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The problem is motivated by its application in wireless communication. Consider the
network with a single base station (BS) and M users. Let M = {1, · · · ,M} denote the set
of all users. Suppose there are two orthogonal time slots, and the objective is to properly
assign the users into these two time slots as well as to multicast the desired signal to each
time slot. Suppose the BS uses the linear transmit beams w1, w2 ∈ CN×1 to transmit
the signals in time slot 1 and 2, respectively. Let h̄i ∈ CN×1 denote the complex channel
coefficient between the BS and user i, and let ni denote the environmental noise power at
the receiver of user i. Suppose that hi and ni remain unchanged during the considered time
slots. Then the signal to noise ratio (SNR) at the receiver of each user i ∈ M in time slot
q can be expressed as

SNRi =
|wT

q h̄i|2

ni
, i ∈ M, q = {1, 2}. (1.2)

Let γi denote the SNR level prescribed by user i. Then the Quality of Service (QoS)
constraint for a user i that is served in slot q can be expressed as the constraint on its

received SNR level:
|wqh̄i|2

ni
≥ γi. For notational simplicity, let hi , h̄i√

niγi
to be user i’s

normalized channel. We are interested in assigning each user to either one of the available
time slots, as well as to perform multicasting within each time slot to the selected users.
Mathematically, it can be formulated as a special case of (1.1) with Hi = hih

T
i .

For solving nonconvex QCQP problems with continuous variables, there are many clas-
sical results on the quality bounds of SDP relaxation [1, 2, 7, 16, 18, 11, 26, 27, 14, 17].
However, most of them can only deal with the inequality constraints, which can not include
the discrete constraints as a special case.

For those QCQPs with only discrete constraints, there are also many existing results. In
the seminal work by [9], a special QCQP problem with discrete variables only, i.e., the max
cut problem, is investigated and the ratio of the optimal value of SDP relaxation over that
of the original problem is bounded below by 0.87856 . . .. Other related results can be found
in [25, 8].

Although SDP relaxation technique has been quite successful in solving continuous
QCQP or discrete QCQP, so far little is known about the effectiveness of applying it for
MBQCQP, except for two recent results [13, 24]. In those two papers, the authors study
MBQCQP models that differ substantially from that considered in this work. In [13], the
authors consider a quadratic maximization problem with a single cardinality constraint on
the binary variables. In [24], the authors consider an MBQCQP problem where the objective
is to find a minimum norm vector under some mixed binary concave quadratic constraints
and a single cardinality constraint on the binary variables. In the current work, we consider
a different problem where no cardinality constraint for the binary variables is involved. As
a result, the techniques and analysis developed in [13, 24] can not be applied directly. Ex-
cept for using SDP relaxation, some alternative approaches to MBQCQP have been recently
proposed in [4, 5, 20, 21, 3]. More detailed reviews of recent progress on related problems
can be found in the excellent surveys [6, 12, 15].

The paper is organized as follows. In Sections 2, we show that problem (1.1) is NP-
hard in general. We develop SDP relaxation for solving the MBQCQP problem (1.1) in
Section 3. Based on an optimal solution of the relaxed problem, an approximation solution
for the original problem is generated by a special randomization procedure. Moreover, we
analyze the quality of such approximation solutions by deriving bounds on the approximation
ratios between the optimal solution of the MBQCQP problem and its corresponding SDP
relaxation. In Section 4, some numerical results are shown. Some conclusions are listed in
the last section.
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Notations. For a symmetric matrix X, X ≻ 0 (X ≽ 0 ) signifies that X is positive
(semi)-definite. We use Tr [X] and X[i, j] to denote the trace and the (i, j)th element of a
matrix X, respectively. For a vector x, we use ∥x∥ to denote its Euclidean norm, and use
x[i] or xi to denote its ith element. Also, we use RN×M and CN×M to denote the set of real
and complex N × M matrices, and use SN and SN+ to denote the set of N × N hermitian
and hermitian positive semi-definite matrices, respectively. Finally, we use the superscript
H and T to denote the complex Hermitian transpose and transpose of a matrix or a vector
respectively.

