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Scheme (PTAS) exists unless P = NP) [16], and under similar restrictions which appear for
instance in some genome analysis applications, it is NP-complete [27].

In this paper we consider the more general case of a mixed-integer fractional QP (MIFQP),
and using a binary expansion of the integer variables, we describe how it can be reformulated
as a mixed-binary fractional problem, for which a specific novel copositive reformulation
is presented. The less studied case of fractional ternary problems is also specifically ad-
dressed. Real-world applications of fractional binary problems include: noise modelling for
constrained nearfield array optimization [1]; efficient computation of the Pareto boundary
in wireless communication channels [15]; and calculation of the quadratic coordination ratio
in game theory [18], to cite just a few. Possible applications of ternary fractional quadratic
problems in the context of graph tri-partitioning problems are related to clustering, voting
systems with abstention, and other social media challenges.

A copositive optimization problem (COP) amounts to linear optimization over the inter-
section of an affine matrix subspace with the matrix cone of co(mpletely )positive matrices.
For surveys on this nowadays highly popular conic optimization problem which pushes all
hardness into the conic membership constraint, one may consult [4, 12].

It is worth mentioning that the COP approach was first applied to the Standard Quadratic
Problem (StQP), which encodes, for instance, the Maximum-Clique-Problem. In contrast
to the classes mentioned above, the class of StQPs admits a PTAS [5]. On the other hand,
observe that by shifting {0, 1} to {−1, 1}, then considering homogeneous f and g, now with
−A the Laplace matrix of an undirected graph and B = In, the denominator is constant and
we arrive at a quadratic optimization formulation of the Maximum-Cut-Problem which also
is known as APX-hard [20].

The observations in this paper add to the rich evidence for high versatility of copositive
optimization approaches, and thereby offer novel approximation strategies combining con-
tinuous and discrete optimization techniques. This statement is reinforced if we consider
that,

- any polynomial of degree d ≥ 2 can be written as an affine-linear function of new
variables replacing the monomials, with additional quadratic constraints z = xy, see
e.g. [28] for an early explicit account;

- any binary constraint x ∈ {0, 1} can be replaced with the quadratic x(1− x) = 0;

so, in principle, any mixed-integer fractional polynomial optimization problem can be recast
as a fractional quadratic one, introducing additional variables and constraints. Although
any fractional polynomial optimization problem

min

{
f(x)

g(x)
: pi(x) = 0 , x ∈ Rn

}
,

where f, g, pi are polynomials of degree ≤ d, can be written as a (purely) polynomial opti-
mization problem in n+1 variables with degree ≤ d+1 and one more polynomial constraint
f(x) − tg(x) = 0, this generic approach may not be practical for all purposes as it ignores
somehow the specific structure of the problem at the outset. So to reformulate the problem
in the fractional form seems more adequate in some cases.

Let us note in passing that also the general copositive optimization problem is of course
a polynomial optimization problem; in fact, a very popular approach in approximation
hierarchies employs squared variables to get rid of positivity constraints, and can be traced
back to the seminal works of Lasserre [17] and Parrilo [21, 22]. A very recent development
involving copositive tensor reformulations of general polynomial optimization problems is
provided in the elucidating article [25].
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1.2 Notation and preliminaries

Given two integers L and U with L ≤ U , we denote by [L : U ] = {L, . . . , U} the integer
range between L and U , including them. Vectors are denoted by lowercase boldface letters
(e.g., o is the zero vector) and matrices by uppercase letters (e.g., O is the zero matrix, or
In the n × n identity matrix, the columns of which are denoted by e1, . . . , en). N denotes
the set of nonnegative integers, Rn denotes n-dimensional Euclidean space and Rn

+ the
positive orthant therein with e =

∑
i ei = [1, . . . , 1]⊤ ∈ Rn

+ where ⊤ denotes transposition
of a matrix or a vector. Given two (possibly rectangular) matrices A and B, we denote by
A ⊗ B their Kronecker or tensor product. Given a k × d matrix C, we denote by ker+C ={
x ∈ Rd

+ : Cx = o
}
. For instance, if C = [1, 1, 1]⊗ In, we easily see that

ker+C = {o} . (1.2)

Recall that a polyhedron of the form
{
x ∈ Rd

+ : Cx = c
}

is bounded if and only if condi-
tion (1.2) is satisfied, and we will assume this at places in the sequel. The Frobenius inner
product of two matrices A and B in

Md =
{
A is a d× d matrix : A⊤ = A

}
is represented by A • B = trace (AB).

