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Abstract: This article is to present a branch-reduction-bound algorithm for globally solving the linear sum-
of-ratios fractional programs. Based on the algorithm provided by Kuno (2005, JGO), we develop the two
new procedures: bound tightening (BT) and cone reduction (CR), and add them to the proposed algorithm.
The convergence proof of the algorithm is provided, and the numerical results are reported to show that the
computational efficiency can be improved obviously by using the procedures (BT and CR).

Key words: global optimization, linear sum-of-ratios, cone reduction, bound tightening, branch-and-bound

Mathematics Subject Classification: 90C26, 90C30, 90C32, 65K05

Introduction

Consider the following maximization problem:

(P) i=1 C;r$ + i
st. X ={zreR"Az <b, >0},

where A € R™*" b € R™,¢;,d; € R", and v;,6; € R for i = 1,2,...,p. Assume that the
feasible region X is nonempty and bounded, and ¢; x 4+ v; # 0, for all x € X.

The problem (P) is a special class of optimization problem among fractional programs,
which has attracted the interests of a growing number of researchers. This is at least in
part because from a practical point of view, this problem has a variety of applications. In-
cluded among these, for example, are multistage shipping problems [1], certain government
contracting problems [5], problems in cluster analysis [18], certain queueing location prob-
lems [6], bond portfolio optimization problems [14] and a number of problems in geometric
optimization [4]. From a research point of view, the problem (P) poses significant theoretical
and computational challenges since the objective function is neither quasi-convex nor quasi-
concave. It is well-known that problem (P) is NP-hard [17] and that is a multi-extremal
problem, i.e., generally possess multiple local optima that are not globally optimal [19].

Many algorithms have been proposed for solving special cases of problem (P), which
are limited to the case where all of the numerators d; x + §; and the denominators ¢; x +
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i are positive over the feasible region X. For instance, when p = 2, Konno et al. [15]
use a parametric simplex method to find globally optimal solution to such problem; when
p > 2, several algorithms [7,11-13, 16] have been developed. The algorithm of Konno
and Yamashita [16] solves subsequently an equivalent concave minimization problem by
outer approximation; Konno and Fukaish [13] present a solution algorithm that involves
subproblems with both linear and quadratic constraints; Falk and Palocsay [7] propose
iteratively searching the image space of the problem to find a global solution; the other
algorithms use the branch-and-bound search [3, 8, 10-12, 23], for instance, Kuno [11, 12]
utilizes trapezoidal partition elements, where linear programming subproblems over these
trapezoids are respectively solved to derive tight upper bounds during the branch-and-bound
search. In addition, under the assumptions that d]  +d; > 0 and ¢, 2 +~; # 0, Ji et al. [10]
present a branch and bound algorithm. For a more general case, i.e., the problem (P)
does not impose any sign restrictions on d, x + ¢; and ¢ z + 7;, the corresponding solution
algorithms have been still rare in the literature as far though there exists several methods
(see [3,21,22]). For an excellent review of the applications, theory, and algorithms for the
sum-of ratios fractional program, the reader can refer to [2,9,20].

The main purpose of this article is to present an improvement of the algorithm in Ref. [12]
for globally solving problem (P) by using the proposed bound tightening (BT) and cone
reduction (CR) procedures. In contrast to the usual branch and bound methods reviewed
above (e.g. [3,8,10-12,21-23]), in the proposed branch-reduction-bound algorithm, an upper
bound of the subproblem in each node is obtained by utilizing the proposed tight bound
procedure, specially, the bound obtained is tighter than the one in [12]. Also, the cone
reduction that doesn’t appear in other branch and bound methods (e.g. [3,8,10-12,21-23]),
can cut away a large part of the region in which the optimal solution does not exist, so
that the rapid growth of the branching tree can be suppressed during the algorithm search.
Additionally, the problem investigated in this paper generalizes those in [7,11-13, 15, 16],
and the numerical results show that the computational efficiency can be improved obviously
by using BT and CR.

The remainder of this paper is organized as follows. The next section converts problem
(P) into an equivalent problem P(©), further, the linear programming problem LP(©) is
obtained to derive the upper bound of the optimal value. In Section 3, the algorithm is
presented and its convergence is shown. In Section 4, we report some numerical results
obtained by solving some examples. Finally, some concluding remarks are given in Section
5.

Global Optimization of the Problem

For solving problem (P), we first notice that

diz + 4; diz + 4; diz + 4; —(d'z + 6;
Me) = § G GrEN Ly S, ¢ S
€T, Cr v GET ety el v e — ()

where I, = {i € {1,2,...,p}[c'z +v > 0O,Vr € X}, I_ = {i € {1,2,...,p}c'z + v <
0,Vz € X}. Obviously, denominators in h(z) are all positive. Hence, we can always assume

that c*z +; > 0 always holds. In addition, under the above assumption c'z +~; > 0, let us
denote J, = {i € {1,2,...,p}|dz +6; > 0,Vz € X}, and J_ = {i € {1,2,...,p}|d'z + §; <
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0,Vxz € X}. Thus, we have

d? 0; d 0;
h(z) = Y f7++ ix+
iedy CT Y seg_ CTE Y
diz +6; d'x + 6§ +my(clz +;
o> by e s,

icly CT Y e T+ icd_

by choosing a sufficiently large value m; > 0 (i € J_) such that d‘x+6&; +m;(c'z+~;) > 0 for
any x € X, i € J_. Therefore, throughout this paper, we can assume without loss generality
that

dz+6;>0, cox+~>0 VereX, i=12...,p.