2 NP-hardness

In this section, we show that the problem (1.1) is NP-hard in general. We only consider the
real case of F = R, since the complex case can be handled similarly as in [16, 27]. To this
end, we consider a reduction from the NP-complete equal partition problem: Given positive
integers a1, a2, · · · , an, decide whether there exists a subset I of {1, · · · , n} such that∑

i∈I

ai =
∑
i ̸∈I

ai. (2.1)

Note that, by a linear transformation if necessary, the problem

min
x,y∈FN

xHQx+ yHQy

s.t. |xi| ≥ 1, or |yi| ≥ 1, i = 1, · · · , n. (2.2)

is a special case of (1.1), where Q ≻ 0. In the following, we will prove that (2.2) is NP-hard
by showing that a subset I satisfying (2.1) exists if and only if the optimization problem
(2.2) has a minimum value of n. Let a = (a1, · · · , an)T and set Q = aaT + I where I is the
identity matrix. The optimal value of the problem (2.2) is n, if and only if there exists x
and y, which satisfy

aTx = 0, aTy = 0, xi ∈ {−1, 1, 0}, yi ∈ {−1, 1, 0}, |xi|+ |yi| = 1, i = 1, · · · , n.

By setting z = x + y, which is then binary, i.e., zi = 1 or −1, and aT z = 0. Let I = {i |
zi = 1}, and J be its complement set. The above suggests that we will have a partition of
a, such that ∑

i∈I
ai =

∑
i∈J

ai.

The proof is completed.

3 Algorithm and Approximation Bound Analysis

3.1 The Proposed Algorithm

Introducing a homogenizing constant ℓ, and transform {βi} to the domain {−1, 1}, and
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denote the corresponding new variables by {αi}, then the problem is equivalent to

min ∥w1∥2 + ∥w2∥2

s.t. wH
1 Hiw1 +

1

4
(αi − ℓ)2 ≥ 1 i = 1, · · · ,M

wH
2 Hiw2 +

1

4
(αi + ℓ)2 ≥ 1, i = 1, · · · ,M

αi ∈ {−1, 1}, i = 1, · · · ,M, ℓ ∈ {−1, 1}.

Let ei ∈ R(M+1)×1 denote the elementary vector with all zeros except its ith component,
which takes the value 1. Let e ∈ R(M+1)×1 denote the all 1 vector and denote

Ci,1 =
1

4
eie

T
i +

1

4
eM+1e

T
M+1 −

1

4
eie

T
M+1 −

1

4
eM+1e

T
i ,

Ai,1 =

 Ci,1 0 0
0 Hi 0
0 0 0

 ∈ C(M+1+2N)×(M+1+2N),

Ci,2 =
1

4
eM+ie

T
M+i +

1

4
eM+1e

T
M+1 +

1

4
eM+ie

T
M+1 +

1

4
eM+1e

T
M+i,

Ai,2 =

 Ci,2 0 0
0 0 0
0 0 Hi

 ∈ C(M+1+2N)×(M+1+2N).

Let x(1) = [αT , ℓ]T , x(2) = w1, x(3) = w2 and x = [x(1)T ,x(2)T ,x(3)T ]T . Using these
notations, the problem can be written compactly as

min
x

∥x(2)∥2 + ∥x(3)∥2

s.t. xHAi,1x ≥ 1, i = 1, · · · ,M (P)

xHAi,2x ≥ 1, i = 1, · · · ,M
(x[i])2 = 1, i = 1, · · · ,M + 1.

Let vP be the optimal value to this original problem. For a feasible solution x, let vP(x)
denote the objective value of problem (P). We consider an SDP relaxation of the problem
(P), expressed as follows

min
X

Tr[X(2)] + Tr[X(3)]

s.t. Tr[Ai,1X] ≥ 1, i = 1, · · · ,M (SDP)

Tr[Ai,2X] ≥ 1, i = 1, · · · ,M
diag(X(1)) = e

X ∈ S(M+1+2N)×(M+1+2N)
+ .

In the above formulation, X(1) ∈ C(M+1)×(M+1), X(2),X(3) ∈ CN×N are the diagonal blocks
of the matrix X. Let X∗ denote the optimal solution to this SDP problem, and let vSDP(X∗)
denote its optimal solution. Because the off diagonal blocks of X does not appear in either
the objective or the constraints of (SDP), without loss of generality, we can consider X∗ as
a block diagonal matrix of the following form

X∗ =

 X∗(1) 0 0
0 X∗(2) 0
0 0 X∗(3)

 . (3.1)
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Moreover, it can be easily concluded that X∗(1) is a real symmetric positive semi-definite
matrix.

