m_ |11 @ _12 1
c —[12} and C _[11 .

Consequently, it follows that p% = p% =1 but p’{' = 1.75. On the other hand, by a direct
computation, we may obtain p%’ =

Example 2.6. Consider problem (1.1) with d = n; = ny = 2. Let aj212 = a2112 = a1221 =
as121 = 1, and other entries be 4. In this case, it is easy to see that

2 1 2 1
(1) = (2) e
C [ 1 9 } and C [ 1 9 ] .
Consequently, it follows that p% = 1 < p'sf = 1.75 < p” = 2.25. On the other hand, by a
direct computation, we obtain pﬁ) = pg) = 2.5, and hence p%’ = 3.25.

Bounds Based Upon Standard Quadratic Programming

In this section, we further present some methods to find lower bounds on optimal value of
(1.1). For the sake of simplicity, we only discuss the case that d = 2 in (1.1), of the following
form Y
min - pa(@,y) == > D GijuTiTiYry
ij=1k,I=1 (3.1)
st. (z,y) € Ap X Ay,

which is also studied in [7]. We first present two results on the lower bounds of (3.1).

Theorem 3.1. Let b;; = é}clgrﬂna”’“k fori,j =1,....n and ¢ = 121£na”kl for k1 =
1,...,m. Then, we have
0 1 min 0 1 min 0 min
D4 + max E(’UB —pA),ﬁ(vC —pA) <pi™, (3.2)

min min

where vE™ and v are the optimal values of the following standard quadratic optimization
problems

n n
min E b ik s min E CkIYLYL
zeERn & e and yeR™ YrY
i,j=1 k,l=1
st. €A, st.  yeAn,

respectively.
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Proof. 1t suffices to show that p% + & (vF™ — p%) < p™ holds. By shift-equivariance, we
have that for x € A, and y € A,

n m
palz,y) = pi+ Z Z (@i — PA) Ty
ij=1k,I=1
n m
> Pt Y (aiek — P)Tizivi
ij=1 k=1
m n
> py+ Zi‘/l% Z (bs; — p?A)xixj
k=1 ij=1
1 n
0
> it m _Zl(bw — PA)TT;
i,j=

1 n
= P94+E Zbijxixj—]??a\ )

i,j=1
where the second inequality comes from the fact b;; < a;jri for every kK =1,...,m, and the
last inequality is due to the fact that > ;- y? > 1/m for any y € A,,. By this, it follows
that p% + = (vB™ — p%) < pA™ holds. We complete the proof of the theorem. O

Theorem 3.2. Let g;; = tij1<rl£lilr<lmaijkl with t;; € (0,1) and hy = 1<I?ijrin(aijkl — Gij)-

Then, we have
min min min
vg tvg <pa

min min

where vE™ and V™" are the global minimums of the following standard quadratic optimiza-
tion problems

n m
min Z ii Lilj min Z hkl LYl
zER" £ 9ig¥is and yER™ Yy
i,j=1 k,l=1
st. €A, st.  yeAn,

respectively.
Proof. Since 0 < t;; < 1, it follows that g;; > 0 and hy; > 0 for every 4,5 = 1,...,n and

k,l = 1,...,m. Moreover, it is easy to see that for 7,5 = 1,...,n and k,l = 1,...,m,
Qijkl = Gijkl — Gij + Gij = hrt + gi5. Consequently, we know that for x € A, and y € A,

n m
pal@,y) = > gymizi+ Y hwysy-

i,j=1 k=1
Based upon this, we obtain the desired result and complete the proof. O
Remark 3.3. Note that the standard quadratic optimization problems in Theorems 3.1
and 3.2 are also NP-hard themselves. However, based upon Theorems 3.1 and 3.2, we may

obtain some lower bounds for pﬂin by solving approximately the corresponding quadratic
problems in polynomial time.

Example 3.4. Consider Example 2.5. We first estimate its lower bound for pi‘i“ by the
method presented in Theorem 3.1. It is easy to know that the two matrices mentioned in

Theorem 3.1 are
B—(C— 4 1
[ R R A
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Based upon this, we can obtain v" = @ = 2.5. Hence, by Theorem 3.1, we know that
1.75 < pi since pY =1 and m = n = 2.