The cone of copositive matrices is given by

Cd =
{
S ∈ Md : x⊤Sx ≥ 0 for all x ∈ Rd

+

}
.

So a symmetric matrix S is copositive if and only if S generates a quadratic form which
takes no negative value over Rd

+. Later on, we will need a generalization of this concept: a
matrix S ∈ Md is said to be ker+C-copositive, if

x⊤Sx ≥ 0 for all x ∈ ker+C ,

in other words, if x ∈ Rd
+ and Cx = o together imply x⊤Sx ≥ 0.

Given a general closed, pointed convex cone K ⊆ Md its dual cone is given by

K∗ = {S ∈ Md : S • Z ≥ 0 for all Z ∈ K}.

With respect to this duality, the dual cone of the copositive matrices is the cone of
completely positive matrices

C∗
d =

{
Y ∈ Md : Y = FF⊤, F is a d× k matrix with no negative entries

}
.

Both cones are intractable as testing membership is NP-hard [10,19], but as relaxations we
can resort to approximations of these.

Let Pd ⊂ Md be the cone of symmetric positive-semidefinite (psd) d × d matrices and
Nd ⊂ Md be the cone of nonnegative symmetric matrices. The matrix cone Dd = Pd ∩ Nd

is called the cone of doubly nonnegative matrices. Its dual cone is D∗
d = Pd+Nd, the cone of

nonnegative decomposable matrices. It is evident that D∗
d provides an approximation of the

copositive cone Cd in the sense of D∗
d ⊆ Cd. Since Pd and Nd are self-dual cones, we have

C∗
d ⊆ Dd = (Pd +Nd)

∗ = Pd ∩Nd ,

so the doubly nonnegative cone provides an outer approximation of the completely positive
cone.



228 P.A. AMARAL AND I.M. BOMZE

The following optimization problems form a pair of primal-dual conic optimization prob-
lems:

inf {A0 • X : Ai • X = bi , 1 ≤ i ≤ m, X ∈ K∗} (1.3)

and

sup

{
b⊤y : y ∈ Rm , A0 −

m∑
i=1

yiAi ∈ K

}
. (1.4)

Possible copositive relaxations are obtained for K = D∗
d = Pd + Nd and K∗ = Dd =

Pd ∩ Nd. It is clear that better approximations for C∗
d and Cd would lead to better re-

laxations, as for instance SDP- or LP-based approximation hierarchies (Kr
d)r∈N. However,

checking membership of Kr
d in any such hierarchy usually involves psd matrices of order

dr+1, rendering these approximations computationally intractable for large d and even mod-
erately sized r. This is why in general D∗

d and Dd are, by far, the most popular copositive
relaxations employed. In fact, most (but not all) hierarchies, start with K0

d = D∗
d; see,

e.g. [5, 11,23,24,29] or [6] for a concise survey.

2 Copositive Formulation of Linearly Constrained, Mixed-Integer
Fractional QPs

We now investigate the more general case of a mixed-integer fractional QP (MIFQP) in the
variables xi where the objective is of the same form as in (1.1) and subject to more general

linear constraints of the form Ĉx = ĉ with an m × n matrix Ĉ and ĉ ∈ Rm. To be more
precise, we now discuss the linearly constrained, mixed-integer optimization problem

τ∗MI := inf

{
f(x)

g(x)
: x ∈ Rn

+, Ĉx = ĉ , xi∈ [Li :Ui] for all i ∈ I

}
(2.1)

where Li ≤ Ui are integers for all i ∈ I and I collects the indices of all integer variables.
If I = ∅, we have a continuous fractional FQP which was treated by a copositive approach
in [2]. In this case the feasible set is bounded if and only if condition (1.2) holds, and if we
ensure that the denominator never vanishes on this set (to render the objective well defined),
τ∗ is attained and inf can be replaced by min.