Once we obtain the solution X∗, we need to convert it into a feasible solution for the
problem (P). The randomization procedure listed in Table 1 is proposed for such purpose.

In essence, this procedure consists of two parts. The first part includes Steps S1 and
S2 in Table 1, in which we generate three random vectors ξ(1), ξ(2), ξ(3) from the normal
distributions, and obtain the binary variable x(1) fromX(1)∗ by using the simple sgn function
to do the rounding for ξ(1). The second part includes Steps S3 in Table 1, where we
use similar scaling to the two continuous variables ξ(2) and ξ(3), to get x(2) and x(3). In
summary, by using the randomization procedure in Table 1, we obtain a feasible solution
x = [x(1)T ,x(2)T ,x(3)T ]T to the problem (P).

Table 1: The Randomization Procedure

S0: Solve the SDP relaxation problem (SDP) to get (X(1)∗,X(2)∗,X(3)∗);

S1: Generate independent random vectors ξ(1) ∈ Rn, ξ(2) ∈ Fn, ξ(3) ∈ Fn from
the normal distribution N (0,X(1)∗), NF(0,X

(2)∗), NF(0,X
(3)∗) respectively;

S2: Let x(1) = sgn(ξ(1)) with sgn(x) = 1 when x ≥ 0 and sgn(x) = −1 otherwise.

S3: Let x(2) = tξ(2), x(3) = pξ(3) with

t =

√
maxi=1,···M

{
1−(x(1))

T
Ci,1x(1)(

ξ(2)
)H

Hiξ
(2)

}
;

p =

√
maxi=1,···M

{
1−(x(1))

T
Ci,2x(1)(

ξ(3)
)H

Hiξ
(3)

}
;

S4: Let x = [x(1)T ,x(2)T ,x(3)T ]T ;

3.2 Analysis of the Approximation Ratio

Note that after a single execution of the algorithm, a feasible solution x for problem (P) is

obtained and vP(x) = (t)2∥ξ(2)∥2 + (p)2∥ξ(3)∥2. In the following, we aim to evaluate the
quality of such solution. In particular, we would like to find a constant µ ≥ 1 such that

vP(x) ≤ µvSDP(X∗).

By using the fact that such generated solution is feasible for problem (P), we have vP ≤
vP(x), which further implies that the same µ is an upper bound of the SDP relaxation
performance, i.e.,

vP ≤ µvSDP(X∗). (3.2)

The constant µ will be referred to as the approximation ratio. Before we give the key
theorem, we need the following two lemmas.

Lemma 3.1. Let ri = min{Rank(Hi),Rank(X
∗(2))} and γ be any given positive scalar,

after a single execution of the randomization procedure listed in Table 1, we have

P (t2 ≤ γ) ≥ 1−
M∑
i=1

(1− Pi(γ,∆)), (3.3)
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where ∆ is an arbitrary constant satisfying that 0 < ∆ < 1 and Pi(γ,∆) := min{Pi,1, P2, Pi,3}
and if F = R

Pi,1 = 1−max

{√
2

γ
,
2(ri − 1)

π − 2
· 2
γ

}
,

P2 =
1

2
− 1

π
arcsin(−1 + ∆)

Pi,3 =
1

2

[(
1−max

{√
2

γ∆
,
2(ri − 1)

π − 2
· 2

γ∆

})
+ 1

]
,

otherwise if F = C,

Pi,1 = 1−max

{
4

3
· 2
γ
, 16(ri − 1)2 · 4

γ2

}
,

P2 =
1

2
− 1

π
arcsin(−1 + ∆),

Pi,3 =
1

2

[(
1−max

{
4

3
· 2

γ∆
, 16(ri − 1)2 · 4

γ2∆2

})
+ 1

]
.