We continue to estimate pﬂi“ by Theorem 3.2. We take t1; = t15 = to; = t90 = 0.25.
Then, we have
111 1 31 1
G_(gij)_4|:1 1:| and H_(hkl)_4|:1 1:|
Based upon this, it is easy to know that v = 0.25 and v = 0.75, which implies 1 < pﬁi“
by Theorem 3.2.

Example 3.5. Consider Example 2.6. We first estimate its lower bound for p3'® by Theorem
3.1. It is easy to know that the two matrices mentioned in Theorem 3.1 are

B;:(bij):{j i] and C5:(Ckl):[j j”v

respectively. Based upon this, it follows that v} = v2" = 4. Hence, we obtain 2.5 < p§i»,

which is larger than pfﬁf and pi‘y obtained in Example 2.6. We continue to estimate the

lower bound for pﬂi“ in Example 2.6 by using the result obtained in Theorem 3.2. We take
t11 = taa = 1/4 and t15 = t9; = 1/2. By a simple computation, it is easy to see that
N 1 1/2 L . 3 1/2
G’.—(glj)—{l/2 1 ] and H.—(hkl)—[l/Q 3 }

Consequently, we obtain v@™ = 0.75 and v} = 1.75. It follows that 2.5 < p3i".

Example 3.6. Consider the case where n; =d =1 =2 and ny = 3. Let ay112 = a1121 =
Q9913 = G9931 = 1 and other entries be 2.

In this case, it is obvious that p?4 = 1. Consequently, it is easy to see that pf}ff =7/6
by Theorem 2.2. By a simple computation, we know that p%/ = (2 + v/2)/3, by Theorem
2.3. At the same time, by Theorem 2.4, we have that p%’ = 4/3. On the other hand, by
Theorem 3.1, we can obtain 1.5 < p4". Finally, we estimate the lower bound for p§™® by

Theorem 3.2. Take t17 = t12 = to1 = too = 0.5. It is easy to see that

2 1 1
G—;[;f] and H=—-|1 2 2
1 2 2

Hence, we can obtain that v%™ = 0.5 and v = 0.75, which implies 1.25 < pﬁi“ by
Theorem 3.2.

Example 3.7. Consider the case that A = (a;;x), where ¢,7 =1,2,...,n, k,1=1,2,...,m

and
TR 2 ifi=jand k=1,
kL= b, otherwise.

min

It is obvious that p’y'™ = a when a = b.

When a < b, it is obvious that p% = a. Furthermore, we can obtain a tight lower bound
a of p'", ie, pi" = a, by all the methods in Theorems 2.2-2.4, 3.1 and Theorem 3.2 with
tij = a/b (Z,j = 1,2,...,’)7,).

When a > b, by a direct computation, we obtain a tight lower bound b + 2=% of

ninz
min

P, ie., pﬂi" = b+ %= by the methods in Theorems 2.2, 2.4 and 3.1. On the other

hand, we can obtain another lower bound b of pj‘i“ by Theorem 2.3 and Theorem 3.2 with

tij :b/a (i,j=1,2,...,n).
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The above examples also show that the approximation bounds presented in Sections 2
and 3 are incomparable in general.
We now consider the following optimization problem

7= ,mn, AsZeZ)
s.t. JTMW o/ = 1, (33)

Z >0, rank(Z) =1,

where A = (a;;x1) is a fourth order (n x n x m x m)-dimensional real partially symmetric
tensor, J, ., is the n x m matrix of all ones in J">*™.
The following statement characterizes the relationship between (3.1) and (3.3).

Proposition 3.8. The problems (3.1) and (3.3) are equivalent.