The principal structure in the development of a solution procedure for solving problem
(P) is the construction of upper bounds for this problem, as well as for its partitioned sub-
problems. An upper bound on the solution of problem (P) and its partitioned subproblems
can be obtained by solving a relaxation linear programming of problem (P). Toward this
end, l;,u;, I? and UY for each i will be introduced as follows:

0< li = mln{lex + ch;|x c X} + 61 + 7,
00 > u; = max{d] x + ¢/ z|r € X} +6; +v; >0,

dlz+6;
0§L?§%§Uf<oo, Vi € X.
C;, T T 7

Note that LY, U? can be known by solving linear programming problems. Additionally,
several sets are defined by

Q; = {(ti78i) S R2|tZ = d;r1'+61, S; = CZT(E + i, T € X},
Ez(l“ul) = {(ti,87;> S R2|0 <l <t;i+s < ui},

@?(L?, U70) = {(tia5i> S R2|0 < L?Sl <t < U?SZ'},
F,=Q;nN El(l“ul)l N @?(L?, UZO)

By using the above notation, based on Ref. [12] problem (P) can be rewritten as:

P(@O) v(0% = max l; "

s.t. (ti75i> eF;, i=12,...,p,
P
where @0 2 @0(L0, U%) = [] ©9(LY, U?), L° = (L)px1 € R?, U = (U®),n1 € RP.
i=1

1=

Upper bound

Throughout this article, let © be any 2p-dimensional cone with

p
O(L,U) = [[ 0i(L:, i)
i=1
satisfying LY < L; < U; < U?, i.e. © denotes ©° or a sub-cone of ©°, where L = (L;),x1 €
RP, U = (Uj)px1 € RP.
For solving problem P(G°), the branch and bound algorithm to be proposed will require

an upper bound UB1(0) of the optimal value v(0) to a subproblem P(©) of P(©°) re-
stricted to ©. To help explain how UB1(0) is formed, we need to solve a linear relaxation
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programming problem of P(©), based on the concave envelope ®;(t;, s;) of each ratio E—L of
the objective function to P(©). As is given in Ref. [12], we have

(i, 8:) = min{ fi (s, 8:), gi(ti, 50) } > %a if (i, 8:) € Bili,ui) N O (li, us) (2.1)
where _—
filti,s:) = %(ti — Lisi) + Ly,
Li+1
gi(tia 51) = + (ti - Uzsl) + U;.

Uq

t.
Clearly, ®;(t;,s;) is an over-estimator of —Z over the trapezoid X;(l;,u;) N ©,;(L;, U;).

S
Pt

Instead of maximizing Y —* in problem P(©), we can obtain an upper bound UB1(©) of
i=1 5i

the optimal value v(©) to problem P(©) by solving the following problem:

P
UB1(©) = max Y, D;(t;,s;)
i=1

P1(@) i=
st. (ti,s) €Fy i=1,2,...,p.

It is easily seen that problem P;(0©) is equivalent to

b
UB1(©) = max >.r;
i=1
P»(©) st. (ti,si) €F;, i=1,2,...,p,
ri < filti;si), i=1,...,p,
ri < giti,s:), i=1,....p.

Consequently, P2(0) can be rewritten as the following linear programming problem:

p
UB1(©)= max ). 7
i=1
s.t. Az <b,x >0,
LP(© (Ui—i—l)(LicZT—d;r)x—i—lirigai,i:1,2,...,p7
T .
L < d, x+6;
- ch+’yl-

SUiai:LQa"'apa

where
a; = (Ui +1)(0; — Livi) + liLi,

Bi = (Li + 1)(6; — Upvi) + wiUs.
Thus, we can obtain the following conclusion.

Theorem 2.1. Problem LP(O) is equivalent to problem P1(©) in the following sense: if
LP(O) is infeasible, then let UB1(©) = —oo; otherwise, for any optimal solution (Z,7) to
LP(©), we can obtain the optimal solution (i,t, 8) to problem P1(©) with t; = d] 2+8;, 3; =

P
¢ & +v,i=1,...,p, and UB1(©) = Y_ #; provides an upper bound of the optimal value
i=1
v(0O) to problem P(O).
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Proof. The proof of this result is straightforward and therefore is omitted. O

From the above discussion, although UB1(©) is an upper bound of v(0) to problem
P(©), to improve the computation efficiency of the branch and bound algorithm for solving
problem P(0°), we can get a tighter upper bound U B(©) than UB1(©) by a new bounding
tightening (BT) given as follows.

Next, we will describe the proposed BT (see Theorem 2.2 below ). For this purpose,
let (#,7) be an optimal solution to the linear program LP(0©), and let #; = d] & + §;,5; =
c;rfc + 7,0 =1,2,...,p. We see that the value of #; depends on neither L; nor U; directly,

~ ~ t;
but on ®;(%;,3;). Let us try improving this upper bound ®;(Z;,5;) on — by exploiting a
8
t,
relationship between — and its over-estimator ®;.
8;
Theorem 2.2. For any cone © C O, let (2,7) and UB(O) be the optimal solution and

the optimal value to problem LP(0©), and let t; = dl# +6;,8; = c] &+~ for each i. Then,
by choosing o € (0,1], an upper bound UB(©) of v(0©) to problem P(©) can be given by

UB(©) = zp: (oL; +oU; + 1)7%§i+ (1A _ U)L‘? — oLUE
8i(ti + 3i)

i=1

satisfying
UB1(©) 2 UB(©) 2 v(©),

especially, the inequalities hold strictly if (£;,3;) € int(X; N ©;) for each i.

Proof. Denote the intersection points of t; = (£;/5;)s; with t; + s; = I; and t; + s; = u;,
respectively, by

l; ~ . Uq r oA
i = = tiy Si), i = = — (T4, 54).
&i ti+§i(l z) i tiJrSi(Z z)
t; .
Since the value of — is constant along the half line defined by t; = (£;/3;)s;, it follows that
S;
ti ti .
both the values of — at & and n; are —, i.e.
S; S;
ty _ti _h
Si & s; M §1 :

Further, from (2.1) it follows that
& € Bi(li,wi) N {(ts, 50)| fi(ti, 1) < giltis si)},
i € Bilisug) N {(ti, si)|fi(tis si) = giti, 50)}
and so we have
(Ui + Li + 1)t; — U; L3
i+ 4

©;(&) = fi(&) = = gi(n:) = Pi(mi)- (2.2)

. . t; .
Since ®;(t;, s;) is the concave envelope of — on ©; N Y;, we can obtain
i

|H->

(&)