Proof. Define ti =

√
1−(x(1))

T
Ci,1x(1)(

ξ(2)
)H

Hiξ
(2)

. We have the following probabilistic estimate

P (t2 ≤ γ) = 1− P (t2 ≥ γ) = 1− P (t2i ≥ γ, ∃ i = 1, · · · ,M)

≥ 1−
M∑
i=1

P (t2i ≥ γ) = 1−
M∑
i=1

(1− P (t2i ≤ γ)). (3.4)

Furthermore, we have the following estimates for P (t2i ≤ γ). Firstly, by the formula of total
probability, we have

P (t2i ≤ γ)

=P
(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = −1

)
P
(
x(1)[i]x(1)[M + 1] = −1

)
+ P

(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
P
(
x(1)[i]x(1)[M + 1] = 1

)
. (3.5)

Note that if x(1)[i]x(1)[M+1] = −1, then
(
x(1)

)T
Ci,1x

(1) = 1 and thus ti = 0. Consequently,
we have

P
(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = −1

)
= 1. (3.6)

Since X∗ is semidefinite and X∗[i, i] = 1, i = 1, · · · ,M + 1, we have −1 ≤ X(1)∗[i,M +

1] ≤ 1. Moreover, if ξ(1) ∼ N (0,X(1)∗) and x(1) = sgn(ξ(1)), a well known result is that
E(x(1)[i]x(1)[M + 1]) = 2

π arcsin(X(1)∗[i,M + 1]) (see [9, Lemma 1.2]), and thus

P

(
x(1)[i]x(1)[M + 1] = −1

)
=

1

2
− 1

π
arcsin(X(1)∗[i,M + 1]), (3.7)

P

(
x(1)[i]x(1)[M + 1] = 1

)
=

1

2
+

1

π
arcsin(X(1)∗[i,M + 1]). (3.8)
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By plugging in (3.6), (3.7) and (3.8) into (3.5), we have that

P(t2i ≤ γ) =

(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
+

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
. (3.9)

In the sequel, given a constant ∆ with 0 < ∆ < 1, we analyze the right hand side probability
in (3.9) in the following three cases.

Case (I): 0 ≤ X(1)∗[i,M +1] ≤ 1. By the fact that any probability is less than or equal
to 1, we obtain that

P(t2i ≤ γ) ≥
(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
+

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
=P

(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
. (3.10)

Since Tr[AiX
∗] ≥ 1, we have 1

2−
1
2X

(1)∗[i,M+1]+Tr[HiX
∗(2)] ≥ 1, and thus Tr[HiX

∗(2)] ≥
1
2 + 1

2X
(1)∗[i,M + 1] ≥ 1

2 in this case. Moreover, from the definition of ti and by simple
computation, we have that

P
(
t2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
=P

(
γ(ξ(2))HHiξ

(2) ≥ 1
∣∣∣ x(1)[i]x(1)[M + 1] = 1

)
=P

(
γ(ξ(2))HHiξ

(2) ≥ 1
)

(3.11)

≥P
(
γ(ξ(2))HHiξ

(2) ≥ 2Tr[HiX
∗(2)]

)
≥Pi,1, (3.12)

where the second equality is due to the independence of ξ(1) and ξ(2), and the last inequality
is from [16, Lemma 1 and 3] and Pi,1 is defined in the lemma.

Case (II): −1 ≤ X(1)∗[i,M + 1] ≤ −1 + ∆. From (3.9) and the nonegativity of the
probability, we have

P(t2i ≤ γ) ≥1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

≥1

2
− 1

π
arcsin(−1 + ∆) = P2, (3.13)

where we have used the monotonicity of the function arcsin(·).
Case (III): −1 + ∆ ≤ X(1)∗[i,M + 1] ≤ 0. Since Tr[AiX

∗] ≥ 1, in this case, we have
1
2 −

1
2X

(1)∗[i,M +1]+Tr[HiX
∗(2)] ≥ 1, thus Tr[HiX

∗(2)] ≥ 1
2 +

1
2X

(1)∗[i,M +1] ≥ ∆
2 . From

(3.9) and (3.11), we have

P

(
t2i ≤ γ

)
=P

(
γ(ξ(2))HHiξ

(2) ≥ 1

)
·
(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
+

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
. (3.14)
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Due to the fact that −1 + ∆ ≤ X(1)∗[i,M + 1] ≤ 0, Tr[HiX
∗(2)] ≥ ∆

2 , and from (3.14), we
have

P

(
t2i ≤ γ

)
≥P

(
γ(ξ(2))HHiξ

(2) ≥ 2

∆
Tr[HiX

∗(2)]