Proof. Since Z = zy" is a feasible solution of (3.3) for every (z,y) € A, X A,,, it is clear
that p7, < pﬂi“. On the other hand, let Z be an optimal solution of (3.3), then there exist
T € R" and § € R™ such that Z = zy". It is clear that (3, i) (351 9j) = Jnme Z = 1.
Denote z* = /Y 1, &; and y* =5/ Y™, ;. Since 2*y*T = Z > 0, it is easy to see that
Zi(35, 95) > 0 for i = 1,2,...,n and g;(3°;_, #;) > 0 for j = 1,2,...,m. Consequently,
we know that 2* > 0 and y* > 0. Hence, (z*,3*) € A, x A,,. Furthermore, we can verify
that Ae (z*y* T @x*y*T) = p%, which implies pﬂin < p%. The desired result is obtained. [

By removing the rank constraint in (3.3), we have the following relaxation of problem
(3.1):

min  Ae(Z®Z)
ZeRnxm

st. JumeZ=1, (3.4)
Z > 0.

4

Let z = vec(Z), where the operator “vec” is defined as

vec(Z) = (Z11, - Znts ooy Zims e e ey Znm) T
Then z € A,,, and (3.4) can be rewritten as the following standard quadratic programming
: min 2z Az

sap * 2ERMN (35)
s.t. z € Amn,s

v,

where A = (a;;) € 8™, generated by rearranging the entries of A. It is clear that Vigp <

P4 and the smallest element in A is exactly pY%. Let z* be an optimal solution of (3.5) . We
pack z* back into an n x m matrix Z = mat(z*) by columns, i.e., the n elements in the j-th

7 : * *
column of Z consist of Z(—1)nt10 1 Zgn

of 2*, j =1,...,m. If rank(Z) = 1, then by the
proof of Proposition 3.8, there exist z € A,, and 4 € A,, such that Z = zy ", which implies
that (z,y) is an optimal solution of (3.1). However, since A is indefinite in general, (3.5) is
an NP-hard problem with mn dimension variables, which will bring higher computational
cost when n or m is very large. In [27], Nowak proposed a method for solving the lower
bound p2 of the global minimum of (3.5), which is based upon the following semidefinite
programming (SDP)

min ~ Jy,, e (A—G)

Gesmn
st. G<A®G) =0, (3.6)

diag(G) = diag(A)
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and the following quadratic optimization problem

ver = min z' G*z

s.t. z€ Ann. (3.7)

Here @ : Rmnxmn _y pmn—1)x(mn—1) j5 the linear map defined by
(I)(G)i,j = Gi,j - Gmn,i - Gmn,j + Gmn,mna Za] = ]-a cee,mn — 13

and G* is an optimal solution of (3.6). Since ®(G*) > 0, by Lemma 2 in [27], we know that
(3.7) is a convex optimization problem, which can be solved in polynomial time. Moreover,
if 2T Az is concave on the edges of the simplex A,,,, then G* = (gfj)1§i7j§m,b with

(aii + lej), i, =1,...,mn,

92}25

and vg« is exact, see [27] for details.

Approximation Solutions and Relative Approximation Ratio

In this section, we present a polynomial time approximation algorithm for solving (3.1),
which can be extended to the case where d > 3. As mentioned in Section 2, it holds that
pﬂi_ftg = pﬂin + ¢t for all ¢ € R. Hence, in this section we assume that all entries of A are
negative. We first introduce the following definition to characterize the quality measure of
approximation ratio.

Definition 4.1. Let 1 > ¢ > 0 and 2 be an approximation algorithm for (3.1). We say 2
is a e-approximation algorithm for (3.1) if for any instance of (3.1) the algorithm 2l returns
a feasible pair (Z,§) of (3.1) such that

pa(@,§) = A" < (1= ) (™ - pi™).
Here, pi™ (resp., p’4™*) is the minimum (resp., maximum) value of the objective in (3.1).

To get rid of the sign constraints > 0 and y > 0 in (3.1), motivated by [10], we replace
the variables 2; and y; with 27 and w7, respectively. Then the conditions Y i ; 2; = 1 and
> i=1yj = 1 become to |z = 1 and ||w||* = 1, respectively. Therefore, the considered
problem (3.1) can be equivalently written as

min  g(z,w) Z Z auklz wkwl (41)

1,7=1k,1l=1
st. |22 =1, |w|? =1, (z,w) € R"® x R™.