D;(m:)

v

7
)

Y%
cm‘ ~> >
SV ST
—~
o
w
S~—"



84 P.-P. SHEN, W.-M. LI AND Y .-C. LIANG

On the other hand, since I; < #; + §; < u;, there exists

b+ 8 — .
u:u with p € [0,1]
li — U;
such that (£;,5;) = p& + (1 — p)n;. Thus, by (2.2) and the concavity of ®;(f;, 3;) it follows
that
D;(ti,8:) = ®i(p&i + (1 — i) > p®i(&) + (1 — p)@i(m:) = ®4(&). (2.4)

Hence, from (2.2)-(2.4), it follows that

k>

(Ui + Li + D)t — U; L

- > L 2.5

i

D;(t;,8;) > (&) =

>

Furthermore, by using the above inequality (2.5) and choosing a scalar o € (0, 1] we see that
there exists a nonnegative constant m;(o), given by

1A2 - tz tAz - LzAl
(o) = (1 — o) B )l = Lidi) o
$;(t; + &)
such that .
R i
Di(ti, 8;) = @i(&) = (&) — mi(o) > 5 (2.6)
Notice that the following relation holds
t (Uisi — t:)(ti — Li5s)
(I)z i) — g - < = = Z 0. 2.7
(6) ~mlo) — 5 = o s 2.7

Hence, we can see easily from (2.3), (2.6) and (2.7) that an improving upper bound ¥;(;, 3;; o)

t.
on - is given by

3
. Li 4+ oU; +1)t;8; + (1 — 0)t? — o L;U;8?
Uy, 51 0) = Bi(E) — mi(o) = ZLat oUit Dbidi + (L= o)t = oLiUis; (2.8)
5i(ti + 8;)
with o € (0, 1] satisfying
(bl(l?%éz) > \Ili(fivguo') 2 §_’L (2 9)

Thus, by problems P(0) and LP(0©), the inequalities
UB1(©) > UB(©) > v(0)

can be derived from (2.8) and (2.9). Especially, when (;, §;) € int(%;N©;), these inequalities
throughout in the above proof hold strictly, and so the result is obvious. O

From the proof of the above theorem, we know that ®;(&;) or ®;(n;) can be also served

K3

according to (2.6) and (2.8), W;(;, 4;;0) is more tightening than ®;(¢;) as an upper bound

t; . .
as an improving upper bound on — from (2.5), as Kuno given in Ref. [12]. However,
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of In fact, if we choose o = 1 then W,({;, 8;;1) = ®;(&;), specially, it is easily seen

Cl>>| >
SV S

~ t
from (7) that W;(4;,3;;0) is more tightening about — when o is closer to zero. Hence, if
i
. . P
we replace 7; = ®,(t;,8;) by 7 = U;(¢;,8;;0), a new upper bound UB(0) = > 7; will
i=1
P . P
improve > ®;(¢;,8;) = Y. 7; and this will suppress the rapid growth of branching trees.
i=1 i=1
The computational results also confirm this conclusion in Section 4 below. O

Based on Theorem 2.2 we can give the proposed (BT) as follows. Let ; = d*2+6; and §; =
¢+ foralli=1,...,p, and we replace #; by 7; = U,(t;,3;;0) for each i = 1,...,p. Then
a new tightening upper bound U B(0) of v(0©) is given by

i=1

P
UB(©) = Zﬂ- = Z Wi(ti, 8i;0)
i=1
satisfying v(©) < UB(©) < UB1(0O).

@ Cone reduction

In this subsection, we pay our attention on how to form a new cone reduction procedure
for eliminating a region in which the global minimum of P(©°) does not exist. The main
purpose of the cone reduction is to decrease the size of the cone ©° or its partitioned sub-
cone © without losing any current feasible solution still of interest. It can be regarded as
an accelerating device of branch-and-bound algorithm for solving problem P(6°) from the
numerical results in Section 4 below. To see how to form this procedure, let LByp.s; be the
best lower bound of the optimal value to P(0°) so far, and for a 2p-dimensional sub-cone

©, denote
P
RU =Y "Uj,
i=1

p
pj=LBrest— Y Ui, j=1,2,....p.
i=1,iz;j

Next, we give the following Theorems 2.3 and 2.4, and the cone reduction will be generated
via these theorems.

p
Theorem 2.3. Assume that O(L,U) = [ ©;(L;,U;) is any sub-cone of ©°. If RU <
i=1

LByest, then there exists no the optimal solution to problem P(©°) over ©(L,U). Otherwise,
if there exists some index h € {1,...,p} satisfying pp, > Ly, then there is no the optimal

p
solution to problem P(©°) over ©,(L,U) = [[ ©ui(L;,U;), where
i=1

©;(L;, Uy), ifi#h
Gal(L’LaU’L) =
Aon(Lp, pr) NOR(Ly,Uy), ifi=h

with Aah(Lhyph) = {(th,sh) S R2|Lh5h <tp < phsh}.
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Proof. If RU < LBjest, then, for any (¢;,s;) € 0;(L;,U;),i = 1,2,...,p, from problem
P(©), it follows that

P

ti &
1}(@) = max Z — S ZUZ = RU < LBbestv

Vi, (ti,s;)€F; S;
i, (ti,si)EF; i—_1 °F i—=1

and so, there exists no the optimal solution to problem P(©) over ©(L,U).
Next, we will prove the remains of this theorem. For any (¢,s) € ©,(L,U), notice that
tn < prSh, we can obtain that

p

t; P t; t
Z_Z = 3y L4t
imy S i=1,i#h i Sh
P t; P
< Z — + LBbest - Z UZ
i=1,i%h Si i=1,i#h
p ti
= Z (_ - Uz) + LBbest
i=1,i#h Si
S LBbest

since t; < s;U; for each i = 1,2, ..., p. This implies that

p

t:
0,) = — < LBpest-
v(Oa) =, max_ ;zl ” best

Therefore, there is no the optimal solution to problem P(©°) over ©,(L,U). O

To give Theorem 2.4 below, let us consider the following two linear programs for each
j: 1727"'7p7
' Ul(j) = max(a; — (U; +1)(L;dd —d)z)/l;
Ql(J)(@) s.t. Ar <b,x >0,
(2.6) — (2.7)
and . ) )
_ U?(j) = max(8; — (L; + 1)(U;¢? —d)z)/u;
QZ(J)(G)) s.t. Az <b,x >0,
(2.6) — (2.7).
Denote
7 =min{U' (), U*(4)}, 5 =1,2,....p, (2.10)

then we can get the following conclusion.