In his influential paper [9], Burer introduced a copositive reformulation for mixed-binary
QPs (without fractional objective) which we can employ also here as follows (the extension
from the binary to the general integer case was kindly suggested by a referee): consider

the binary expansion of xi, i ∈ I by additional variables z
(j)
i ∈ {0, 1}, j∈ [0 :ℓi], where

ℓi = ⌊log2(Ui − Li)⌋,

namely xi = Li +

ℓi∑
j=0

z
(j)
i 2j , i ∈ I . (2.2)

Next we replace the vector x by v ∈ Rd with d = n+
∑
i∈I

ℓi coordinates equalling either xk,

all k∈ [1 :n] \ I, or z(j)i , all (i, j) ∈ B, where

B :=
∪
i∈I

{i} × [0 :ℓi] . (2.3)

Now, using (2.2), we rewrite all linear constraints Ĉx = ĉ into a new linear system Cv = c of
m equations in the v variables. From a numerical point of view, this may cause difficulties
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if Ui − Li is large, in which case a decomposition approach and/or spatial branching may
be used in a preprocessing phase.

Anyhow, we now may and do assume in the sequel for ease of exposition that all integer
variables are binary: vi ∈ {0, 1} for all i ∈ B, and therefore arrive at

τ∗bin := inf

{
f(v)

g(v)
: v ∈ Rd

+, Cv = c , vi ∈ {0, 1} for all i ∈ B

}
. (2.4)

Further, notice that we can homogenize a general quadratic constraint v⊤Qv + q⊤v + γ by
increasing the dimension of the problem by one, considering new variables w = [1, v⊤]⊤ and
the form

Q =

[
γ q⊤

q Q

]
∈ Md+1 (2.5)

as well as

Y = ww⊤ =

[
1 v⊤

v vv⊤

]
∈ C∗

d+1 . (2.6)

Indeed, we have
v⊤Qv + q⊤v + γ = Q • Y . (2.7)

Applying this to problem data (Q, q, γ) = (A, a, α) and (Q, q, γ) = (B, b, β) occurring in f
and g, we have f(v) = A • Y and g(v) = B • Y. Now observe that the constraint Cv = c is
equivalent to

Cc • Y = ∥Cv − c∥2 = 0 where Cc = [−c|C]⊤[−c|C] ∈ Pd+1 , (2.8)

since with Y as defined in (2.6) we have ∥Cv − c∥2 = Cc • Y. Recall that with the definition
of (2.6), the constraints Y0i = Yii ensure that vi = v2i for all i ∈ B, which in turn is equivalent
to vi ∈ {0, 1}, so that we arrive at

τ∗rk 1 := inf

{
A • Y
B • Y

: Cc • Y = 0, Y0i − Yii = 0 , all i ∈ B , Y ∈ C∗,rk 1
d+1

}
, (2.9)

where C∗,rk 1
d denotes the (non-convex, not closed) subcone of all completely positive d × d

matrices Y of rank one.
In [9] an assumption regarding the linear portion of the problem is made, and it is

often referred in the literature by Burer’s key condition; see also the additional discussions
in [7, 25]. It requires for a given problem with binary variables vi with i ∈ B, that the
linear constraints imply vi ∈ [0, 1] for i ∈ B. This condition can be assumed without loss
of generality, since the introduction of constraints vi + si = 1 and slack variables si ≥ 0 for
i ∈ B suffices. For our problem this assumption is the following:
Burer’s key condition [9, (1)]:

Cv = c and v ≥ o implies vi ∈ [0, 1] for all i ∈ B. (2.10)

We now discuss conditions which guarantee that the objective functions in (2.1) and (2.4)
are well behaved in the sense that the denominator does not vanish over the set

F :=
{
v ∈ Rd

+ : Cv = c , vi ∈ [0, 1] for all i ∈ B
}

which is the natural continuous relaxation of the feasible set in (2.4). For simplicity, we only
consider the case g(v) > 0 for all v ∈ F . To this end, we pose the assumption that B be
strictly (ker+Cc)-copositive:

w⊤Bw > 0 if Ccw = o and w ∈ Rd+1
+ \ {o} . (2.11)
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Proposition 2.1. Suppose that (1.2), i.e., ker+C = {o}, and the key condition (2.10) hold.
Then the condition (2.11) holds if and only if g(v) > 0 for all v ∈ F .