)
·
(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
+

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
=
1

2

[
P

(
γ(ξ(2))HHiξ

(2) ≥ 2

∆
Tr[HiX

∗(2)]

)
+ 1

]
− 1

π
arcsin(X(1)∗[i,M + 1])

[
1− P

(
γ(ξ(2))HHiξ

(2) ≥ 2

∆
Tr[HiX

∗(2)]

)]
≥1

2

[
P

(
γ(ξ(2))HHiξ

(2) ≥ 2

∆
Tr[HiX

∗(2)]

)
+ 1

]
≥Pi,3, (3.15)

where the second last inequality uses the fact that arcsin(x) ≤ 0 when x ≤ 0, and the last
inequality is from [16, Lemma 1 and 3].

Combining (3.12), (3.13) and (3.15), we have proved that for each i = 1, · · · ,M ,

P

(
t2i ≤ γ

)
≥ Pi(γ,∆) = min

{
Pi,1, P2, Pi,3

}
. (3.16)

The proof is completed by plugging in the above result into (3.4).

Lemma 3.2. Let r̄i = min{Rank(Hi),Rank(X
∗(3))} and γ be any given positive scalar,

after a single execution of the randomization procedure listed in Table 1, we have

P (p2 ≤ γ) ≥ 1−
M∑
i=1

(1− P̄i(γ,∆)), (3.17)

where ∆ is an arbitrary constant satisfying that 0 < ∆ < 1 and P̄i(γ,∆) (i = 1, · · · ,M) are
defined the same as Pi(γ,∆) in Lemma 3.1 except that all ri are replaced by r̄i.

Proof. Define pi =

√
1−(x(1))

T
Ci,2x(1)(

ξ(3)
)H

Hiξ
(3)

. Similar to the proof of (3.4), we have the following

probabilistic estimate

P (p2 ≤ γ) ≥ 1−
M∑
i=1

(1− P (p2i ≤ γ)). (3.18)

Next, we bound P (p2i ≤ γ) as follows. By the formula of total probability, we first have that

P (t2i ≤ γ)

=P
(
p2i ≤ γ | x(1)[i]x(1)[M + 1] = −1

)
P
(
x(1)[i]x(1)[M + 1] = −1

)
+ P

(
p2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
P
(
x(1)[i]x(1)[M + 1] = 1

)
. (3.19)
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Note that if x(1)[i]x(1)[M + 1] = 1, then
(
x(1)

)T
Ci,2x

(1) = 1 and thus pi = 0,

P
(
p2i ≤ γ | x(1)[i]x(1)[M + 1] = 1

)
= 1.

Consequently, by (3.7) and (3.8), we have

P(p2i ≤ γ) =

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
p2i ≤ γ | x(1)[i]x(1)[M + 1] = −1

)
+

(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
. (3.20)

By the definition of pi, we have that

P
(
p2i ≤ γ | x(1)[i]x(1)[M + 1] = −1

)
= P

(
γ(ξ(3))HHiξ

(3) ≥ 1
)
. (3.21)

Combining (3.20) with (3.21), we have

P(p2i ≤ γ) =

(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
γ(ξ(3))HHiξ

(3) ≥ 1
)

+

(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
. (3.22)

Moreover, by Tr[Ai,2X
∗] ≥ 1, we have that

Tr[HiX
∗(3)] ≥ 1− 1

2
− 1

2
X(1)[i,M + 1]. (3.23)

Fix a ∆ ∈ (0, 1). Let us bound the probability in (3.22) in the following three cases.
Case (I): Suppose X∗(1)[i,M + 1] ≤ 0. From (3.23), we have that Tr[HiX

∗(3)] ≥ 1
2 .

Consequently, we obtain from (3.22) that

P (p2i ≤ γ) ≥ P
(
γ(ξ(3))HHiξ

(3) ≥ 1
)

≥ P
(
γ(ξ(3))HHiξ

(3) ≥ 2Tr[HiX
∗(3)]

)
≥ P̄i,1, (3.24)

where the last inequality is from[16, Lemma 1 and 3] and P̄i,1 is defined the same with Pi,1

in Lemma 3.1 except that ri is replaced by r̄i.
Case (II): Suppose 1−∆ ≤ X∗(1)[i,M + 1] ≤ 1. By (3.22), it can be easily concluded

that

P(p2i ≤ γ) ≥ 1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

≥ 1

2
+

1

π
arcsin(1−∆)

=
1

2
− 1

π
arcsin(∆− 1) = P2, (3.25)

where the second inequality is due to the monotonicity of the function arcsin(·), and P2 is
defined the same as in Lemma 3.1.