p
Theorem 2.4. For any O(L,U) = [] ©:(L;,U;) € O(LY,U°), if there exists some index
i=1

h € {1,...,p} satisfying 7, < Up, then there is no the feasible solution to problem P(O°)
over ©y(L,U), where

4 ®Z(le Ul)v ’le 7é ha
@b(L, U) = H @bi(Li, Ui) with @bi(Li, Ui) =
=1 App(Th, Un) N OR(Ly, Up), ifi=h

satisfying Apn(Th, Up) = {(th, sn) € R?|hsn, < tn, < Upsp}.
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Proof. If the inclusion of Theorem 2.4 is not true, there exists a feasible solution (z*,t*, s*)
to problem P(©°) over O, (L, U) satisfying

Thsy, < t, < Upsy, Lis; <tr<Ugs;, i=1,2,...,p, i #h, (2.11)
where t¥ =d]z* +6;, sf=cla*+v, i=1,2,...,p
By the definition of 75, consider the following two cases.

Case (i). If 7, = U*(h), it follows that

U 1
T2 (o — (U + (e — dat) [, = 2

(t;, = Lnsy,) + Ly

since z* is also a feasible solution to problem Q1) (©). Further, from (2.2) we have
Th > fa(th, sp). (2.12)
Case (ii). If 7, = U?(h), similar to the above proof, we can obtain that

Th > gn(th, sh,)- (2.13)

Based on the above results (2.12) and (2.13), in either case from (2.2) and (2.3) we have

: * * * * * * t*
T = min{ fr ({5, s3,), gn(th. s3)t = Pulth. s3) = s_’i (2.14)
h
This will imply that (2.14) is contradictive to (2.11), and the proof is complete. O

By using Theorems 2.3 and 2.4, we can give a new cone reduction procedure that includes
the two basis steps (Optimality and Feasibility) to reject some regions in which the globally
optimal solution of P(©°) does not exist.

Cone reduction (CR):

(1) Optimality. Compute RU in (2.8). If RU < LBpest, let O(L,U) = 0; otherwise,
compute p; (z =1,...,p) in (2.9). If pp > Ly, for some h € {1,...,p}, then let L;, = p; and

O(L,U) = H (L, Uy) if pp, < Up, and let O(L,U) = @ if pp, > Up,.
(2) Fea51b111ty Compute 7; (i = 1,...,p) in (2.10). If there exists some h € {1,...,p}
p
satisfying 7, < Up, then let U, = 7, and ©(L,U) = [] ©;(L;,U;) if 7, > Lp, and let
i=1

@(L,U) =0 if 7, < Ly,
This cone reduction procedure provides a possibility to cut away all or a large part of
the 2p-dimensional sub-cone ©(L,U) created by the branch process.

Algorithm and Its Convergence

In this section, based on the former the new cone reduction and bound tightening pro-
cedures, a new branch-reduction-bound algorithm is proposed to find the globally optimal
solution of P(©°). There are three fundamental processes in the algorithm search: reduction,
branching and updating upper and lower bounds.

Firstly, under the appropriate condition the reduction process can cut away all or a large
part of the currently investigated feasible region in which the globally optimal solution does
not exist.
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The second fundamental process iteratively subdivides the cone ©* into two sub-cones.
During the iteration of the algorithm, the branching process creates a more refined partition
that cannot yet be excluded from further consideration in searching for a globally optimal
solution for P(6°). In this paper, we choose a simple bisection rule which is called bisection
of ratio. This branching rule is given as follows.

P
Consider any node subproblem identified by ©(L,U) = T[] ©:(L;,U;). Let j €

=1
argmax{U; — L;|i = 1,...,p}, and denote w; = AL; + (1 — \)U; with A € (0,0.5]. Then
{©, O} is called a conical bisection of ©, where

@ @1><---><®j_1X(E)jx@j+1x-~-><®p,
éz@lX"'Xej—lxc:)jxej-‘rlx"'X@p
with B

0, = {(t;,s5) € Rz‘Ljsj <t; <wjs;},

0; ={(tj,s;) € R?|lw;s; < t; <U;s;}.

The third process is to update the upper and lower bounds of the optimal objective
function value of P(6°). This process needs to solve a sequence of linear programming
problems and to compute the corresponding objective function value of P(0°). In addition,
the current bound tightening procedure is applied to the proposed algorithm.

The basic steps of the proposed algorithm are summarized as follows.

Algorithm statement

Step 0 (Initialization)
(0.1) Given a convergence tolerance ¢ > 0, choose the parameters o € (0,1) and A €
(0,0.5]. Set the iteration counter k = 0, the active node index set Qo = {0}. Let ©F =

P
[] ©F = ev.
=1

(0.2) Solve problem LP(©F) to get the solution (#(©%),#(©%)). Let #; = d] #(0%) +
i, 8i = ¢] 2(OF) + ~;, and let 7;(OF) = W,(t;, 8;;0) for each s = 1,2,...,p. Set the upper
bound UB(k) = 3. 7:(6%).

i=1

(0.3) Set the current best feasible point z* = (6F), and the lower bound LBy = h(z*).

(0.4) If UB(k) — LBpest < ¢, stop, and z* is the globally optimal solution and LBpes; is
the optimal value to (P). Otherwise, proceed to Step 1.

Step 1 (Reduction) For the sub-cone ©F that is currently investigated, CR described
in Section 3 is applied to ©F and still denote the remaining as ©F.

