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ANALYSIS AND PERFORMANCE OPTIMIZATION OF A
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Abstract: In this paper, we first present an analysis for a general limited service Geom/G/1 queueing model
with multiple adaptive vacations (MAVs). Then we give the Probability Generating Function (P.G.F.) of
the queue length by using the embedded Markov chain method and the regeneration cycle approach. The
P.G.F. of the waiting time is derived based on the independence between the arrival process and the waiting
time. The probabilities of various states (such as “busy”, “idle” and “vacation”) are also derived in the
system. We can explicitly calculate their averages and higher moments by differentiating these P.G.Fs. to
numerically compare different system cases. Furthermore, we present an analysis of the cost model for this
general limited service Geom/G/1 queueing model with multiple adaptive vacations to determine the optimal
management policy by minimum cost. We can obtain the optimal values of service rate and the optimal
expected traffic intensity in the system. Finally, based on numerical results, the relations of performance
measures and the optimal expected traffic intensity are discussed.

Key words: multiple adaptive vacations, general limited service, embedded Markov chain method, regen-
eration cycle approach, coefficient, cost function
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Introduction

Many Geom/G/1 queues with various vacation policies have been well investigated. Early
research has focused on exhaustive service policy, where the server takes a vacation only
if the system becomes idle presented in [10], [7]. However, multifarious non-exhaustive
service policies also have important practical values in computer systems and communication
networks presented in [8], [2].

Several non-exhaustive service policies have been introduced into the discussion of per-
formance analysis of polling systems presented in [3], [12], where the server may take a
vacation when there are customers waiting in the system. Stochastic decomposition results
of vacation queues with general vacation policies were presented in [6], [11]. Geom/G/1
queues with a variety of vacation policies were systemically analyzed in [13], and research
results of multi-server vacation queues were studied in [14].

In the adaptation of different application backgrounds, some new vacation policies were
introduced into queueing systems. A class of Geom/G/1 queues with exhaustive service
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and multiple adaptive vacations were studied in [14]. A discrete time Geom/G/1 queue
with multiple adaptive vacations was investigated in [20]. Banik [1] combined batch Markov
arrival process (BMAP) and MAVs, and analyzed the BMAP/G/1/00 queue with multiple
adaptive vacation policy. They obtained the queue length distribution at a post-departure
epoch by using matrix-analytic procedure. Some important performance measures were
studied too. This is an important literature about MAVs, but this paper studied the ex-
haustive service discipline queue system. Therefore, we are inspired by [1], we will combine
the general limited service and MAVs for the first time, and study non-exhaustive queue
system by using the embedded Markov chain method and the regeneration cycle approach.
The multiple adaptive vacation policy is a synthetic policy which generalizes several simple
vacation policies.

Chang et al. considered an infinite capacity N-policy M/G/1 queueing system with
a single removable server in [5]. In this system, the server is controllable that may be
turned on at arrival epochs or off at service completion epochs. They applied a differential
technique to study system sensitivity. And a cost model for infinite capacity queueing system
under steady-state condition is developed, to determine the optimal management policy at
minimum cost. So that this model could be used in real applications to obtain the optimal
management policy.

Wang et al. studied the cost optimization and sensitivity analysis of the machine repair
problem with variable servers and balking in [16]. They obtained various system performance
measures, such as the expected number of failed machines, the expected number of operating
machines, the average balking rate, the machine availability, the operative utilization, and
so on. A cost model is constructed to determine the optimal values of the number of busy
servers, and maintain the balking rate at a certain level.

Ke et al. investigated the cost optimization of queue with different vacation policy
in [4], [19], such as (p, N)-policy M/G/1 queue with an unreliable server and single vaca-
tion, unreliable multi-server queue with a controllable repair policy, server breakdown, and
so on. A quasi-birth-and-death process is used to model the complex system and the sta-
bility condition is examined. The rate matrix is calculated approximately and steady-state
stationary distributions were obtained by a matrix-analytic approach. And they constructed
a total expected cost function per unit time and applied the Tabu search method to find the
minimum cost, then determined the optimal repair policy, the optimal value of service rate
and the optimal value of repair rate.

In order to model more practical problems, and analyze the performance of these prob-
lems better, we studied a Geom/G/1 queue with a non-exhaustive service and multiple
adaptive vacations in [9]. Using the embedded Markov chain method and the regeneration
cycle approach, we obtain the transformation formulae of the stationary queue length and
the waiting time, and give stochastic decomposition structures for the stationary perfor-
mance indices. The probabilities for the system being in various states are also derived. In
this paper, we can explicitly calculate their averages and higher moments of the stationary
queue length L, and the stationary waiting time W, by differentiating these P.G.Fs. to
numerically compare different system cases. We present an analysis of the cost function to
determine the optimal expected traffic intensity in the system and show the effect of system
parameters on performance measures. The optimal analysis provides the theoretical basis
for the system performance optimization. Therefore, this paper is the further promotion
of [9]. Moreover, general limited service Geom/G/1 queues with multiple vacations or single
vacations presented in [13] are the special cases in the model presented in this paper.

The rest of this paper is organized as follows. In Section 2, we describe the queueing
system model, as well as suppose system parameters and a service policy. In Section 3, we
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derive the performance analysis to give the number of customers at the beginning instant,
the stationary queue length and waiting time, the service cycle, and so on. In Section 4, we
develop an expected cost function for the Geom/G/1 queue with the general limited service
and MAVs to determine the optimal expected traffic intensity and the best service rate p.
In Section 5, by numerical examples, we show the effect of the parameters on the mean state
probability and the performance optimization with the cost function. In Section 6, we give
conclusions.