Case (III): Suppose 0 ≤ X∗(1)[i,M + 1] ≤ 1−∆. In this case, (3.23) implies that

Tr[HiX
∗(3)] ≥ ∆

2
.
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Utilizing this inequality and by (3.22), we have

P(p2i ≤ γ) ≥
(
1

2
− 1

π
arcsin(X(1)∗[i,M + 1])

)
· P

(
γ(ξ(3))HHiξ

(3) ≥ 2

∆
Tr[HiX

∗(3)]

)
+

(
1

2
+

1

π
arcsin(X(1)∗[i,M + 1])

)
=
1

2

(
1 + P

(
γ(ξ(3))HHiξ

(3) ≥ 2

∆
Tr[HiX

∗(3)]

))
+

1

π
arcsin(X∗(3)[i,M + 1])

×
(
1− P

(
γ(ξ(3))HHiξ

(3) ≥ 2

∆
Tr[HiX

∗(3)]

))
≥1

2

(
1 + P

(
γ(ξ(3))HHiξ

(3) ≥ 2

∆
Tr[HiX

∗(3)]

))
≥ P̄i,3, (3.26)

where the second to the last inequality is due to the fact that arcsin(X(1)∗[i,M + 1]) ≥ 0
when X∗(1)[i,M +1] ≥ 0, and the last inequality is from[16, Lemma 1 and 3] and P̄i,3 is the
same with Pi,3 in Lemma 3.1 except that ri is replaced by r̄i.

Combining (3.24), (3.25) and (3.26), we have proved that for each i = 1, · · · ,M ,

P

(
p2i ≤ γ

)
≥ P̄i(γ,∆) = min

{
P̄i,1, P2, P̄i,3

}
. (3.27)

The proof is completed by plugging in the above result into (3.18).

Theorem 3.3. There exists a constant µ > 0 such that

P
(
vP ≤ µvSDP(X∗)

)
≥ 1

12
, (3.28)

where µ = 18M2

sin2 π
6M

when F = R, and µ = 32M
sin2 π

6M
when F = C.

Proof. Note that we have the following series of inequalities

P
(
vP ≤ µvSDP(X∗)

)
=P

(
∥x(2)∥2 + ∥x(3)∥2 ≤ µ(Tr[X∗(2)] + Tr[X∗(3)])

)
≥P

(
∥x(2)∥2 ≤ µTr[X∗(2)], ∥x(3)∥2 ≤ µTr[X∗(3)]

)
≥P

(
t2 ≤ γ, p2 ≤ γ, ∥ξ(2)∥2 ≤ µ

γ
Tr[X∗(2)], ∥ξ(3)∥2 ≤ µ

γ
Tr[X∗(3)]

)
≥1− P

(
t2 ≤ γ

)
− P

(
p2 ≤ γ

)
− P

(
∥ξ(2)∥2 ≥ µ

γ
Tr[X∗(2)]

)
− P

(
∥ξ(3)∥2 ≥ µ

γ
Tr[X∗(3)]

)
≥1− P

(
t2 ≤ γ

)
− P

(
p2 ≤ γ

)
− 2γ

µ
, (3.29)

where the last inequality is due to Markov’s inequality. By Lemma 3.1 and Lemma 3.2, we
obtain from (3.29) that

P
(
vP ≤ µvSDP(X∗)

)
≥ 1−

M∑
i=1

(1− Pi(γ,∆))−
M∑
i=1

(
1− P̄i(γ,∆)

)
− 2γ

µ
. (3.30)
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By applying a suitable rank reduction procedure if necessary, we can assume that the rank
r∗1 (r∗2) of optimal SDP solution X(2)∗ (X(3)∗) satisfies r∗i (r

∗
i + 1)/2 ≤ M (i = 1, 2); cf.,

[19, 23]. Thus, ri in Lemma 3.1 and r̄i in Lemma 3.2 satisfy that ri, r̄i <
√
2M . Let