Proof. First note that Cc is psd. Hence Ccw = o if and only if w⊤Ccw = 0. Next, for any
v ∈ F , put w = [1, v⊤]⊤ ∈ Rd+1

+ . Then w⊤Ccw = ∥Cv − c∥2 = 0 as well as w⊤Bw = g(v).
So (2.11) implies g(v) > 0 for all v ∈ F . To establish the reverse implication, assume that
w = [η, v⊤]⊤ ∈ Rd+1

+ \ {o} satisfies Cv − ηc = Ccw = o. If η = 0, then this implied Cv = o,

yielding the absurd v = o. Hence η > 0, and dividing by it, we get Ccw = o for

w =
1

η
w = [1, v⊤]⊤ ,

with v ∈ Rd
+ satisfying Cv = c and vi ∈ [0, 1] for all i ∈ B by (2.10), so v ∈ F . Hence we

arrive at

w⊤Bw = η2w⊤Bw = η2g(v) > 0 ,

as required.

Remark 1. As one referee kindly pointed out, condition (2.11) can be ignored in the
purely binary case B = [1 : d] if we have g(v) > 0 (or if g does not change sign) on

{0, 1}d. Indeed, then for M large enough, the function g̃(v) = g(v) +M
∑d

i=1(v
2
i − vi) > 0

even for all v ∈ Rd (recall that o ∈ {0, 1}d) and g̃(v) = g(v) for all v ∈ {0, 1}d. So, by
Proposition 2.1, condition (2.11) holds if g is replaced with g̃, and even without needing the
other conditions (1.2) and (2.10).

The next lemma specifies sufficient conditions which guarantee that the matrices Y
in (2.9) must have a strictly positive entry Y00 > 0 in the upper left corner, that the denom-
inator in above objective is indeed strictly positive, even relaxing the condition rank Y = 1
to Y ̸= O which will be important later on.

Lemma 2.2. Consider any Y ∈ C∗
d+1 \ {O} such that Cc • Y = 0. Under condition (1.2),

we have Y00 > 0. Furthermore, conditions (1.2) and (2.11) ensure that B • Y > 0.

Proof. First we treat the case Y ∈ C∗,rk 1
d+1 . Let z⊤ = [η,w⊤] ∈ Rd+1

+ \ {o} be such that

Y = zz⊤. Again, Cc is psd, so that Cc • Y = 0 is equivalent to Ccz = o which can be written
as Cw − ηc = o. Now assume that η = 0; then we would arrive at Cw = o and w ∈ Rd

+,
which, by assumption (1.2), would entail w = o or z = o which is absurd by assumption
rank Y = 1. Hence η > 0 and also Y00 = η2 > 0, as asserted. Now define v := 1

ηw ∈ Rd
+. We

see Cv− c = 1
η (Cw− ηc) = o. Further, the constraints Y0i = Yii boil down to vi = v2i for all

i ∈ B, so that v is (2.1)-feasible, and B •Y = η2[1, v⊤]B[1, v⊤]⊤ = η2g(v) > 0. Now consider
a completely positive matrix Y ̸= O of arbitrary rank and its cp decomposition Y =

∑
j Y

(j)

where Y(j) = zjz
⊤
j with zj ∈ Rd+1

+ \ {o} for all j. Since Cc is psd, we know Cc • Y(j) = 0, so

preceding arguments lead to Y
(j)
00 > 0 and likewise to B • Y(j) > 0 for all j. The result then

follows by linearity.