Step 2 (Branching) According to the above conical partition rule, partition ©F to get
©F1 and ©F2. Replace k by node indices k.1, k.2 in Q.

Step 3 (Bounding) For each k.., where ¢ = 1,2, compute RU** as given in (2.8).
If RU¥* < LByest, then the corresponding node indices q(k).. will be eliminated. If
Okt (1 = 1,2) are all eliminated, then go to Step 4. Otherwise, for each not eliminated
Okt where t = 1 or 2 or + = 1,2, solve (LP(O%*)) to get the solution (&(©%+),#(©F+)).
Let th* = d] #(0%*) +6;, §8* = ¢/ #(@%*) + ~,, for each i = 1,...,p. Then by utilizing

P N
BT the corresponding tighten upper bound is set UBy, = Y. W;(#¥*, §%¢ o). Update the
i=1

feasible point z* and the lower bound L By, such that h(z*) = max{h(2(0"%+)), h(z*)} and
LBbest = h(.]?*)
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Step 4 (Fathoming) Fathoming any improving nodes by setting
Qk?-i—l = Qk - {q S Qk}‘UBq S LBbest +€}

If Q41 = 0, then stop, and L Bpes; is the optimal value and z* is the global solution to (P).
Otherwise, set k = k + 1.

Step 5 (Node Selection) Set UB(k) = max{UBy|q € Qy}, then select an active node
q € Qy satisfying UB(k) = UB, for further considering, and go to Step 1.

Remark. In the above algorithm, notice that CR in Step 1 and BT in Step 3 can enhance
the solution procedure of the algorithm. If we do not use CR (i.e. Step 1 is discarded) and
choose ¢ = 1 in Step 3, then the corresponding simplified algorithm from the above is the
same as one given by Kuno in [12].

Algorithm convergence

By the construction of the algorithm, when the algorithm is finite, it can find a global
solution to problem (P). It is also possible for the algorithm to be infinite. The following
definition and lemmas help to analyze these results.

Definition 3.1. The algorithm of problem (P) is said to be convergent if it is infinite and
llim h(z') = v , or if it is finite.
—00

When the algorithm is infinite, since {1, 2, ..., p} is finite, there exists an infinite sequence
{©!}2, generated by the algorithm, such that for each [ = 1,2,..., ©*1 C Ol and ©!*! is
formed from ©' by the conical partition process. Additionally, in Step 2 of the algorithm,
for some fixed jo € {1,2,...,p}, we have

1 l 1 l
Ujo = Ljo =, max {U; — Li},

3

p

and ©! = [] ©! with ©! = {(t;,s;) € R?|L!s; <t; < Uls;} for each l and eachi = 1,2,...,p.
i=1

Assume in the next result that {@l}fil is a sequence of cones of this type, and for each [

and each i =1,2,...,p, let

©! = {(t;,s;) € R*|Ls; <t; < Uls;}.

Lemma 3.2. For some subsequence Q of {1,2,...}, the limit cone
* l
ejo - ﬂ @jo
1

s a half-line
9;0 - {(tjov Sjo) € R2|tj0 - w;USjo}a

* ; ; 0 0
where w is some point in [Ls U |.

Proof. By the conical partition rule, there exist a subsequence @ of {1,2...}

VieQ.

Jo?

0 l I+1 I+1 l 0
Ljo < Ljo < Ljo < Ujo < Ujo < Uj
* * : 0 * * 0
Hence, for some Ljo and Ujo with Ljo < Ljo < Ujo < Ujo we have

lim U! = lim U = U*
Jo =00 Jo

: : +1 *
lim Lt = lim LY =1 .
l—o0 Jo? l—o0 Jo l—so00 0 Jo
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These also imply that lim wé = w} € {L} Uz} because wh = AL} + (1 — \UJ with

A € (0, 1] coincides Wlth elther LlJrl or UlJr1 for each [ € Q. In elther case, w; € (LY, UY?) is
a single point. This means that 1f l — o0 the cone ©! shrinks to a half-line:

*={(t,s) € R*|t; = w}s;, i =1,2,...,p},
where ¢ = (t1,...,tp),s = (s1,...,8p), and w} is some point in [L?, UY]. O

Lemma 3.3. Suppose that the algorithm is infinite, and let {@l}fil be a sequence of cones
in R* generated by the algorithm such that for each | = 1,2,..., Ot c ©'. Then, for
some subsequence Q of {1,2,...},

where (&L, 8L) is an optimal solution to problem P1(0') and UB(O') is the tight upper bound

1924

based on the optimal value of P1(O!).

Proof. Since {©'}£°, is infinite, by Steps 0.4 and 4 of the algorithm, we may choose a
subsequence @ of {1,2,...} such that for each [ € @ we may assume without loss of gener-
ality that {@l}leQ has the properties of Lemma 3.2. In addition, for each i, the sequence
{(ti, 8h)|1 € Q} is generated in the compact set ¥; N ©Y, thus has at least one limit point
(tr, 57) satisfying £ = w} ;. Therefore,

7,71

F#)

1
lim -2
l—o0 S

(3.1)

2
|
g

al
9

i
On the other hand, by the proof of Theorem 2.2, ¥, (tl ,87;0) is the over-estimator of — on
i

@é N X;, by the continuity of ¥; on @é N Y; we have

lim 7 = w}, for each i € {1,2,...,p}. (3.2)

l—o0

Hence, by Step 3, it follows from (3.1) and (3.2) that

N

p fl
lim[U B(© -
falUB(0) - 351l =

.

This completes the proof. O
Lemma 3.4. The proposed algorithm is convergent.

Proof. Suppose that the algorithm is infinite. Then, as noted previously, we may choose
a sequence of cones, which we denote without loss of generality by {©'}2°,, such that for
each [ = 1,2,..., O c ©! and ©'F! is formed from ©! by the conical partition process.
By the validity of the upper bounding process and Steps 2 and 3 of the algorithm, for each
l=1,2,...