P0(γ,∆) = min

{
P̂1, P2, P̂3

}
with P̂1 and P̂3 being defined the same with Pi,1 and Pi,3 in Lemma 3.1 except ri replaced

by
√
2M . Thus, we have

Pi(γ,∆) ≥ P0(γ,∆), (3.31)

P̄i(γ,∆) ≥ P0(γ,∆). (3.32)

By (3.30), (3.31) and (3.32), we can easily obtain that

P
(
vP ≤ µvSDP(X∗)

)
≥ 1− 2M (1− P0(γ,∆))− 2γ

µ
. (3.33)

The Real Case. When F = R, let ∆ = 2 sin2 π
6M , γ = 9M2

2∆ and

µ = 8γ =
18M2

sin2 π
6M

. (3.34)

It can be easily checked that P̂1 = 1− 2
√
∆

3M , P2 = P̂3 = 1− 1
3M in this case. When M ≥ 2,

we have ∆ < 1
4 , thus for each i, we can have that

P0(γ,∆) = 1− 1

3M
.

By plugging in these results into (3.33), and set σ = 1
12 , we obtain that

P
(
vP ≤ µvSDP(X∗)

)
≥ 1− 2

3
− 1

4
=

1

12
. (3.35)

The Complex Case. When F = C, let ∆ = 2 sin2 π
6M , γ = 4M

∆ and

µ = 8γ =
32M

sin2 π
6M

. (3.36)

It can be easily checked that P̂1 = 1− 2∆
3M , P2 = P̂3 = 1− 1

3M in this case. Obviously, when
M ≥ 1, we have ∆ < 1

2 , thus for each i, we can have that

P0(γ,∆) = 1− 1

3M
.

By plugging these results into (3.33), and set σ = 1
12 , we obtain that

P
(
vP ≤ µvSDP(X∗)

)
≥ 1− 2

3
− 1

4
=

1

12
.

By combining both the real and the complex cases, the proof is completed.

Remark. In the proof of Theorem 3.3, there may exist some other possible choices of
∆ and γ. However, it seems that by changing ∆ and γ it is not possible to obtain better
ratio in terms of the order of M . Therefore, we do not choose to do further optimization
over the constants.

Through Theorem 3.3, we have proved the approximation ratio for the proposed algo-
rithm is upper bounded by a constant µ which is in the order of M4 (resp. M3) when F = R
( resp. F = C). The ratios are independent of problem dimension N in both cases.
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Table 2: Mean and standard deviation of the approximation ratio over 100 independent
realizations of real Gaussian i.i.d. hi (i = 1, · · · ,M), when F = R.

M N min mean max Std
µ

M = 5
N = 4 1.0000 1.0604 1.2884 0.0064

4.1185× 104N = 8 1.0000 1.1185 1.3729 0.0093
N = 12 1.0000 1.1258 1.3921 0.0103

M = 10
N = 4 1.0000 1.3161 1.9852 0.0406

6.5716× 105N = 8 1.0001 1.5676 2.2997 0.0567
N = 12 1.2036 1.6702 2.2181 0.0491

M = 15
N = 4 1.0774 1.6814 3.2398 0.1553

3.3252× 106N = 8 1.4986 2.3431 3.6177 0.2298
N = 12 1.6155 2.6286 4.4366 0.2865

4 Numerical Experiments

In this section we perform numerical study for the proposed algorithms. Throughout, we
test the proposed procedure listed in Table 1 for (P) with different choices of M and N . We
generate the data matrix Hi by using Hi = hih

H
i (i = 1, · · · ,M), with randomly generated

vectors hi. For each given Hi, we call the correspongding test problem a realization. The
SDP relaxation problems are all solved by CVX [10], and the optimal objective value for
the SDPs are denoted by vmin

SDP.

The sample of ξ(1) in Step S1 in Table 1 are repeated by T1 = 100 independent trials,
and for a given ξ(1), T2 = 100 independent couple samples of ξ(2) and ξ(3) are generated.
For a given realization, the best solution over these samples is recorded.

The solutions generated by kth trial are denoted by (x(1))k, (x(2))k and (x(3))k. Let

vmin
UBQP := min

k1=1,··· ,T1×T2

∥(x(2))k∥2 + ∥(x(3))k∥2.