System Model

Considering a classical Geom/G/1 queue, we introduce a general limited service and multiple
adaptive vacation policy presented in [14], [20]: A service period is defined as the interval
between a service starting instant and the next adjacent vacation starting instant. The
difference between a service period and a busy period is that the former may end when
some customers are still waiting in the system, but the latter ends only when no customers
remain in the system. A general limited service policy means that the number of customers
which is served in every service period does not exceed a determinate upper limit M, M is
a positive integer.

Let Qén) be the number of customers in the system at the beginning instant of the nth
service period, then the number of customers who will be served in the next service period
is given by

& — min {Qg">, M} .

Let H denote the number of the vacations. The server will take H times of vacation
that have random lengths. The probability distribution hj and the Probability Generating
Function (P.G.F.) H(z) of H are given as follows:

PH=k)=hy, k>1, H(z)=Y hp*.
k=1

Let Ve (£ =1,2,..., H) denote the length of vacation time for the £th vacation. The vacation
time lengths V¢ are independent identically distributed (i.i.d.) random variables. Therefore,
the state space of the queue model should be

Q=1{0,1,2,..}

where state 0 represents that the system may be in the vacation state or the idle state, state
i (¢ > 1) represents that the system may be in the busy state or the vacation state.
There are three cases in this model as follows:

(1) If there are residual customers in the system when a service period ends, and there
are customers arriving during the £th vacation, 1 < ¢ < H, the vacation period will
stop in advance at the completion instant of the £th vacation. The server will begin
a new service period, and the server will take vacations again when ® customers have
been served.

(2) If there are no residual customers in the system when a service period ends, and there
are customers arriving during the £th vacation, 1 < £ < H, the vacation period will
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stop in advance at the completion instant of the £th vacation. The server will begin a
new service period. In the new service period, the server will serve ® customers, then
takes vacations.

If there are no residual customers in the system when a service period ends, and
there are customers arriving during the Hth vacation, the vacation period will stop in
advance at the completion instant of the Hth vacation, and the system enters an idle
period. When a customer arrives in the idle period, the server emerges from an idle
state to service state, and only begins to serve this customer. Then the server begins
to take vacations, the new arrival should be served in the next service period.

The system will continually repeat the above process.
The basic assumptions of the system model are given as follows:

(1)

Suppose that customer arrivals can only occur at the discrete time instant t = n~,n =
0,1,.... The service starts and ends at the discrete time instant t = n* only, n = 1,2, ....
The model is called a late arrival system. The inter-arrival time T' is supposed to be
an independent identically distributed (i.i.d.) discrete random variable following a
geometric distribution with parameter A (0 < A < 1). We can write the probability
distribution of T" as follows:

P(T=7) =M1 j=1,2,..

where A = 1 — A. We denote by N,, the number of customers arriving during the
interval [0, n], therefore N,, follows a Binomial distribution as follows:

n

o=

))\j)\”‘j7 j=0,1,..,n, n=1,2,....

The service time S is supposed to be an i.i.d. discrete random variable with a general
distribution s;. The P.G.F. S(z), the mean E[S] and the second factorial moment
E[S(S —1)] of S are given as follows:

P(S=j)=s;, j=1, S(z2)=) s;7,
j=1

d%S(z)
dz?

z=1

E[S] = Zzs E[S(S—1)] =

Let p be the reciprocal value of the mean E[S]. This means that we have 1/p = E[S].

The time length V' of an arbitrary vacation in H vacations is a non-negative i.i.d.
discrete random variable with general probability distribution p, and the P.G.F. V(z)
given by

PV=v)=p,, v=21 V(z)= vaz”
v=1

and the mean E[V] and the second factorial moment E[V(V — 1)] of V are given as

follows:

d*V (2)
dz?

BV =S wp,, EIV(V-1)]=

z:l.
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Let p = A\/u be the traffic intensity of the system.

Suppose that there is a single server in this system, and its capability is infinite. The
inter-arrival time, the service time and the time length of a vacation are mutually indepen-
dent. The service order is First-Come First-Served (FCFS). The model mentioned above
can be denoted by Geom/G/1 (GL, MAVs), where GL and MAVs represent the General
Limited service and the Multiple Adaptive Vacations, respectively. The schematic diagram
for Geom/G/1 (GL, MAVSs) queue is given in Fig. 1, where Cj is defined as a service cycle
which is the interval between two adjacent points where the service ends and the vacation
starts at the same time.
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A

The instant where there may be customer(s) in the system
; The instant of arrival of a customer
T The instant of departure of a customer

Figure 1: The schematic diagram for the Geom/G/1 (GL, MAVs) queue.

Performance Analysis
Preliminaries

According to a non-exhaustive service policy presented in this paper, the transition probabil-
ity matrix of the queue length {L,,,n > 1} at the departure instant of a customer is different
from the transition probability matrix of a classical Geom/G/1 queue at not only boundary
states, but all states. Therefore we cannot simply apply the results of a Geom/G/1 bound-
ary state variation model to study the Geom/G/1 with the non-exhaustive service policy
presented in this paper. The regeneration cycle approach is the most effective tool to apply
to the stationary queue length of a system with a non-exhaustive service policy.
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Let L, (t) represent the queue length process of a Geom/G/1 queue with a non-exhaustive
service policy. The beginning instants of the regeneration cycle are chosen as regeneration
points when the number of customers is zero. The process L, (t) can be assumed to restart
at these instants.