The next step is to relax the rank-one constraint so that we obtain the fractional copos-
itive optimization problem

τ∗cop := min

{
A • Y
B • Y

: Cc • Y = 0, Y0i − Yii = 0 , all i ∈ B , Y ∈ C∗
d+1 \ {O}

}
. (2.12)
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Now observe that (2.12) only involves homogeneous linear constraints so that we can imitate
the approach in [2]: indeed, it is straightforward to see that we can reformulate (2.12) into
a linear copositive optimization problem

τ∗cop = min
Y∈C∗

d+1

{
A • Y : B • Y = 1 , C • Y = 0, Y0i − Yii = 0 , all i ∈ B

}
, (2.13)

which may be more familiar, also because now the feasible set is the intersection of a linear
subspace with a closed convex cone. The conic dual program to (2.13) reads

τ∗dual = sup
{
λ : A− λB+M(µ, d) ∈ Cd+1 , λ, µ ∈ R , d ∈ RB

}
(2.14)

where M : R × RB → Md+1 is a linear map corresponding to the dualization of all linear
constraints:

M(µ, d) := µCc +
∑
i∈B

di(eie
⊤
0 + e0e

⊤
i − eie

⊤
i ) . (2.15)

Theorem 2.3. Without any assumptions (except that the objective in (2.4) is well defined
because g(v) > 0 holds on the feasible set), we have

τ∗dual ≤ τ∗cop ≤ τ∗bin (2.16)

and so we also obtain copositivity-based bounds on the optimal value τ∗ of any MIFQP (2.1):
for any (λ, µ, d) ∈ Rb+2 such that A− λB+M(µ, d) is copositive, we have µ ≤ τ∗.

Proof. The leftmost inequality is simply weak conic duality. The rightmost one is an almost
immediate observation. Indeed, if v is any feasible solution with g(v) > 0 to the problem (2.4)
which can be written in homogeneous form as explained above, then with w⊤ = [1, v⊤]

evidently Y = 1
g(v) ww

⊤ is feasible to problem (2.13), and f(v)
g(v) = A • Y.

The copositive relaxation is in general tighter than other popular relaxations like the
Lagrangian (SDP) relaxation, and even at the lowest approximation level (K0

d = D∗
d), a

tightening is still possible; for details the reader is referred to [8].
Note that Cc is psd (but singular) so that Cc • Y = 0 cannot be satisfied for any Y

interior to Cd+1. Hence Slater’s condition is always violated for (2.13) by construction, and
dual attainability is an open issue, while primal attainability holds under conditions (2.11)
and (1.2), as will be explained below. This is the reason why we did not use the infimum in
above formulation.

A very natural question is the following: when do the inequalities in (2.16) become
equalities ? We answer this in two separate parts: first we deal with conic duality, and then
with the question when the copositive relaxation is indeed a reformulation.

Theorem 2.4. Suppose that (2.11) holds. Then the duality gap is zero:

τ∗dual = τ∗cop ,

and primal attainability holds for problem (2.13).

Proof. Problem (2.14) is strictly feasible as its feasible set contains that of the dual copositive
problem for the basic FQP without binarity constraints [2, Thm.2], corresponding to the
case M(0, o) = O in (2.15). The result follows from general principles in convex optimization
as Slater’s condition for (2.14) is satisfied.



232 P.A. AMARAL AND I.M. BOMZE

Finally, we establish equivalence of both problems, (2.13) and (2.1). We already es-
tablished one inequality (2.16). The proof of the reverse inequality is more difficult, and
combines Burer’s technique [9] with the arguments in the proofs of [2, Lem.2, Thm.1].

Theorem 2.5. Suppose that (1.2), (2.10) and (2.11) hold. Then the copositive relaxation
is in fact a reformulation of (2.4) or (2.1):

τ∗dual = τ∗cop = τ∗bin = τ∗ ,

and there is an optimal solution Y∗ ∈ C∗,rk 1
d+1 to problem (2.13), which encodes an optimal

solution v∗ to problem (2.4) as follows: if Y∗ = [η,w⊤]
⊤
[η,w⊤], then (η > 0 and) v∗ = 1

ηw.

So we have primal attainability for both problems (2.13) and (2.4).

