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[4, 5, 2] and more references can be found in [3]. This kind of methods is computationally
efficient. However, the relative time delay estimation become very poor in a reverberant
environment and the accuracy of localization is not ensured. The other is based on the
beamforming technique. Broadband beamforming is a general technique for spatial filtering
[17] and signal enhancement [19, 14], which can also be applied directly to the localization
problem by exploring the steering nature of beamformers. It takes all the information in the
computational domain into account and it can produce better accuracy than the method
based on the time delay estimation. The steered response power (SRP) algorithm [20, 6, 10]
belongs to this kind. The particle filtering method [18] has also been employed in tracking
the source, which uses a state space approach. The location is modeled as a Markov process
where the current state is estimated by filtering on previous states.

In the literature, these methods are formulated in a non-reverberant environment. Meth-
ods based on delay information become inaccurate due to the presence of reverberation which
creates many mirror images of the source. On the other hand, the steering nature of beam-
formers could differentiate small power level differences between the true source and reflected
sources. But this has not been explored in the literature. In view of this, we propose a new
approach here to solve the indoor acoustic source localization problem using array response
powers, based on the broadband beamformer design method in [7].

The proposed method includes the several steps. First, a room acoustic model is em-
ployed to estimate the transfer functions between any two points in the computational
domain. This will characterize the room acoustics with reverberation. Second, a series of
beamformer design problems with specified passband and stopband regions will be solved
to yield a collection of beams for the computational domain. Moreover, instead of solving
the filter coefficients, the corresponding optimal frequency response vectors are sought in-
stead as described in [7, 9]. In addition, the designed beamformers will be standardized via
certain mild requirements derived in this paper. Third, by using the steering vectors and
calculating the beamformer output levels for all mesh points, a two-dimensional function
can be constructed which contains the output levels at each point. Finally, we prove that
the source location will correspond to the maximum value of this two-dimensional output
level function, and hence it can be solved by maximizing the function. The structure and
property of the underlying optimization problem are explored in order to develop a more
specific technique for finding the global solution to the localization problem.

To the best of our knowledge, this is the first method which employs a room acoustic
model for profiling the reverberation characteristics for indoor sound source localization. In
addition, when the steered response power is applied, it has the difficulty in standardizing
different beams in various locations and the effect of filter length is also of concerns. These
problems have been addressed fully in this paper where the conditions on the beamformer
standardization are derived properly; the frequency response functions are optimized di-
rectly instead, which serves as the performance limit of long filters. Finally, we show that
the source location is indeed the global maximum value of the constructed two-dimensional
output level function. As a result, the localization problem is reduced to the optimization
of a two-dimensional function, which can be tackled by certain existing methods.

The rest of the paper is organized as follows. In Section 2, we review the acoustic model
for transfer functions. Based on estimated transfer functions, we develop a new framework
for the acoustic source localization problem in Section 3. Detailed analysis of the problem
is also carried out. In Section 4, the implementation details of the proposed method are de-
scribed. For illustration, several numerical examples are solved in Section 5 to demonstrate
the efficiency and effectiveness of the proposed method.
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2 Transfer Function

In this section, we describe the image model [1] for estimating transfer functions with re-
verberation and employed the implementation proposed by [11]. A general model of the
transfer function should be a complex function with respect to the frequency and it is also
related to the source location and receiving location. It can be defined as T (r, q, f, θ), where
r is the source location, q is the receiving location, f denotes the frequency of the signal
and θ denotes the uncertainties of this model.

For specific surroundings, the acoustic transfer function is relatively stable. In the non-
reflection case, the following transfer function

T (r, q, f, θ) =
1

||r − q||
e−j2πf

||r−q||
c . (2.2)

is often used, while in the indoor situation, the image model can be deployed. The model
was proposed in [1] and it is the limit of the sum of many transfer functions (2.2) computed
from all possible reflections of six walls. A fast implementation of the method was proposed
in [11]. Essentially, given an enclosure with dimensions L = [Lx, Ly, Lz]

T with a source
point r and a microphone receiver q, the basic idea of the image model is to mimic images
from an infinite grid of mirror rooms expanding in all three dimensions. Each mirror image
is a replica of the source signal delayed by a lag τ and attenuated by an amplitude factor A:

A(u,v) =
β
|vx−ux|
x,1 β

|vx|
x,2 β

|vy−uy|
y,1 β

|vy|
y,2 β

|vz−uz|
z,1 β

|vz|
z,2

4π · d(u,v)
,

where u = (ux, uy, uz)
T and v = (vx, vy, vz)

T , β = {βx,i, βy,i, βz,i, i = 1, 2} are the reflection
coefficients for the six enclosure surfaces, and d(·, ·) represents the distance as

d(u,v) = ∥diag(2ux − 1, 2uy − 1, 2uz − 1) · r + qdiag(2vx, 2vy, 2vz) ·L∥.

Then the indoor room impulse response between such a pair of source-receiver can be esti-
mated by

h(r, q, t) =
1∑

u=0

+∞∑
v=−∞

A(u,v) · δ(t− τ(u,v)),

where δ(·) denotes the Dirac impulse function and τ(u,v) = d(u,v)/c is the time delay
of the considered image source. By using a frequency domain representation, this room
impulse response yields the required transfer function which can be employed in designing
indoor beamformers as illustrated in [12, 13].