Furthermore, by introducing a suitable 8-th order (nxnxnxmnxmxmxmxm)-dimensional
tensor A = (@i, ipigisjijajsja), the above problem can be rewritten as

min g(sz) = Z Z iy igigiagijogajaZis Ziz Zis Zig Wiy Wip Wiy Wiy
1<i1,..,2a<n 1<j1,...,ja<m (42)
st 22 =1 el =1, (z,w) € ®" x ®™,

one of whose relaxations is
min  F(zM, ... 230 w® @)
— 1,2 ,6) @, @), @), G, @)
= Z Z 0%1121314]1]2]3J4Zzl i Pig iy Wjy Wi, Wi Wy, (4.3)

1<y, . ia<n 1<j1,...,ja<m

st [Z®)2 =1, w2 =1, ®),w®)) e R xR™, k=1,....4.
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In the sequel of this section, we study the approximation bound of (3.1), based upon
the obtained approximation solution of (4.3). To this end, we first consider the following
general multi-linear function

(1) (r), (1) O]
i F Wi Wy

F(zW, 20 ™ By = Z iy it 2

1<iy,...,ip,<n
1<j1,.., 5 <m

(4.4)

where zF) € R" (K =1,2,...,7) and w®) € R™ (s =1,2,...,1). In the shorthand notation
we shall denote A = (Giy...i,51..5,) to be a (r 4 1)-th order tensor. We call the tensor A
partially symmetric with respect to the subscript set {i1,ia,...,i.} (vesp., {j1,J2,-.-,71}),
if G, .i,j,.., i invariant under all permutations of {i1,42,...,4,} (vesp., {j1,J2,---,Ji})-
Closely related to the tensor Ais a general homogeneous polynomial function f(z,w) :=
F(z,...,z,w,...,w), where z € R and w € R™. As any quadratic function uniquely
determines a symmetric matrix, a given homogeneous polynomial function f(z,w) of degree
(r +1) also uniquely determines a partially symmetric tensor form. For F' in (4.4) and the
related homogeneous polynomial function f, we have the following lemma, which is a special
case of Lemma 2.3.3 of [21] and is an extension of Proposition 5 in [32].

Lemma 4.2. Suppose that zV, ..., 20 e R w® . w® € R™ and that &1, ..., & and
(1y...,¢ are i.i.d. rTandom wvariables, each takes values 1 and —1 with equal probability
1/2. For any partially symmetric multi-linear function F(zV, ... 2" w® .  w®) and
function f(z,w) = F(z,...,z,w,...,w), it holds that

T l r l
E H & H Gf (Z &rz®, Z Csw(s)> = () F (D, .. 20 @ w®),
i=1 j=1 k=1 s=1

By applying Lemma 4.2 to the special case where r = [ = 4, i.e., (4.2) and (4.3), we have
the following theorem.

Theorem 4.3. Problem (3.1) admits a polynomial-time approzimation algorithm with rel-
ative approzimation ratio €, i.e. there exists a feasible solution (Z,4) of (3.1) such that

max min

pald, §) — piA™ < (1—e)(Pa™ — pa™), (4.5)

where € = () (wqﬁ(n,m)) with

mn

(n,m) = IOTgL", ifn<m
’ lofn ™ otherwise.

Proof. In order to obtain (4.5), we only prove that p3™ — pa(Z,9) > e(p3™ — pa™).
Denote z = (z,2,2,2),2(0% = (20,22 20) () ¢ R» x R* x R* x R” and w =
(w, w, w,w), wHH = (Wl w? w® W) e R x R™ x R™ x K™, Denote H(z,w) to
be the partially symmetric form with respect to the function h(z,w) := ||z||*||w||*. Pick any
fixed (20, w?) with ||2%| = [|w®|| = 1, and consider the following problem

pgax = max g(ZO7’LUO)H(Z(1’4),W(1’4)) _ F(Z(1’4),W(1’4))
st 2B =1, W] =1,
2B e R w®) e Rk =1,... 4.
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It is clear that p§®* > 0. By Theorem 4 in [32], we can obtain a solution (z(*%,w(14)) in
polynomial time such that

g(z°, ) H (@, W) — P, Wil > e pie, (4.6)

mn

I P — g(=0, w?) > (61 /4) @3 —p§™), then we have ™ — (=, w?) > (py™ —p4i")

since €1 /4 > ¢. Consequently, by letting & = ((2(1))2, o (29)2 )T and § = (( N2, (w?n)2)—r,
we have obtained the desired result. Now we suppose that

where g1 = Q (wgb(n m))