If the system is positive recurrent, L, (¢) will transit the zero state with an infinite amount
of times, therefore the system has infinite regeneration points. The interval between two
adjacent regeneration points is defined as a regeneration cycle. A regeneration cycle may
include several service cycles. The length of a regeneration cycle is an i.i.d. random variable.
In order to obtain the stationary queue length of Geom/G/1 (GL, MAVs) queue, we give
the regeneration cycle approach as Lemma 3.1.

Lemma 3.1. If a stationary distribution exists, its P.G.F. can be given as

P
Lu(z) = Tl L; ZLW}

] (3.1)

where L,, denotes the number of customers in the system at the nth departure instant of

customers (see [13] and [14]).

Number of Customers at the Beginning Instant

Transition probabilities of Markov chain {L,,n > 1} are given as follows:

(oo} r . — .
)\k:—]-Q—M)\T—k-Q—]—MP B(M) V= ,
r:k;—&-M (k - .7 + M) ( - r)
k>j—M>0
P U= HOVOD L ([N r (5947 =), JEMEA£L
r=k
1-HVO))Y <IZ) ATk p <B(j) +V = 7’) FYHWVO)), j<Mk=1
r==k
0, i>MEk<j—M
(3.2)

where BY) is the sum of j service times, 0 < j < M, and V is the time length of an arbitrary

vacation. V(\) represents the value of the P.G.F. V(2) at 2 = A\, H(V (X)) represents the

value of the P.G.F. H(z) at z = V(\). We define that

0 = limP( l@:k), k> 0.

n—oo

{qx, k > 0} is the distribution of @, customers in the system at the beginning instant of the
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service period. From the equilibrium equation of the Markov chain, we have

M
G0 = VI -HVA))D ¢SV, (3.3)
7=0
M </ , _
o o= > ¢ |AU-HVAN)Y (1> AP (B(J) +V = r) +H(V(N)
=0 r=j
Fqrran i (g) AN P (B<M> LV = r) , (3.4)
M o 0o r )
a = S q-HVA)Y <k> NP (B9 4 v =)
=0 r=j

k+M oo
+ > ;4 (k - j:_ M) \k—d+M \r—k+i—M p (B(M) LV T) 7
k> 2. (3.5)

We define the partial probability generating function Qs(z) as follows:
M
Qu(z) = quzk.
k=0

Multiplying both sides of Eqs. (3.3)-(3.5) by 2°, z, 2¥, respectively, and taking the
summation with respect to k, we obtain the P.G.F. Qp(z) of {qx, k > 0} as follows:

1
M (51— A1 — )MV - A1 - 2))

x (1= HV ()= Qu (S = A1 = )V (1 = AL = 2))
~(S(1= A1 = 2))MQu(2)V(1 = A(1 - 2))
HH(V(N))Qu (1)) (3.6)

Qp(2) =

where V(1—A(1—=z)) represents the composite function of V(z) and 1—A(1—z), S(1-A(1—2))
represents the composite function of S(z) and 1 — A(1 — z).

To determine Qp(z), we should obtain the coefficients g, q1, ..., gas by using the Rouche
theorem [15] and the Lagrange theorem [17]. In the denominator of Eq. (3.6), we define that

flz) =2, g(2) = =V(1 = A1~ 2))(S(1 = A1 —2)™.

For the probability distribution {z,k > 0} of any non-negative random variable integer
X and for a sufficiently small € > 0, in |z] = 1 + &, we have

o)
E xkzk
k=0

where E[X] is the mean of X and o(e) is the higher order infinitesimal of .
Applying the above inequality to g(z), we obtain

oo

< ixk(l +e)f = Zxk(l +ke)+o(e) =1+ eE[X] + o(e)
k=0 k=0

[ X(2)] =

19(2)] <1+ (Mp+AE[V])e +o(e), |f(2)] =1 +e)™ =1+ Me + o(e).
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If p+ AE[V]M~! < 1, then |f(2)| > |g(2)| in |2| = 1 +&. According to the Rouche theorem,
f(z) and f(z)+g(z) have the same number of roots in |z| = 14¢. Therefore, the denominator
of Eq. (3.6) has M roots in |z| = 1 + &, where one root is z = 1, and the other M — 1 roots
are given by applying the Lagrange theorem as

2mmn ;
2 dnfl n

X e M 2
2= Y o (VA= AL = 2) (S = AL - 2)™) (3.7)

z=0

n=1

where m = 1,2, ..., M — 1. Because Q,(z) is analytic in |z| < 1, the numerator of Eq. (3.6)
has the same roots. g satisfies the set of equations comprised of the following M — 1 linear
equations:

> (1= HV )2 (S = ML= 20))) V(1 = AL = 20)) + HV (V)20 !