3 Problem Formulation

In this section, we propose a new framework of the localization problem formulation based
on the estimated room transfer function described in the last section. In particular, it
includes the steps of forming a collection of optimized beamformers for the computational
domain, and a two dimensional function of the beamformer output levels is constructed for
global optimization. Analysis on the variation of output levels for different beamformers are
carried out, and conditions on the standardization are derived. Furthermore, the properties
of the constructed output level function are studied.
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3.1 Microphone Array Model

In this section, we describe the formulation of beamformer outputs based on the frequency
response functions directly instead of filters as proposed in [7]. We assume that there is a
microphone array of N elements which samples sound signals. Suppose that the input data
is given by X(f) at location r and that the locations of microphones are qi, i = 1, . . . , N .
The data received by the microphones can be denoted by

Yi(r, f) = X(f)T (r, qi, f, θ), i = 1, . . . , N. (3.1)

The received signals are processed by the filters behind. Suppose that the filter frequency
responses are given by Hi(f), i = 1, . . . , N . By summing up the processed data from all
filters, the output response of the microphone array is given by

Y (r, f) =

N∑
i=1

Yi(r, f)Hi(f) =

N∑
i=1

X(f)T (r, qi, f, θ)Hi(f). (3.2)

Define a response function as

G(r, f, θ) =
N∑
i=1

Hi(f)T (r, qi, f, θ) = T ᵀ(r, f, θ)H(f), (3.3)

where

T (r, f, θ) = [T (r, q1, f, θ), . . . , T (r, qN , f, θ)]ᵀ

is the transfer function vector and

H(f) = [H1(f), . . . , HN (f)]ᵀ

is the frequency response vector. Then, the output response (3.2) becomes

Y (r, f) =X(f)

N∑
i=1

T (r, qi, f, θ)Hi(f) = X(f)G(r, f, θ). (3.4)

3.2 An ε-accuracy Scheme Formulation

Since we need to compare different output levels of all optimized beamformers in the com-
putational domain, there is a need to standardize the beamformers so that the output level
difference due to different designs is within a small tolerant. In this and the following sec-
tions, the design requirements are derived in Theorem 1. Moreover, in Corollary 1 and 2, we
show that, under the design requirements, location variations correspond to the difference
in beamformer output levels. In particular, in Theorem 2, it is shown that the true location
will have the maximum output level value of all. As a result, we can formulate the global
maximization problem based on the output levels for the speaker location.

Equation (3.2) yields the output of the microphone array system. Our object is to derive
the location information from this output. Note that in (3.2), the frequency response vector
is yet to be designed. Note that Y is a function of (r, f), we can design the frequency
response vector for a specific location. Since the speaker can be in all possible locations
within the room, we will design a series of frequency response vectors such that all possible
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locations can be localized. That is, we define a frequency response function H(r̄, f) for each
location r̄. Then, (3.2) becomes

Y (r, r̄, f) =
N∑
i=1

Yi(r, f)Hi(r̄, f)

=X(f)
N∑
i=1

T (r, qi, f, θ)Hi(r̄, f)

=X(f)G(r, r̄, f, θ), (3.5)

where the true source is located at r, and G(r, r̄, f, θ) is defined in (3.3) with the frequency
response vector H(f) replaced by H(r̄, f).

In designing the frequency response function H(r̄, f), we need a criterion to measure
whether H(r̄, f) is suitable for localization. This criterion is set up for a given output
function (3.5). In the ideal case, for any given source location r, we can find a corresponding
location r̄ by the output function (3.5) according to the criterion, which satisfies r̄ = r. It
can be seen that this localization is exact, but it’s difficult to pinpoint in practice. Instead,
we can consider an ε-accuracy scheme; that is, for any given source location r, we can find
a location r̄ by the output function (3.5), which guarantees ||r̄ − r|| ≤ ε. The ε-accuracy
scheme can be implemented in practice if ε is chosen adaptively. Basically, if ε is smaller,
the localization accuracy should be better, while the implementation cost will become more
expensive.

3.3 Beamformer Design

To implement an ε-accuracy scheme, the choice of frequency response vector which de-
termines the properties of the output function (3.5) is very important. We choose the
maximizer as the criterion, that is, r̄ is obtained by finding the maximizer of the output
function (3.5). Therefore, we need to design the frequency response vector such that the
output function (3.5) will achieve the maximum near the source location r. The designed
beamformers should include the location information. This can be done by the following
specific beamformer design method.