PR = g (2%, 0®) < (e1/H) (PR — P (4.7)

Notice that |H (24, w(4))| < 1, by (4.6), we have

pﬁaXH(i(lA),vAV(lA)) _F(i(1,4)’vAV(1,4)) _ g(zo w ) (A(l ,4) W(14) ( (1,4) w(1,4))
_|_(pmax _ g(z wO)) (Z(l ,4) VAV(l 4))
> eipf™ — (P> — g(2° w?)

> e1(g(2% w) — piA™) — (51/4)( B = PR
> (e1(1 —e1/4) —e1 /) (PR — pRA™)
> (e1/2) (PR — pE™),

where the second inequality comes from (4.7) and the fact pJj™ > g(zo, wo) — p’4™, the third
inequality is due to (4.7). On the other hand, it holds that
(4NH2[p maxH( 1.4 w1 4)) F(z A % (174))]
= B [T (6<) ( (2, W Q) — 9(26W0)))|
= B |[p™h(26, W) - 9(26, WO T (6:6) = 1] Prob {TT1_, (6¢:) = 1}
— [ h(26,W¢) - 9(26, WO TT1_, () = =1 Prob {TT1_, (66) = -1}
< LB [pmh(26,WQ) — g(26 WOITTL, (66) = 1]

where Z = 2(1)a2(2)a2(3)a2(4)]7 W = [w(l) w(?) ’LU(3 ’U}(4)] 5 - (51)52763754) and C =
(¢1,¢2,(3,¢4)". Thus there exists two vectors 8 = (ﬂl, vy Ba)y vy = (11, -, 7a) With 82 =
v =1(=1,...,4) and H?:l Biv; = 1, such that

% (pﬁaXh(ZAﬂ,W'y) - g(ZB,Wy)) (41)? (e1/2) (P53 *pﬁin).

Letting 2 = Z3/||Z8|| and & = W~/||W~]|, we have

max

Pba —g(?:‘,’LZJ) >

(4') El(pmax 7pmin) max min
A A > e (PR - PR,
1ZBII4[WA|

where the second inequality comes from the fact that [|Z8| < 4 and ||[W~| < 4. Here

_4n? 22 2 ~2 )T

e := “3-e1. By taking & = (£%,...,22)" and § = (@%,...,%2,)", we obtain the desired

result under the assumption (4.7). We complete the proof. O
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The Related Bi-Linear Copositive Programming

In this section, we still consider the problem (3.1). Recall that M € 8™ is said to be
copositive (more precisely, R -copositive), if " Mz > 0 for any = € R't. Denote by K, the
cone of all n x n copositive matrices, i.e.,

lCn:{MES”|xTMxZO for any xe?ﬁi},

and denote by K the cone of all completely positive matrices, i.e.,

K {N eS"|N= ZCL’ T for some positive integer k and z° € RY,i=1,. k} .
i=1

It is well known that K7 is the dual of the copositive cone /C,, (which justifies the notation
K) with respect to the matrix inner product.
Consider the following conic bi-linear programming

min (AX)eY
Xekx veks
s.t. J,eX =1, (5.1)
JneY =1,
where AX € 8™ with (AX ) = Z a;jrXi; (k,1=1,...m). Denoted by v;.> the optimal
i,j=1

value of (5.1). It follows that vie < p%i® since {za' |z € A} C{X €K, | J, ¢ X =1}.
However, (5.1) is not a relaxation but indeed an exact reformulation of problem (3.1), which
is shown in the following theorem.