~(S( = A= 2V = A1 = 2))) =0, m=1,., M1, (3.8)

Based on the normalization condition Q;(1) = 1 and by applying the L’Hospital rule in
Eq. (3.6), we have

(M(1—p) + HVN))A = AEV]))Qu(1) — (1 = p) + pH(V (X)) Q) (1)

M(1—p) — AE[V] =1 (39

where @, (1) represents the derivative values of Qps(z) at z = 1. From Eq. (3.9), we obtain
the relation between Q4,(1) and Qar(1) as follows:

ME[V] =M1 —p) | M(1-p)+HVA)(1-AE[V])
(1= p)+pH(V () (1=p)+pH(V ()

According to Eq. (3.10), we obtain the Mth equation for g as follows:

Qu(1) = Q@ (1). (3.10)

qu p)+ H(V(N))(1 = AE[V]) + k(1= p) + pH(V(N))))

- M(l— p) — AE[V]. (3.11)

From Egs. (3.3), (3.8) and (3.11), we can obtain a set of equations comprised by M + 1
linear equations, thus we can resolve gi, k = 0,1, ..., M and Qps(z). Taking derivatives for
both sides of Eq. (3.6) with respect to z and by applying the L’Hospital rule, the mean
number E[Q] of customers at the beginning instant of a service cycle is given by

ElQy] = 51— pl) “NEV) {)?ME[S(S —1)] - (M(M —1)(1 = p?) + 22pME[V]

FAEV(V = D)) + QY ()((1 ~ HV(N)p? = 1)
+Qu (1) (1= BV () (AEIS(S = 1)] + 20E[V])
—2pMH(V(N)M = 2AE[V]) + Que(1)((1 = H(V(V))

x (M(M = 1) + 2AME[V] + XE[V(V - 1)])
~M(M —1)p? = NX>ME[S(S — 1)] — 2ApM E[V]
CNE[V(V - 1)) + M(M + 1)H(V(X))) } (3.12)
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Combining ® = min{Qb, M} and Eq. (3.10), we obtain that

Z kqr + M Z qk
k=M+1
= QM(l) +M(1 - Qu(1))
AWV pMHYVO)) + BV = pM - AEV)Qu(D)
1—p(1—H(V (X))

The equilibrium condition of the system requires that the mean number of customers arriving
in a service cycle is less than M. Therefore, the equilibrium condition of the system is given
by

E[®]

M — pE[®] — AE[V] — H(V(A\)(1 — AE[V]) > 0. (3.14)
Based on the regeneration cycle approach and the expression of Qy(z), we obtain the

stochastic decomposition structure of stationary performance measures for a general limited
service Geom/G/1 queue with multiple adaptive vacations.

Stationary Queue Length and Waiting Time
Let L, be the stationary queue length of the Geom/G/1 (GL, MAVs), i.e. L, = lim L,.

n—oo
Therefore, we can obtain the following theorem.

Theorem 3.2. If M — pE[®] — AE[V] — H(V(A)(1 = AE[V]) >0 and p+ AE[V]M ™! < 1,
the stationary queue length L, in o Geom/G/1 (GL, MAVs) queue can be decomposed into
three independent random variables:

L,=L+ L4+ L,

where L is the stationary queue length of a classical Geom/G/1 queue presented in [13], [14],
its P.G.F. is
L~ (L=P=2)50 - A1 =)
SA-X1=-2)—=z2
Ly is an additional queue length of the Geom/G/1 queue with multiple adaptive vaca-
tions. L, is another additional queue length resulting from the general limited service policy.
P.G.Fs. Ly(z) and L.(2) of the additional queue lengths Lq and L, are given by

(3.15)

1) - V) g ) - vy
Ly(z) = - 11 _Vg‘()vm) , (3.16)
Li(z) = :
M (S(1 = A1 —2))MV(I = A(1 - 2))
1

X

1- V(- A1-2)+ H(V(X))(V@ “A1=2) = (1= 2V ) - 2)

x(Qui(S(1= A1 = 2)) (M (1 —A(1-2)))

+H(V(A)V (1 - (1—2))( (5(1—>\(1—Z)))M))

—QM(Z (SA-M1-2))M1-V

) —M1-2)))
HV\)Qu(1)z ((S(1 - /\(1 —z

(1
MM =M ). (3.17)
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Proof. Because L, is the number of customers at the departure instant of the nth customer
in a service cycle, and Ay represents the number of customers arriving in the kth service
period, then we have

Ln:Qb_n+ZAk; n=12,..®.

)
Substituting Eq. (3.13) and E {Z zL"] into Eq. (3.1) of Lemma 3.1 (regeneration cycle
n=1

approach), we obtain

Ly(2) E[nilzﬂ

E[@]
EIETESEIEIER)
STAT-2) -7
L2V () - T f’%ﬁ” (V1= A1 =) = V(D)
X —
(H(V()\)) 1 1 f{‘(xg))wm) (1-2)
B
T (S(1 = A1 — )MV (L — A1 — 2))
1

TV =A1-2) + H(V (X))
1

: 1-V(A-X1-2)+ H(V(X))(V(l -AM1-2)—-(1-V(

>l
>

Nz=V(Y)
( (S =A(1 = 2))) (M1 = V(1= (1= 2)))
HVODV (1= A1 = 2)(zM = (8(1 = A1 - 2))™)
—QM< J(S(1 = A1 = 2))M (1= V(1= A1~ 2))
H(VO)@Qur(1)7 ((S(1 = A1 = 2)M = 2¥))
= (Z) a(2)Lr(2) (3.18)
(1- p(1 = H(V)) PEV] + HV(D))(1 = V() - AE[V])]

(L~ ) \EV] + pMHVN) + HV(0)Qar (1)1 — pM — AEV])] -

where 8 =

Taking a derivative of L,(z) with respect to z, then applying the L’Hospital rule re-
peatedly twice and letting z = 1, we obtain the mean additional queue length E[L,] as
follows:

E|L,] = E[L] + E|L4) + E|[L,]
NE[S(S—-1)] 1- ( (\) NE[V(V -
A)

20=r) VOO, (H(V(X)) +
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where

A
Bl = S0 — ) AEVIREVIHV ) — 1) + VO — 1)

A = pQ;n(l) [ —2)\E[V] + 2MH(V(5\))(1 —p)—2\ME[V] — )\2E[V(V —-1)] - %
F2AMH(V(N)E[VI(1 — p) + MH(V ()M — 1)(1 — p%) = AE[S(S — 1)]
+Qui (1) [MH(V(X) (M = M +1) = 2MH(V(X)(1 - p)
—2MpE[V] - NXE[V(V —1)]|. (3.20)

Based on the stochastic decomposition result of the queue length L, and a classical
relation, we can prove the stochastic decomposition result of the waiting time. The classical
relation is that the number of customers in the system at the departure instant of a customer
is equal to the number of customers arriving in the sojourn time of that customer.

Theorem 3.3. If M — pE[®] — AE[V] — H(V(\)(1 = AE[V]) >0 and p+ AE[V]M~! <1,
the stationary waiting time W, in a Geom/G/1 (GL, MAVs) queue can be decomposed into
three independent random variables:

Wy=W4+Wy+W,

where W is the stationary waiting time of a classical Geom/G/1 queue presented in [13], [14].

Wy is an additional delay of the Geom/G/1 queue with multiple adaptive vacations and
W, is another additional delay resulting from the general limited service policy. P.G.Fs.
Wi(z) and W,.(z) of the additional delays W4 and W, are given by

A= HY (=) =2 T2 v - V)
Wa(z) = , (3.21)
o V)
<H(V(>\)) v /\E[V]> (1—2)
W.(z) = = p

NHHVO)NA - V) - WEI - HVO) +HYAO)(I - V)e
x (zQM(S(Z)) (= =DM = V() + HVADV (2)((z = WM

~SE)) - N (257 ) (S - V)

+H(V(A)Qu(1)(z = N((AS ()M = (2 = X)M))- (3.22)

Proof. Because the waiting time is independent of the input process after the arrival instant,
the number of residual customers in the system after the departure instant is equal to the
sum of the number of customers arriving in the waiting time W, and the service time .S for
the Geom/G/1 (GL, MAVs) model. Also, because of the independent increment property
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of the input process which follows a binomial distribution, the number of customers arriving
in the waiting time and the service time are mutually independent. We then have

Lo(2) = Wo(1 = M1 — 2))S(1 — A1 — 2)). (3.23)

Substituting L,(z) in Theorem 3.2 into Eq. (3.23), and letting 2/ = 1 — A(1 — z), then
displacing 2’ with z, we can obtain the P.G.Fs. Wy(2) and W,.(2) of the additional delays
W,y and W, given by Egs. (3.21) and (3.22), respectively. O

Because the inter-arrival time follows Geometric distribution, by using Little Law E[W,,] =
1
XE[Lq}, where E[L,| is the mean waiting queue length, i.e. E[L,| = E[L,]—p, we can obtain

the mean waiting time E[W,] as follows:

EIW,] = 1 (B[L.] - )
_AE[S(S-1)]  1-H(V(N) AE[V(V —1)]
T 2(1-p) 1-V()) 1— H(V (A +EW]

2 (H(V(X)) +
where E[W,] = %E[LT] and E[L,] is given in Eq. (3.20).

Analysis of the Service Cycle

According to the definition of the consecutive vacations (denoted by Vi, k = 1,2,..., H are
ii.d. random variables with the distribution function, the finite first and second moments)
and the number J of consecutive vacations presented in [14] and [20], then the P.G.F. J(z)
of J can be obtained as follows:

P(J>1)=1, P(J>j) =VH)y! ihk, j>2,
k=j

1—-=2 <
J(z)=1— ———=—1-H(V(N)z)). 3.25
() =1 {1 - HV()2) (325)
The P.G.F. Vz(z) and the mean vacation time E[Vg] of Vi, which is the whole time length
for every two consecutive vacations, are given as follows:

B 1-V(2) -
Vole) =1 - YOV
ElVe] = 2 . f{‘(/‘&;))E[V]. (3.26)

In a general limited service Geom/G/1 queue with multiple adaptive vacations, the server
may stay in an idle period. The idle period is equal to zero at the completion instant of J
vacations when one of the following three cases holds: (i) there are customers arriving in
the service period; (ii) there are no customers arriving in the service period, but there are
customers arriving during the vacation period; (iii) there are no customers arriving in the
service period or the vacation period, but there are residual customers that have resulted
from a general limited policy.
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The idle period is equal to an inter-arrival time if there are no customers arriving at
the completion instant of J vacations and there are no residual customers resulting from a
general limited policy. Let I,, be the time length of the idle period, the mean E[L,] of I, is
given as follows:

( _
AV (H(VA) (L= V(X)) +AE[V](1 — H(V(N))) (3.27)

The mean busy period is given as follows:

_ABIV] 4+ pMEVR) + H(V()@u(1)(1 — Mp— AE[V])
Bl = w(l— (L~ H(V(V))) - @2

The mean service cycle E[Cy] of Cy is given as follows:

ElC)] = EVa]+E[L)+ E[S)]
_ABIV] 4 pMH(V(N) + H(V(3)Qur(1)(L — Mp — AE[V])
- n(1—p(1— H(V(V)))
(1= p)BH(VV) (H(V )V (N)Qar(S() + Qui(0)(1 — V(R))
AV (HV )L - VX)) + AE[VI(L - HV (X))
+1Ifl—‘(/v(§;))E[V]. (3.29)

Let ps, pyv and p; be the state probabilities that the server is in a busy, vacation or idle
state, respectively. We can give that

NEV] + pMH(V(N) + H(V(3)Qur (1)(1 = Mp— \E[V))
1- y

e = u(1—p(1— H(V(V)))E[C,] ’
BV - HVQ)
Tl V@) _ _ _ (3.30)
o= p) H(V(N) (H(V )V (N)Qu(SK) + Qui(0)(1 = V(V)))
TN WEGI [HV)) A - V) + AEVIA - HVN)]

If the random variables H and M are supposed to have different probability distributions,
we can derive some vacation queueing systems as special cases of the model presented in
this paper as follows.

Special Cases

Since L,(z) and W, (z) are very complicated, the variances D[L,] and D[W,] of L, and W,
will be more complicated. In order to simplify, we assume that the random variables H and
M to have the special probability distribution.

(1) Let H — oo and M — oo, the queue turns into a Geom/G/1 queue with multiple
vacations. There is no idle state in the system, and H(z) = 0. Then the P.G.Fs. of
the additional queue length and the additional delay correspond with the results given
in [13], [14]. Taking a derivative of L, (z) with respect to z, then applying the L’Hospital rule
repeatedly twice and letting z = 1, we can obtain the mean additional queue length E[L,,,].
Taking the two order derivative of L,(z) with respect to z, then applying the L’Hospital
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rule repeatedly three times and letting z = 1, we can obtain the variance D[L,,,]. They are
as follows:

NE[S(S —1)]  AE[V(V —1)]

E[Lmv] = p+ 2(1 — p) 2E[V] ’ (331)
D[Lpy) = L"(2)ls=1 — (E[L)* + E[L] + Lj(2)|:=1 — (E[La])* + E[Ld]
_ BAE[S(S —1)] | ME[S(S—1)(S-2)] ( A2E[S(S — 1)])2
2(1-p) 3(1=p)? 2(1-p)
1 (AE[S(S—1)]\> XE[V(V =1)(V —2)]
+2( 1 > T 3E[V]
AE[V(V —1D]\?  AE[V(V —1)]
B ( 2E[V] ) 2E[V] (3.32)
where
3 z 3 z
giss -0 -2 = F ey w2 =S|
Coefficient CV (L) of Variation of L,,, is given by
Y D[Lmv] o D[Lmu]
CViLmo) = “p T = T NESE 1) MV 1) (3:33)

p+

2T—p) | 2E[V]

Taking a derivative of W, (z) with respect to z, then applying the L’Hospital rule repeat-
edly twice and letting z = 1, we can obtain the mean waiting time E[W,,,]. Taking the two
order derivative of W, (z) with respect to z, then applying the L’Hospital rule repeatedly
three times and letting z = 1, we can obtain the variance D[W,,,]. They are as follows:

AE[S(S—-1)]  E[V(V-1)]

EWn,] = 20 =) + SEV] (3.34)
DWy] = W'(2)ls=1 — (BW])? + EW]+ W (2)].=1 — (E[Wa])? + E[W,]
OAE[S(S-1)(S-2)] 1 <>\E[S(S —1)] ) > AE[S(S —1)]
B 3(1-p) 4\ (1-p) 2(1-p)
EV(V-1)(V-2)] (EVV-1]\* EV(V -1
3E[V] B ( 2E[V] ) 2E[V] (3:35)

Coefficient CV (W,,,,,) of Variation of W,,, is given by

D[Wpo] D[Wy)
EWn,] — AE[S(S-1)]  E[V(V-1)
2(1-p) 2E[V]

OV (W) =

(3.36)

(2) Let H =1 and M — oo, the queue turns into a Geom/G/1 queue with a single
vacation. There is an idle state in the system, and H(z) = z. Then the P.G.Fs. of
the additional queue length and the additional delay correspond with the results given
in [13], [14]. Taking a derivative of L,(z) with respect to z, then applying the L’Hospital
rule repeatedly twice and letting z = 1, we can obtain the mean additional queue length
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E[Ls,). Taking the two order derivative of L,(z) with respect to z, then applying the
L’Hospital rule repeatedly three times and letting z = 1, we can obtain the variance D[Ly,].
They are as follows:

NE[S(S—1)]  AE[V(V —1)

T e R ) VRS VoI 5 (337
D[Ly,] = L"(2)l:=1 — (BL])? + BIL] + Lj(2)]:=1 — (E[Ld])? + E[Ld]
_ BVES(S—1)] | ME[S(S—1)(5-2)] _ (p A2E[S(S — 1)])2
2(1-p) 3(1—p)? 2(1-p)
1 (AE[S(S—1)]\*  ME[V(V -1)(V -2)]
"2 ( [y ) BV(N) + AE[V]]
NEVV -1 \>  XNE[V(V -1)
a <2[V(5\) + )\E[V]]) 2[V(A\) + AE[V]] (3:38)

Coefficient CV(Lg,) of Variation of Ly, is given by

/D] DL
VL) = pr T = WEBGE-1)]  NEVV -1 (3.39)
P VOV +ABIV]]