=2

P
UB(©') > v(0°) =v>>"

i=1

= h(z') £, (3.3)

Cl)>‘ Sk
S
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and {v'}?°, is a nondecreasing sequence of real numbers. By Lemma 2, for some Q C
{1,2,...}, we have

CIJ>| Sh

P
li UB :1
fig I Z

From (3.3), this implies that

P g
t
lim UB(0') = lim #(0°) = v = lim = lim h(z') = lim .
1€Q (©) 1€Q (69 IGQ; ,§ﬁ 1eQ (&) 1€Q
Since {vl}j‘il is a nondecreasing sequence, this implies thatllim h(ﬁcl) = . 1
— 00

Theorem 3.5. (a) If the algorithm is finite, then upon termination, =* is a global e-optimal
solution to problem (P).

(b) If the algorithm for problem P(©0) is infinite and convergent, then there exists an
accumulation point (#*,%*, §*) of the infinite sequence {(&!,#,3")}22, such that (&*,¢*,3*)
is a globally optimal solution to problem P(@O), and Z* is a globally optimal solution to
problem (P), where tl =d] '+ 0,8 =c] A +vy,i=1,2,...,p

Proof. (a) If the algorithm is finite, then it terminates in Step k, ¥ > 1. Upon termination,
since x* is found by solving problem LP(©%*) for some ©F* C O° we get that z* is a
feasible solution to problem (P). Upon termination of the algorithm,

dTm* + 6;

UB(k) — T S

z:l

is satisfied. From the algorithm, we have UB(k) > v. Since z* is a feasible solution for
problem (P), we have
=1 G T
Taken together, the three previous statements imply that
d} x* +6;

p
v<UBKk)< ) +———"+ec<v+e.
oGt

Therefore,

dlz* +6;
v—a<z a:—i—% <w,

and the proof of part (a) is complete.
(b) Since the algorithm for problem P(©°) is infinite and convergent, then by Lemma

3.4, we have
P
1
fim > 5=

=1

(3.4)

2, \ Sk

Since (2*,%*,5") is an accumulation point of {(#!,#!,3")}?,, then for some Q C {1,2,...},
such that

1 i, g B 0% 8%). 3.5
lgg(x ) = (&%, t",87) (3.5)
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By (3.4)-(3.5) and the continuity of the objective function to problem P(©°), we have

P
lm> o= %

i=1 i=1

2SR

(3.6)

CIJ>‘
SRS

Hence

>

S.
i M@
I
sc'ii|~ *
Il
(4

Additionally, since the feasible region of problem P(0°) is a closed set, we can obtain that
(&*,1*,8") is feasible to P(0°). Together with (20), this implies that (&*,#*,5*) is a globally
optimal solution to problem P(©°), i.e. * is a globally optimal solution to problem (P). [

Numerical Experiments

To demonstrate the potentiality and feasibility of the proposed algorithm, our numerical
experiment is reported in this section. We test the performance of the above algorithm and
compare it with the global optimization algorithms in Ref. [3,7,10-12,21-23].

The algorithm is coded in Visual Fortran 95. The simplex method is applied to solve
the concerning linear programming problems LP(©). For all test examples, they are im-
plemented on an Intel(R)Core(TM)Duo CPU T5870 @ 2.00Ghz with 2 GB memory micro-
computer. In our experiments, it is observed that the change of the parameter A € (0, 0.5]
in the branching operation has less influence on the computational results. Also, the main
aim of the experiment in this section is to demonstrate the performance of the proposed
CR and BT given in Section 2. Thus, without loss of generality, for simplicity, set A = 0.3
in our experiments, and the corresponding computational results are summarized in Tables
1-4 below.

In Tables 1-4, the notation has been used for column headers: Bra: the number of the
branching operations; Node: the maximal number of the active nodes necessary; Value: the
optimal value; Solution: the optimal solution; Time: the execution time of CPU in seconds,
where we record with 0 second in short if the execution time is very short (Time< 1073
second, for example).

In order to illustrate the effectiveness of CR and BT, Steps 1 and 3 of the algorithm
execute the different operation procedure in our experiments depending on the distinction
adopting CR and BT. The notation in Tables 1-4 is given as follows:

BT1: the results by alone using BT with o = 1.0;

BT2: the results by utilizing separately BT with ¢ = 0.01;

CRBT: the results by adopting both CR and BT with ¢ = 0.01.

We emphasize here that the objective values in Tables 2-4, which are obtained separately
from BT1, DBT and CRBT, are the same for a given example. Additionally, it should
be noted that the results BT1 computed by us, actually, also stand for ones achieved by
implementing the algorithm TRAPEZOID given by Kuno in [12].

Next, we first describe some simple examples in order to compare with [3,7,10,11,21,22],
and then some problems generated randomly are implemented to test further the algorithm.
The computational results of simple examples are given in Table 1, and it is seen that
CR and BT can improve the computational efficiency, that is, the number of branching
operations and the maximal number of the active node necessary can be reduced significantly.
Therefore, CR and BT are all necessary and effective to improve the solution procedure.
Especially, the smaller the value of ¢ in BT, the better the performance of the algorithm will
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be. Based on these observations, we further test the algorithm for some random problems
by choosing o = 0.01 in the end of this section.

The test examples are defined as follows.

Example 1 (Refs. [10,11,21]).

3x1 4 5x9 4+ 3x3 4+ 50 3x1 + 4xo 4+ 50 4r1 + 229 + 423 + 50

3%1 +4I’2 +5I’3 +50 41’1 +3I‘2+21‘3+50 51‘1 +4$2+3$3+50
s.t. 6z 4+ 3z2 + 323 < 10

101’1 + 31’2 + 8£C3 S 10

x1,22,23 > 0.

max

Example 2 (Refs. [10,11,21]).

4x1 + 322 + 323 + 50 3x1 + 4x3 + 50 T + 229 + Sxz + 50

3xrs 4+ 3x3 + 50 4xq +4$2—|—5$3+50+l‘1 + 5x9 + bxs + 50
T, + 2x9 + 4x3 + 50

5x9 + 4x3 + 50
s.t. 21’1 + 22 + 5173 S 10
x + 61’2 + 31’3 S 10
521 + 9xo 4+ 223 < 10
921 4+ Txo 4+ 323 < 10
T1,T2,T3 Z 0.

max

Example 3 (Refs. [3,7]).