Theorem 5.1. The bi-quadratic optimization (3.1) and bi-linear copositive programming
(5.1) are equivalent, that is, (3.1) and (5.1) have the same optimal value and one optimal
solution pair of (3.1) can be obtained from the optimal solution pair of (5.1).

Proof. Let (X*,Y*) be an optimal solution pair of (5.1) with the objective value v. .+ . By

min*

the definition of K, there exists a positive integer 71 such that X* = S0 2 (z())T
N2

with z(® € R? T\{0}. Let \; (ZZ:1 .13](;)> . Then \; > 0 for i = 1,2,...,71, as well as

S A = 1since J, @ X* = 1. Moreover, it is easy to see that X* = Y71, A,z (z(")T

Where T = 20 /5% 13% € A,. Since vb = (Y*A) @ X*, where Y*A € 8" with
(Y*A);; = Z aijuYy, (i,7 = 1,...n), it follows that v = 71 A\,(Y*A) e 20 ()T,
k=1

which implies that there must exist an index, say 1, such that

(Y*A) o 2D ()T < P, (5.2)

min

Similarly, there exists a positive integer ro such that Y* = Z 2 g9 ()T, where
g9 € Ay, and p; > 0 for j = 1,2,...,7 satisfying Z;il w; = 1. By (5.2), it holds
that (Az(M () T) e Y* = (Y*A) @ () (z(1)T <P Continue the above process on Y*.
There must be an index, say 1, such that

(AZD (@) T) 0 g ()T < P, (5:3)

min
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On the other hand, since Z(!) € A,, and ) € A,,,, it is clear that
pA™ < (AzW (@) T) e gD (5T,

which implies, together with (5.3) and the fact that v2oF < p@3in, that p3» = (AzM (V)T )e
37(1)(5(1))—r = vpob . 'We obtain the desired result and complete the proof. O

Remark 5.2. (1) By Lemma 5 in [3], we know that the extremal points of the feasible set
of (5.1) are exactly (zz,yy"), the rank-one matrix pairs based on vectors z € A, and
y € Ay, Theorem 5.1 shows that a solution of the problem (5.1) is attained at an extremal
point of the feasible set.

(2) Copositive programming is a useful tool in dealing with all sorts of optimization
problems. However, it also has very complex structures in terms of computational solvability,
since checking whether a symmetric matrix belongs to IC,, or not (the strong membership
problem for K,,) is co-NP-complete [25]. Due to the facts that the objective function in
(5.1) is bilinear and the strong membership problem for the completely positive cone is NP-
hard [13], we know that (5.1) is also NP-hard. Consequently, by Theorem 5.1, there exists
no polynomial time algorithm for solving (3.1).

To obtain the lower bounds of (5.1), we consider two aspects mentioned earlier. We first
focus on approximating K} and K7, .

Let us denote by S¥ the cone of all n x n positive semidefinite symmetric matrices, and
denote by N,, the cone of all nonnegative symmetric matrices. It is well known that the
nonnegative and semidefinite cones are self-dual, i.e., (S7)* = S} and N,y = N,. Recall
that C, = ST +N,, is a (zero-order) inner approximation [6] of the copositive cone: C,, C IC,,,
with C,, = IC,, if and only if n < 4, see [12]. Hence, we have

Ky CCp=(SY+N,)" =SENN,.
Consider the following positive semidefinite programming

V3N = min (AX)eY
XY

min
st Joe X =1,X €STNN,, (5.4)
JneY =1Y € ST NN,
which is a relaxation of (5.1). It is clear that v5} < vieb = pmin
Furthermore, we choose two finite sets {Py,..., Ps} and {Q1,...,Q:} from K, and ),
respectively, and consider two generated cones

s t
Dn{zaipi|ai€§)%+} and Dy, = ij@ﬂbje&m'

i=1 j=1

It is easy to see that C, € C, + D,, C K, and C,,, C Cp, + D,y C Ky, since Ky, Iy, are
convex and 0 € D,,,0 € D,,. Hence, problem

vs’ép = I)I(ll}r/l (AX)eY
st. J,eX =1,
X €St NN, ND;, (5.5)
JpeY =1,

Y e ST NN,,ND;,,



274 C. LING, X. ZHANG AND L. QI

can be used to improve bound vSY . That is, v3

min* Il’lln —

< vsd and vsd is a valid lower bound
for pmm From the structure of D,, and Dy, it follows that (5.5) can be rewritten as