Taking a derivative of W, (z) with respect to z, then applying the L’Hospital rule repeat-
edly twice and letting z = 1, we can obtain the mean waiting time E[Wj,]. Taking the two
order derivative of W, (z) with respect to z, then applying the L’Hospital rule repeatedly
three times and letting z = 1, we can obtain the variance D[Wj,]. They are as follows:

AE[S(S—1)]  AE[V(V —1)]

EWal = =05 Tavoy 2BV (8.40)
DWy] = W'(2)loz1 — (BIW])? + E[W] + Wi (2)|.=1 — (E[Wa])? + E[Wq]
AE[S(S —1)(S - 2)] L1 (/\E[S(S - 1)]>2 AE[S(S —1)]
3(1=p) 4 (1—p) 2(1-p)
AE[V(V —1)(V —2)] AE[V(V —1)] \° AE[V(V —1)]
* VN +AE[V] (2[1/()\) +>\E[V]]> 2[V(A) + AE[V]] (3.41)

Coefficient CV (Wy,) of Variation of W, is given by

D[st] o D[WSU]
EW.] — AES(S-1)]  EVV -1
2(1—p) 2E[V]

Performance Optimization

In this section, we develop an expected cost function per unit time for Geom/G/1 queue
with general limited service and MAVs. Our objective is to determine the optimal expected
traffic intensity, and to minimize the total expected cost. Firstly, we define the following
parameters:

C71 = Cost of unit time when the system is on the busy period,
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C5 = Cost of unit time when the system is on the vacation period,
C3 = Cost of unit time when the system is on the idle period.
Therefore, the total expected cost is given as follows:

F(E[V],H,p) = CiE[S\]+ C2E[Ve] + C3E][1,]
_ o MBI+ pMH(V(N) + HV(N)Qu(1)(1 = Mp = AE[V])
- 1
p(l=p(L=HWV M) )
+C( ) H(V ) (H(V ())V(A)QM(S(A))JrQM(O)(l—V(A)))
8 V) (HVO))(1=VA) + AE[VI(1— H(V(N)))
1- ( (\)
+C27(5\) E[V] (4.1)

where E[V], A, u, H and M are decision variables that we can give them as parameters of
the system. The values of the parameters A, H and M in a queueing service system are
not usually to be controlled due to the outside factors of the system. For some purposes,
E[V] and p can be viewed as controllable variables. Therefore, we think that F(E[V], p) is
the function of the mean vacation time length E[V] and p, then we search the optimal cost
function about E[V] and p.

Since E[V] and p are controllable variables, and they can be changed by the management
of the system, F(E[V],p) follows changes when the mean vacation time length E[V] and
p changes. We will find the minimum cost F(E[V], p) about p, so that we can find the
optimal value of service rate, and provide a useful performance evaluation tool for more
general situations arising in practical applications such as the manufacturing system and
other related systems.

We use a direct search method to obtain the optimal value p such that the expected cost
function F(E[V], p) attains a minimum value, say F(E[V]*, p*). The procedure for finding
the optimal solution is described in the following.

Step 1: For fixed values A\, M and H, find the minimum value F(E[V]*,p) for threshold
value p, i.e.,
min F(E[V], p) = F(E[V]", p).

Step 2: Find the set of all minimum cost solutions for p = pmin, s Pmaz,
6= {F(E[V]*,p) P = Pmin, ---vpma:v}-
Step 3: Find the minimum cost solution for p = pmin, -, Pmaz,

min© = F(E[V]*, p").
P
Due to the random variable H can be supposed to have different probability distributions,
F(E[V], p) will have different forms. Therefore, we can derive the cost function F(E[V],p)
to obtain the best traffic intensity p* and the minimum cost by the analysis presented above.

Numerical Results

In this section, we present some numerical results that provide insight into the system
behavior. Using the equations presented in Section 3, we can numerically compare the
performance measures of the systems for two different Geom/G/1 (GL, MAVSs) queueing
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models: the Geom/G/1 queue with multiple vacations and the Geom/G/1 queue with sin-
gle vacation. Here we assume that the service time S and the time length V of an arbitrary
vacation follow geometric distributions, i.e., S follows a geometric distribution with pa-
rameter y = 1/5. V follows another geometric distribution with parameters 1/3 and 1/6.
Suppose that the range of the traffic intensity p is from 0.1 to 0.9.

In all figures in this section, “MV” represents that the numerical results are for the
Geom/G/1 queueing model with multiple vacations and “SV” represents that the numerical
results are for the Geom/G/1 queueing model with single vacation.

——MV (E[V]=3)
—&—SV (E[VI=3)
sH MV (E]V]=06)
——SV (E[V]=6)

A~

(98]

o)

Mean queue length E[Lv]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Traffic intensity p

Figure 2: Mean queue length versus traffic intensity p.

Figure 2 shows how the mean queue length E[L,] changes with the traffic intensity p
with E[V] = 3 and 6 for two cases of vacation policy, i.e., multiple vacations and single
vacation. We can find that when p increases, the mean queue length F|[L,] increases. This
is because the greater the traffic intensity p is, the higher the possibility is that there will
be customers arriving during the service cycle. We note that the mean queue length E[L,]
of the Geom/G/1 (E, MV) queue is smaller than E[L,] of the Geom/G/1 (E, SV) queue.
And we also find that the mean queue lengths of two queue models with E[V] = 6 are larger
than that of queue models with E[V] = 3.