It is clear that vmin
UBQP ≥ vP, as a result, vmin

UBQP/v
min
SDP is an upper bound of the true approx-

imation ratio (which is difficult to obtain in polynomial time).
Table 2 shows the minimum value (min), the average value (mean), the maximum value

(max) and the standard deviation (Std) of vmin
UBQP/v

min
SDP over 100 independent realizations

of i.i.d. real-valued hi, (i = 1, · · · ,M) from the standard normal distribution, for several
combinations of M and N . The last column in Table 2 shows the theoretic approximation
bound given in Theorem 3.3. Table 3 shows the corresponding results of vmin

UBQP/v
min
SDP for

F = C. We can see that the results in both tables are significantly better than what is
predicted by our worst-case analysis. In all test examples, the average values of vmin

UBQP/v
min
SDP

are lower than 2.7 (resp. lower than 2.1) when F = R (resp. when F = C). Moreover, the
minimum values of vmin

UBQP/v
min
SDP often equal to 1, which means that for these cases the

optimal solutions are obtained by our algorithm.
Figure 1 plots vmin

UBQP/v
min
SDP for 100 independent realizations of i.i.d. real valued Gaussian

hi (i = 1, · · · ,M) for M = 5 and N = 4. Figure 2 shows the corresponding histogram. Fig-
ure 3 and Figure 4 show the corresponding results for i.i.d complex-valued circular Gaussian
hi (i = 1, · · · ,M). The mean of the upper bound vmin

UBQP/v
min
SDP are lower in the complex

case.
Moreover, our numerical results also collaborate well with our theoretic analysis. First,

the upper bound of the approximation ratio is independent of the dimension ofw: the results
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Table 3: Mean and standard deviation of upper bound ratio over 100 independent realiza-
tions of real Gaussian i.i.d. hi (i = 1, · · · ,M), when F = C.

M N min mean max Std
µ

M = 5
N = 4 1.0000 1.0254 1.3166 0.0039

1.4644× 104N = 8 1.0000 1.0291 1.3153 0.0042
N = 12 1.0000 1.0310 1.3460 0.0060

M = 10
N = 4 1.0000 1.4371 1.9028 0.0365

1.1682× 105N = 8 1.0000 1.5951 1.9944 0.0484
N = 12 1.0001 1.6106 1.9939 0.0459

M = 15
N = 4 1.2597 1.7009 2.1490 0.0376

3.9410× 105N = 8 1.4668 2.0380 2.5418 0.0447
N = 12 1.6498 2.0657 2.5358 0.0377

Figure 1: Upper bound on vmin
QP /vmin

SDP for M = 5, N = 4, 100 realizations of real Gaussian
i.i.d. hi for i = 1, · · · ,M in the real case.

0 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

1.25

ratio

MC trial

vm
in

U
B

Q
P
/v

m
in

S
D

P

 

 
outcomes
mean

(maximum value) vary only slightly for different choices of N in both real and complex
cases, except the case that M = 15 and N = 4. Second, from Table 2 and Table 3, it can be
shown that for fixed N , the maximum value and the average value of vmin

UBQP/v
min
SDP over 100

independent trials grow as M increases in all test examples except the case that M = 5 and
N = 4 in Table 3. It corresponds to the result in Theorem 3.3. Moreover, the approximation
ratios reported in Table 2 and 3 are significantly better than the corresponding theoretic
bounds.

The above empirical analysis complements our theoretic worst-case analysis of the per-
formance of SDP relaxation for the special MBQCQP problem considered herein.



252 Z. XU AND M. HONG

Figure 2: Histogram of the outcomes in Figure 1.
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Figure 3: Upper bound on vmin
QP /vmin

SDP for M = 5, N = 4, 100 realizations of real Gaussian
i.i.d. hi for i = 1, · · · ,M in the complex case.
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5 Conclusion

This paper studies the quality bounds of SDP relaxations for a special QCQP problem with
mixed binary and continuous variables, for which the NP-hardness is also proved. Our
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Figure 4: Histogram of the outcomes in Figure 3.
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analysis is motivated by its important emerging applications in transmit beamforming for
joint physical layer multicasting and scheduling in wireless networks. Our theoretic analysis
provides the upper bound for the ratio between the SDP relaxation and the MBQCQP
problem, and for optimization variables defined over either real or complex field. Numerical
results show that our algorithm performs much better than the theoretic predicted result.
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