= min (AX)eY
X,Y

st. J,eX =1,
PeX>0,Vi=1,...,s,
X €St NN,, (5.6)
JneY =1,
QieY >0,Vji=1,....t
Y € ST NN,

D
Usdp

which is a special type of conic optimization problem, but is also NP-hard itself.
Let C = (cri)i<ki<m € S™ with ¢ = 1<rmn {aijki}. Then, it is ready to see that

AX > C for any X satisfying J,, « X = 1 and X € N,,. We consider the following SDP
problem

vsﬂg = myin CeY
st. JnpeY =1,
QoY >0,Vj=1,....1t
Y € ST NNy,
which can be solved in polynomial time. It is clear that v;;g < vbdp Similarly, we have that
S)éf < vsdp, where vs)ég is the optimal value of the following problem

II}}D DeX

st. J,eX =1,
PeX >0, Vi=1,...,s,
X e ST NN,

and D = (dij)1<ij<n € S™ with d;; = 1<I]£Iil2 {aijr}. Therefore, it holds that

max {Usdp ’ sdp } < Usdp

Furthermore, from the fact that C' > pAJm, We know that C e Y > pY for any Y € N
satisfying J,, ¢ Y = 1, which implies that v}2 > p{ - Similarly, it holds that v)(iD > pY%.

Therefore, we have
YD

pA < min {Usdp » Usdp

On the other hand, we notice that relaxation problem (3.5) can be reformulated as the
following instance of a linear optimization problem over the cone K7, [3]:

v(Q)= min QeZ
st. JomeZ=1, (5.7)
Z ek,

Let us define
nm
or,. = {ZGNW | Zzi:r—FQ}, r=0,1,2,...,
i=1
where N™ denotes the set of nm-dimensional nonnegative integer vectors. Define

O, =¢ Y B.(22" —Diag(2)) | >0 forallz€©], o, 7=0,1,2,....
z€eOr

nm
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In [17], it was established that £, C--- C 97 C O¢ and K

nm — nm

=Noe o Or. We consider

Q)= min QeZ

st. JymeZ =1, (5.8)
Z e,
which can be solved in polynomial time, for each fixed » = 0,1,2,.... It is obvious that

1-(Q) < v(Q) < pi for any r = 0,1,..., as ¥(Q) < p4™ and [,(Q) is a lower bound on
v(Q) for every r =0,1,..., see [6,31,35] for details.

It is worth pointing out that, how to choose appropriate matrices P;(i = 1,...,s) and
Qj (j=1,...,t) in (5.5) is very important to obtain better lower bounds of (1.1). Further-
more, after the choice of P; and @);, how to obtain an approximation solution of (5.6) is also
very interesting. These remain as topics for further research.

@ Final Remarks

In this paper, some preliminary lower bounds for the optimal value of StMQP are pre-
sented. Furthermore, a relative approximation ratio and a bi-linear copositive optimization
reformulation for StBQP are also studied. Based on these, it is hopeful to design suitable
approximation algorithms for the problem (1.1) and study the related approximation ratio
properties. Indeed, it is well known that StQP has a PTAS [6]. For fixed degree polynomial
optimization over the simplex, De Klerk, Laurent and Parrilo [18] considered sequences of
hierarchical lower and upper bounds and showed a PTAS. More recently, by using the prop-
erties of Bernstein approximation on the simplex, a new proof of a PTAS for fixed-degree
polynomial optimization over the simplex was presented in [19]. These naturally raise the
question— whether the same holds for SSMQP. However, the appearance of Cartesian prod-
uct of several simplices results in that designing a PTAS for the considered problem becomes
a more complex task, which also differs from the problems considered in [6,18]. We will focus
on studying PTAS for StMQP in another paper.
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