Proof. Let Y be an optimal solution to problem (2.13), which exists due to Theorem 2.4.
We decompose Y =

∑
j zjz

⊤
j with zj ∈ Rd+1

+ \ {o} for all j and observe that Cc • Y = 0

implies Cczj = o, since Cc is psd. So, by assumption (2.11), we know λj := z⊤j Bzj > 0, and

define wj := 1√
z⊤j Bzj

zj ∈ Rd+1
+ \ {o}. By construction, we have w⊤

j Bwj = 1 and Ccwj = o.

As in Lemma 2.2 we know ηj > 0, and can define w⊤
j := 1

ηj
w⊤
j = [1, v⊤j ], so that vj ∈ Rd

+

solves Cvj = c. Hence, by (2.10), we have

(e⊤i vj) ∈ [0, 1] for all i ∈ B , all j. (2.17)

But the condition Y 0i − Y ii = 0 for i ∈ B implies∑
j

η2j (e
⊤
i vj)[1− (e⊤i vj)] = 0 for all i ∈ B ,

and since every term in above sum is non-negative by (2.17), every term must be zero which
means that e⊤i vj ∈ {0, 1} for all j and all i ∈ B. Hence all vj are (2.4)-feasible. Moreover,
introducing Y(j) = wjw

⊤
j , we have

f(vj)

g(vj)
=

A • (wjw
⊤
j )

B • (wjw⊤
j )

=
A • (wjw

⊤
j )

B • (wjw
⊤
j )

= A • Y(j) .

Further we see Y =
∑

j λjwjwj
⊤ =

∑
j λjY

(j) where
∑

j λj = B•Y = 1. Finally, we observe

that all Y(j) are also feasible to problem (2.13). Indeed, homogeneity of the only constraints

ignored up to now, namely Y
(j)
0i = Y

(j)
ii , means that it is sufficient to check this on the

matrix wjw
⊤
j which also satisfies it because e⊤i vj ∈ {0, 1} holds for all i ∈ B and all j. Basic

convexity arguments and optimality of Y now yield
f(vj)
g(vj)

= A • Y(j) = A • Y, and all vj are

optimal solutions to (2.4); Y∗ can be chosen as one of the Y(j).

3 Ternary Fractional Quadratic Problems

Consider again an undirected graph, the adjacency matrix A describing a very elementary
discrete similarity measure among the vertices (aij = 1 if there is an edge {i, j} and aij = 0
else), and suppose we are interested in partitioning the vertex set into three classes – two
“decided” (yes/no for individual i or xi ∈ {−1, 1}), but allowing for “undecidedness” or an
outside option (xi = 0). We exclude the case where all are undecided, i.e., require x ̸= o.
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If the fraction of undecided individuals is small, we may treat these as outliers and rely
on the usual clustering methods, for instance by dominant set clustering using A, as done
in Pattern Recognition, see, e.g. [26]. But, for instance, in mature democracies or other
situations, the amount of undecided agents can be considerably large. Then it makes sense
to search for the highest density of all decided individuals rather than considering their total
absolute connectivity.

In other words, considering an edge within the cluster as good (good intraclass coherence)
and those between clusters as bad (good separation between clusters) while ignoring relations
to and among the undecided, we may consider maximizing the quadratic form x⊤Ax of a
ternary vector x ∈ Tn (with T = {−1, 0, 1}) and A is again the adjacency matrix of the
underlying graph. Indeed, this form gives a positive contribution aijxixj = 1 if xixj = 1 but
a negative one aijxixj = −1 if xixj = −1 along an edge {i, j}. This way, we may even think,
more generally, of non-uniform edge weights aij ≥ 0 modeling relation/similarity strength
(zero if {i, j} is no edge in the graph). To get a density measure within the “decided”
classes, the denominator may simply count all “decided” individuals, which means putting
B = In , or a weighted count (B = Diag d with di > 0 according to the “importance” of
individual i) and again considering homogenous f(x) = −x⊤Ax and g(x) = x⊤Bx. Observe
that ”(un)decided” is just an analogy, and this individual property (whether xi = −1 or
zero or one) is merely determined by the data (A,B), as always in a clustering method. In
a voting context, it may be used as a projection/forecast if previous information can be
distilled into (A,B). This way, we end up in a ternary (purely integer) fractional quadratic
problem (TFQP) of the form

τ∗T� := min

{
f(x)

g(x)
: x ∈ Tn \ {o}

}
with T = {−1, 0, 1} . (3.1)

Similar graph tri-partitioning problems occur, e.g., in PageRank for Folksonomy in social
media/Web2.0 [14]. Despite of the applicability hinted at above, among many more possible,
these problems are less studied than their binary counterpart.