T, — 229 — 2 41 — 30+ 4
31’1 74172%’5 72‘%1 +I2+3
s.t. T+ 290 < 1.5

Tr1 — T2 SO

O§x1,$2 S 1.

max

Example 4 (Ref. [3]).

3.3333x1 + 322+ 1  4dxy 4+ 322+ 1

1.6666x1 + 22 + 1 1 +a9+1
s.t.  bxry+4xs <10

—x1 < —0.1

—XT2 S —0.1

72%1 — X2 S —2

I1,x2 2 0.

max

Example 5 (Ref. [22]).

371 + 7322 + 13 63x; — 1822 + 39

1321 + 1325 + 13 1321 + 2625 + 13
s.t. 5x1 — 3x0 =3
1.5 <2 <3.

max
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Example 6 (Ref. [22]).

4x1 + 329 + 323 + 50 3x1 + 4x3 + 50 T1 + 229 + 4a3 + 50.0

3:1:2 + 3x3 + 50 4x1 +4x9 + 523+ 50 1 + Sy + Sxz + 50
1+ 2x9 + 4x3 + 50

5582 + 4x3 +50.0
s.t. 2.731 + o + 5.733 S 10
1 + 6:1?2 + 21‘3 S 10
9(E1 + 7CU2 + 3%3 < 10
I1,x2,T3 Z 0.

max

Example 7 (Ref. [21]).

37z + 7322 4+ 13 _ 63x1 — 18x2 +39 1321 + 1322 +13 132y + 2622 + 13

1321 + 1325 + 13 13x1 + 2625 + 13 63z9 — 1823 + 39 B 37x1 + 73z2 + 13
st. bxry—3x9=3

1.5 <z <3.

max

Example 8 (Ref. [21]).

max 311 —|—4172 + 50 31‘1 + 5xo + 3z3 —|—50_JL‘1 + 2x9 4+ 423 + 50
3x +4xs3 + 50 5x1 + dx9 + 4xg + 50 dx9 + 4x3 + 50
41951 PGy + 31s 150

3xo + 3x3 + 50
s.t. 6x1 4+ 322 + 3r3 < 10

10x1 + 329 + 8x3 < 10
z1,w2,23 > 0.

Further, we choose the following linear sum-of-ratios problem to test our algorithm,
which are generated randomly.

Problem 1 (Refs. [11,12,23]

NE
S
8

<
+
o

%

=
&
-M‘
ﬁ,

1
M=
QL
B
+

o

j=1
st Y ahr; <10, k=1,2,...,m,
j=1
z; 200, 5=1,...,n,
where ¢/,d’ € [0.0,0.5] and a? € [0.0,1.0] are uniformly random numbers. The constant

terms of denominators and nominators were all set to the same number ¢, which ranged
between 2.0 and 80.0. The convergence tolerance parameter is set as e = 1075,

For solving the above test problem 1, we utilize CR and BT in the algorithm according to
different computational procedures. The corresponding numerical results of CRBT and BT1
are listed in Tables 2-4, where average percentages are obtained by running the algorithm
for 10 test problems.
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Table 1 Computational results for Examples 1 — 8

Ex. Ref. Node Bra Time Value Solution €
1 CRBT 1 6 0 3.00292  (0,3.333333,0) 10-©
BT1 6 62 0 3.00292  (0,3.333333,0) 10~6
BT2 1 7 0 3.00292  (0,3.333333,0) 10-6
[10] 30 3.000042  (0,0.33329,0) 10-6
[21] 14 25 0 3.00292  (0,0.33333,0) 10-6
[11] 52 103 2.9312 (0,0,1.25) 10~3
2 CRBT 1 2 0 4.0907 (1.11111,0,0) 10-©
BT1 2 9 0 4.0907 (1.11111,0,0) 10-6
BT2 1 7 0 4.0907 (1.11111,0,0) 10-6
[10] 17 4.087412  (1.0715,0,0) 10-6
[21] 2 3 0 4.0907 (1.11111,0,-3.333067¢-016)  10~6
[11] 59 117 3.798367  (0,1.111,0) 10~3
3 CRBT 2 0 0 -1.6232 (0,0.2873) 10~2
BT1 9 80 0 -1.6232 (0,0.2873) 10~2
BT?2 5 240 -1.6232 (0,0.2873) 10~2
(7] -1.6240 (0,0.2839)
3] 18 -1.6236 (0,0.2679) 10~2
4 CRBT 1 3 0 4.8415 (0.1,2.375) 10~2
BT1 3 0 4.8415 (0.1,2.375) 10—2
BT2 1 4 0 4.8415 (0.1,2.375) 10—2
(3] 4 4.8415 (0.1,2.375) 1072
5 CRBT 1 2 0 5 (3,4) 1014
BT1 2 10 0 5 (3,4) 104
BT2 1 2 0 5 (3,4) 104
[22] 32 32 1.089285 5 (3,4) 104
6 CRBT 1 3 0 442857  (5,0,0) 1014
BT1 2 35 0 4.42857  (5,0,0) 104
BT2 2 22 0 4.42857  (5,0,0) 10~4
[22] 18 58 2968684 4 (0,0.625,1.875) 104
7 CRBT 1 3 0 3.29167 (3,4 10°°
BT1 5 78 0 3.29167  (3,4) 10-6
BT2 1 6 0 3.29167  (3,4) 10~
[21] 3 9 0 3.29167  (3,4) 10-6
8 CRBT 1 1 0 -1.9 (0,3.33333,0) 100
BT1 1 8 0 -1.9 (0,3.33333,0) 10~6
BT?2 1 2 0 -1.9 (0,3.33333,0) 10-6
[21] 3 8 0 -1.9 (-1.83881e-16,3.33333,0) 10-6

First, given (m,n) = (60,40) and ¢ = 10.0, Table 2 shows the variation in Time, Bra
and Node as changing p € {4,6,...,10,13,15,18,20,23,25,28,30}. From Table 2 it is not
difficult to find that Time, Bra and Node increase as an exponential function in p, when
CR and BT with ¢ =1 (i.e. TRAPEZOID) are executed. However, we should notice that
CRBT shows fairly less Time, Bra and Node than BT1 for each p. This demonstrates that
the proposed CR and BT are rather effective for improving the computational efficiency of
the algorithm.