Figure 3 shows how the mean waiting time E[W,] changes with the traffic intensity p with
E[V] = 3 and 6 for two cases of vacation policy, i.e., multiple vacations and single vacation.
We can find that when p increases, the mean waiting time E[W,] decreases slowly, then
increases fastly for the single vacation queue with E[V] = 6. However, the mean waiting
time E[W,] increases for other three cases. This is because the greater the traffic intensity p
is, the higher the possibility is that there will be customers arriving during the service cycle.
We note that the mean waiting time E[W,] of the Geom/G/1 (E, MV) queue is smaller
than E[W,] of the Geom/G/1 (E, SV) queue. We also find that the mean waiting times of
two queue models with E[V] = 6 are larger than that of queue models with E[V] = 3.

Figure 4 shows how coefficient of variation CV[L,] changes with the traffic intensity
p with E[V] = 3 and 6 for two cases of vacation policy, i.e., multiple vacations and single
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Figure 3: Mean waiting time versus traffic intensity p.
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Figure 4: Coefficient of variation CV[L,] versus traflic intensity p.

vacation. We can find that when p increases, coefficient of variation CV[L,| decreases slowly
firstly, then increases fast.

Figure 5 shows how coefficient of variation CV[W,] changes with the traffic intensity
p with E[V] = 3 and 6 for two cases of vacation policy, i.e., multiple vacations and single
vacation. We can find that when p increases, coefficient of variation CV[W,] decreases
slowly firstly, then increases fast. We note that the coefficient of variation CV[W,] of the
Geom/G/1 (E, MV) queue is larger than CV[W,] of the Geom/G/1 (E, SV) queue. We also
find that the coefficient of variation CV[W,] of two queue models with E[V] = 3 is larger
than that of queue models with E[V] = 6.
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Figure 5: Coefficient of variation CV[W,] versus traffic intensity p.

Figure 6 shows how the probabilities pz, p, and p; change with the traffic intensity
p for two cases of vacation policy, i.e., multiple vacations and single vacation. We can
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Figure 6: The probability versus traffic intensity p.

find that when p increases, the probability p; that the server is in a busy state increases.
This is because this probability p; equals to p for two cases of vacation policy. When p
increases, the probability p,- that the server is in a vacation state decreases for the case
with multiple vacations (MV). This is because the higher the possibility that there will be
customers arriving during the service cycle will be, therefore the mean vacation time will
be shorter. When p increases, p; that the server is an idle state decreases, while p,, for the
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case with singe vacation (SV) increases firstly, then decreases. This is because the higher
the possibility that there will be customers arriving during the service cycle will be, almost
there are no vacation time and idle time for the server.

To perform a sensitivity analysis on the optimal traffic intensity p* and the cost function
F(E[V], p) with the changes of the traffic intensity p, we show the cost function F'(E[V], p)
in Fig. 7. We assume H — oo and M — oo, the queue turns into a Geom/G/1 queue with
multiple vacations, and C; = 10, Cy =7, C3 = 2.

2000
B
= 1500
)
= 1000-
8
g
E 500
8
O

Figure 7: Mean cost function versus traffic intensity p.

Figure 7 shows how the cost function F(E[V], p) changes with mean vacation time length
E[V] and the traffic intensity p. When the traffic intensity p is fixed, the cost function
F(E[V],p) firstly decreases as E[V] increases, then increases as E[V] increases. E[V] signif-
icantly affects the cost function F(E[V],p), and the minimum cost is F(4.5,0.1) = 337.37.
When the mean vacation time length E[V] is fixed, the cost function F(E[V], p) increases as
the traffic intensity p increases. This is because the larger the traffic intensity p is, the more
consecutive the traffic will be, then the less the total vacation time is, therefore F(E[V],p)
becomes larger. Figure 7 shows that the larger F(E[V], p) is, the less the Quality of Service
(QoS) of the system is.

These properties above provide the theoretical basis for the management and the opti-
mization of the queueing system. We also can select the parameters C1-C5 as many other
cases. For different parameters, we can show different results of the optimal service rate,
the cost function F'(E[V], p) and different values.

@ Conclusions

In this paper, we presented in detail an analysis of a general limited service Geom/G/1 queue
with multiple adaptive vacations. We derived the P.G.Fs. of the stationary queue length and
the waiting time by using the embedded Markov chain method and the regeneration cycle
approach. Furthermore, we obtained the probabilities of the server being in various states:
busy, vacation and idle, respectively. We calculated their averages and higher moments of
L, and W, by differentiating the P.G.F's. to numerically compare different system cases,
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such as D[L,], D[W,], CV(L,) and CV(W,) for multiple vacations and single vacation.
We also presented a cost function F(E[V],p) that is to determine the optimal expected
traffic intensity in the system. Therefore we can obtain the optimal value of service rate
and the optimal management policy. In this model, in order to be simple, we assumed
the service time and the vacation time to follow geometric distributions. In fact, they can
also be assumed to follow Deterministic distribution, Logarithmic distribution and Poisson
distribution and so on. Because the multiple vacation and the single vacation are the most
typical vacation policies, we also studied two vacation policies to be the special cases of our
model. Finally, we gave some special cases, in order to verify the conclusion that the choice
of the vacation length and p is significant in improving performance of the system, we can
also get the optimal service rate with the cost function F(E[V], p).
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