Of course, we could treat them as special cases of mixed-integer FQP, but this would most
likely incur loss of efficiency. Instead, we will now directly show that every such problem
can be written as a mixed-binary fractional QP under some simple linear constraints. In
particular, we will show how to treat the constraint x ̸= o which is ignored in [3] where an
n1/3-approximation algorithm for (3.1) is suggested.

If the objective functions f and g are inhomogenous as in the general case, we need not
exclude x = o a priori, and end up with a general form of TFQP:

τ∗T := min

{
f(x)

g(x)
: x ∈ Tn

}
. (3.2)

Both problems can be written as MBFQPs:

Theorem 3.1. Consider problems (3.2) and (3.1), and let C :=
[
In In In

]
as well as

C� :=

[
In In In o

o⊤ e⊤ e⊤ −1

]
. Then we have

Tn =
{
y − z : Cv = e , v = [u⊤, y⊤, z⊤]⊤ ∈ R3n

+ , [y⊤, z⊤]⊤ ∈ {0, 1}2n
}
, (3.3)

and any v ∈ R3n
+ such that Cv = e satisfies v ∈ [0, 1]3n; furthermore,

Tn \ {o} =
{
y − z : C�v = e, v = [u⊤, y⊤, z⊤, ν]⊤ ∈ R3n+1

+ , [y⊤, z⊤]⊤ ∈ {0, 1}2n
}
, (3.4)



234 P.A. AMARAL AND I.M. BOMZE

and also any v ∈ R3n+1
+ such that C�v = e satisfies [y⊤, z⊤] ∈ [0, 1]2n.

Proof. Indeed, x ∈ Tn if and only if there are {y, z} ⊂ {0, 1}n such that y + z ≤ e and
x = y − z. We introduce the slack variables u = e − y − z ≥ o and form the vector
v = [u⊤, y⊤, z⊤]⊤ ∈ R3n

+ . Then Cv = e reflects exactly above construction. Moreover, we
can write Cv = u + y + z and hence 0 ≤ vi ≤ 1 follows for all i. This establishes (a).
To complete the proof for (b), observe that the last row of C�v = e reads e⊤(y + z) ≥ 1.
But binarity of y and z together with the constraints yi + zi ≤ 1 and xi = yi − zi imply
|xi| = yi + zi, so that

∑n
i=1 |xi| = e⊤(y + z) ≥ 1 which renders x ̸= o. The last assertion

follows since the first n rows of C�v = e exactly copy the relation Cv = e from case (a).

Corollary 3.2. Any TFQP (3.2) and likewise any problem (3.1) can be written as a linearly
constrained MBFQP, with the key condition (2.10) satisfied.

Positivity conditions for the denominator g(x) in terms of this formulation can be dealt
with as in the general MBFQP case: to this end, we employ the special 3× 3 matrix

D =

 0 0 0

0 1 −1

0 −1 1

 ,

and introduce the notation Q̂ = D⊗Q for any n×n matrix Q. If, as in Theorem 3.1 above,
x = y− z and u = e− y− z as well as v⊤ = [u⊤, y⊤, z⊤], then x⊤Qx = v⊤Q̂v holds. Similarly,
for any q ∈ Rn we see that v⊤q̂ = x⊤q if we put q̂ = [o⊤, q⊤,−q⊤]⊤ ∈ R3n. Furthermore, to
homogenize the problems, we proceed as in (2.5), (2.6) and (2.7), here with:

Q =

[
γ q̂⊤

q̂ Q̂

]
. (3.5)

Again we observe that, using (2.8), the constraint Cv = e is equivalent to

Ce • Y = ∥Cv − e∥2 = 0 where Ce = [−e|C]⊤[−e|C] ∈ P3n+1 .