Second, when (m,n) is larger than (40,60), the corresponding computational results are
listed in Tables 3 and 4 with ¢ fixed at 10.0 for each p € {4,5,6,7,10,13,15}. Observing
Tables 3 and 4, we can obtain that Node, Bra and Time computed by each algorithm increase
mildly with increase in the size of (m,n), in constant to their rapid change depending on
p. Specially, the overall result of CRBT is superior to that of BT1 for every (m,n) and p.
Since the former always requires less branching operations (Bra), CPU time (Time) and the
longest node number (Node) than the latter. Unfortunately, each number about Bra, Time
and Node increases un-regularly on instance of size (m,n) lager than (140, 120).
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Concluding Remarks

In this paper, a new efficient algorithm is presented for solving globally the problem
(P), which is based on the new cone reduction and bound tightening procedures and the
trapezoidal method in Ref. [12]. The cone reduction can reduce the size of the currently
investigated feasible region without losing any current feasible solution still of interest, and
the bounding tightening is able to suppress the rapid growth of branching trees. Using
these procedures as an accelerating device and applying them to the branch-and-bound
algorithm, we can delete or reduce the current region not including the optimal solution as
fast as possible. Numerical experiments show that computational efficiency can be improved
obviously by using the cone reduction and the bound tightening, specially, the number of
the branching operations, the maximal number of the active nodes and the execution time
of CPU can be significantly reduced.

Table 2 Computational results of Problem 1 when (m,n) = (60,40),c = 10

p Node Bra Time
CRBT BT1 CRBT BT1 CRBT BT1
4 23.1 58.2 43.4 126.5 2.3 7.2
6 44.0 93.5 81.5 301.3 4.8 124
8 0.5 185.6 127.0 485.6 10.4 23.7
10 120.0 339.4 185.7 590.0 174 34.1
13 191.6 541.3 292.0 674.5 31.1 50.9
15 277.0 887.5 464.7 887.3 52.8 78.1
18 358.5 626.8 839.0 2179.3 79.9 841.3
20 510.2 896.4 1522.0 3050.6 139.8 1305.6
23 681.0 1306.5 2531.5 3580.4 206.8 1735.5
25 786.4 1986.6 3206.3 5054.8 349.9 2456.2
28 1139.0 2113.5 4510.0 7491.3 514.5 4566.3
30 1642.0 2151.3 5350.5 8238.5 729.2 5673.4

Table 3 Computational results for Problem 1 when ¢ = 10.0

(m,n) p=4 p=>5 p=6 p="7
CRBT BTI CRBT BTI CRBT BTI1 CRBT BTI
(40,60) Node | 22.0 60.5 16.9 92.3 49.0 1260 | 87.5 179.0
Bra | 40.0 138.4 | 61.7 271.1 | 75.0 335.0 | 188.0  591.7
Time | 2.2 7.1 5.0 18.9 5.1 18.2 18.5 475
(80,60) Node | 35.0 77.6 61.3 1275 | 80.0 168.0 | 138.0  260.2
Bra | 60.0 1771 | 1231 3154 | 162.0  398.0 | 197.8  686.7
Time | 9.2 20.0 26.9 51.1 30.7 85.6 41.5 105.1
(60,80) Node | 37.3 126.0 | 69.1 1434 | 89.0 259.1 | 142.0  291.0
Bra | 62.0 385.0 | 112.0  541.1 | 187.0  727.0 | 188.0  909.9
Time | 16.9 65.6 31.6 74.9 45.2 95.3 74.9 191.3
(100,80)  Node | 54.0 150.0 | 74.1 180.0 | 125.0  277.1 | 169.0  306.3
Bra | 77.5 473.0 | 189.0  644.3 | 251.1  747.0 | 505.0  951.1
Time | 33.5 84.1 81.5 245.3 | 144.8  401.6 | 291.5  430.0
(80,100)  Node | 59.0 2293 | 84.1 260.0 | 189.1  533.0 | 232.0 5853
Bra | 173.0  1278.6 | 240.3  1424.0 | 215.3  1862.7 | 523.1  2045.0
Time | 100.3  308.9 | 106.2  355.7 | 143.8  649.2 | 379.5  905.9
(120,100) Node | 79.0 237.4 | 1195  289.0 | 268.0 556.0 | 307.0  723.1
Bra | 262.0  1519.8 | 287.2  1757.5 | 439.0  2006.1 | 656.3  2310.4
Time | 123.5  804.8 | 123.0  1031.6 | 591.7  1234.1 | 1305.3  1502.8
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Table 4 Computational results for Problem 1 when ¢ = 10.0
(m,n) p=4 p="T p=10 p=13 p=15
CRBT BTl |CRBT BT1 CRBT BTI CRBT BTI CRBT BTI
(140,120) Node | 99.5  456.6 | 300.2 620.3 |432.7 2367.8 |1043.3 19024 |1318.0 23118
Bra |317.0 28554 | 707.1  3802.6 | 1586.1 8523.6 |2974.0 13281.4 | 5210.4 20494.0
Time | 287.2 20494 | 1577.6 4824.9 | 2357.1 32546.1 | 7095.4 66304.7 | 7978.8 85129.3
(160,140) Node | 127.2  500.1 |427.0 11786 |632.0 14904 |1337.0 2068.5 | 1591.6 2864.3
Bra | 357.0 24322 | 822.6  5401.6 | 1786.1 3209.0 |3760.5 13860.5 | 5392.3 15538.3
Time | 1140.1 5474.5 | 3287.0 12156.0 | 5349.2 36934.5 | 7032.8 68645.7 | 9181.4 120929.0
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