So the assumption that B be strictly (ker+Ce)-copositive,

w⊤Bw > 0 if Cew = o and w ∈ R3n+1
+ \ {o} , (3.6)

ensures that g(x) > 0 for all x ∈ [−1, 1]n, and thus the quotient objective remains well defined
over convTn = [−1, 1]n (which in particular implies β > 0 so that only inhomogenous
denominators can be covered; unfortunately also the approach of Remark 1 cannot help
here). However, if (3.6) is satisfied, we will obtain again a copositive reformulation of (3.2)
as detailed in Theorem 3.3 below.

In any case, Theorem 2.3 remains valid, so that we can discuss tighter dual bounds for
TFQP via copositivity. The dual copositive programs read as follows:

τ∗T,dual := sup
{
λ : M(λ, µ, d) ∈ C3n+1 , λ, µ ∈ R , d ∈ R2n

}
. (3.7)

is the dual of

τ∗T,cop := min
Y∈C∗

3n+1

{
A • Y : B • Y = 1,Ce • Y = 0, Y0i − Yii = 0, all i ∈ B

}
, (3.8)
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and both represent a copositive relaxation of (3.2); while the primal-dual pair

τ∗T�,cop := min
Y∈C∗

3n+2

{
A� • Y : B� • Y = 1,C�

e • Y = 0, Y0i − Yii = 0, all i ∈ B
}
, (3.9)

and

τ∗T�,dual := sup
{
λ : M�(λ, µ, d) ∈ C3n+2, λ, µ ∈ R, d ∈ R2n+1

}
, (3.10)

both represent a copositive relaxation of (3.1). Here A� and B� are A and B, respectively,
enlarged by a zero column and row, and M(λ, µ, d) =

α− λβ + nµ −µe⊤ (d1 − µe+ a− λb)⊤ (d2 − µe− a+ λb)⊤

−µe µIn µIn µIn
d1 − µe+ a− λb µIn A+ λB+Diag (µe− d1) µIn − A− λB

d2 − µe− a+ λb µIn µIn − A− λB A+ λB+Diag (µe− d2)


with d⊤ = [d⊤1 , d

⊤
2 ] and di ∈ Rn, i ∈ {1, 2}, as well as M�(λ, µ, d) =

Both formulae are straightforward calculations, for the former we need

Ce =


n −

[
1 1 1

]
⊗ e⊤

−

 1
1
1

⊗ e

 1 1 1
1 1 1
1 1 1

⊗ In


and for the latter the observation

C�
e =


n+ 1 −e⊤ −2e⊤ −2e⊤ 1
−e In In In o
−2e In In + ee⊤ In + ee⊤ −e
−2e In In + ee⊤ In + ee⊤ −e
1 o⊤ −e⊤ −e⊤ 1

 .

Theorem 3.3. Consider the two TFQPs (3.2) and (3.1) with their copositive relaxations (3.8),
(3.7) and (3.9), (3.10), respectively. Then

τ∗T,dual = τ∗T,cop ≤ τ∗T and τ∗T�,dual = τ∗T�,cop ≤ τ∗T� .

Furthermore, if (3.6) holds, i.e., if g(x) > 0 for all x ∈ [−1, 1]n, then

τ∗T,dual = τ∗T,cop = τ∗T .

Proof. By Theorem 3.1, we see that B = {n+ 1, . . . , 3n} and that (2.10) is automatically
satisfied. We also have condition (1.2) for both C and C�, so the duality gap is zero in both
cases. The last assertion is another application of Theorem 2.5.
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4 Conclusions

We presented copositive formulations and relaxations for mixed-integer fractional quadratic
optimization problems under linear constraints, specifying sufficient conditions for zero du-
ality gap and tightness of the relaxation. Even if the resulting copositive problems are
intractable by themselves, usual approximation hierarchies can be used to obtain tighter
bounds than SDP-based ones. We hope that empirical evidence hinting at the significance
of this improvement, also with real-world data from various applications which we here
merely sketched, can be collected in the near future.
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