From (3.3), the function G(r, f, θ) is the actual response of the beamformer output,
which is independent of the input signal X(f). We can design the filter response vector
such that it fits a given desired response function. We choose a given region called passband
region, which is denoted by Ωp and a given region called stopband region, which is denoted
by Ωs. Denote the specified space-frequency domain by Ω = Ωp ∪ Ωs. Then, we choose a
cost function as

E(H) = max
Ω,θ

|T ᵀ(r, f, θ)H(f)−Gd(r, f)| , (3.6)

where Gd(r, f) is a given desired response function. For the choice of Gd(r, f), its magnitude
should be chosen as 1 in passband region and 0 in stopband region. Here, we set Gd(r, f)
as

Gd(r, f) =

{
e−j2πf

||r−rc||
c , (r, f) ∈ Ωp

0, (r, f) ∈ Ωs
, (3.7)

where rc is the spatial point of a given reference location, which is often chosen as the centre
of the microphone array.
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The design problem is to find a frequency response vectorH(f) such that the beamformer
output G(r, f, θ) fits a given desired response Gd(r, f); that is, the objective is to minimize
the cost function (3.6)

min
H

E(H). (3.8)

It can be seen that this problem is a minimax optimization problem. A practical way of
solving the minimax optimization problem is the discretization method, where the specified
domain is replaced by a sufficiently dense grid. Note that the optimization problem (3.8)
can be solved for each given frequency. Therefore, we decompose the domain Ω as

Ω =
∪
f

Ωf , (3.9)

where, for each frequency f , Ωf is the corresponding spatial domain in Ω for f . Denote
the set of all the frequencies f by IΩ. Then, for each frequency f ∈ IΩ, we consider the
subproblem as

min
H(f)

Ef (H(f)), (3.10)

where

Ef (H(f)) = max
Ωf

|T ᵀ(r, f, θ)H(f)−Gd(r, f)| . (3.11)

For this subproblem, note that the function inside the magnitude is linear with respect to
the frequency response vector H(f). Hence, this problem can be transformed into a linear
semi-definite programming problem, and an interior point method can be applied to solve
it efficiently and effectively. Details of the transformation and the method can be seen in
[7] and [8].

Denote the optimal solution by H∗(f), then the optimal value of this problem is given
by E∗ = E(H∗), which can also be computed by

E∗ = E(H∗) = max
IΩ

Ef (H
∗(f)). (3.12)

We define E∗ as the performance value of the beamformer. The smaller the E∗, the better
the performance of the beamformer.

Note that the frequency response vector obtained by solving the problem (3.8) is for
a specific location. We need to cover the whole domain by seeking the response function
H(r̄, f) for each location r̄. In this way, we have designed beamformer for each location
r̄. For convenience, we denote the designed beamformer for the specific location r̄ as r̄-
beamformer. In the following, the spatial domains Ωf is aligned for all frequencies to be the
same set, denoted by S. That is,

Ωf = S, ∀f ∈ IΩ.

Then, the design domain Ω is Ip×S, where Ip is the frequency domain including the human
vocal spectrum.

For the spatial domain S, we define it to be the set of discrete locations in the room. To
set up the beamformer, the passband and stopband are denoted by Sp and Ss, respectively.
For the set of the r̄-beamformer, we choose the domain Sp containing r̄, that is, r̄ ∈ Sp.
Then, the response function H(r̄, f) can be obtained by solving this beamformer problem.
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3.4 Optimization Problem

After all the response functions H(r̄, f) are obtained, we can formulate the localization
optimization problem. First, we analyze the property of the r̄-beamformer.

Theorem 3.1. Suppose that the performance value of the r̄-beamformer problem (3.8) is

E∗ < 0.5. (3.13)

Then, ∀(r′, f) ∈ Ωp and ∀(r′′, f) ∈ Ωs, we have

|Y (r′′, r̄, f)| ≤ |X(f)|/2 ≤ |Y (r′, r̄, f)|. (3.14)

The equality is true if and only if |X(f)| = 0.

Proof. Since (r′, f) ∈ Ωp, we have

|Y (r′, r̄, f)| = |X(f)| · |G(r′, r̄, f, θ)|
=|X(f)| · |G(r′, r̄, f, θ)−Gd(r

′, f) +Gd(r
′, f)|

≥|X(f)| · (|Gd(r
′, f)| − |G(r′, r̄, f, θ)−Gd(r

′, f)|)
=(1− E∗) · |X(f)|
≥|X(f)|/2.

Since (r′′, f) ∈ Ωs, we have

|Y (r′′, r̄, f)| = |X(f)| · |G(r′′, r̄, f, θ)|
=|X(f)| · |G(r′′, r̄, f, θ)−Gd(r

′′, f) +Gd(r
′′, f)|

≤|X(f)| · (|Gd(r
′′, f)|+ |G(r′′, r̄, f, θ)−Gd(r

′′, f)|)
=E∗ · |X(f)|
≤|X(f)|/2.

From these two equations, it’s easy to see that the symbol “≥” becomes “>” if and only if
|X(f)| > 0. This completes the proof.

By Theorem 3.1, the beamformer is designed properly so that we can observe a clear
difference between the passband region and the stopband region, which is essential for lo-
calization. It follows from Theorem 3.1 that we have the following.

Corollary 3.2. Suppose that the performance value of the r̄-beamformer problem (3.8)
satisfies the condition (3.13). Then, ∀r′ ∈ Sp and ∀r′′ ∈ Ss and ∀f ∈ Ip, we have

|Y (r′′, r̄, f)|2 ≤ |X(f)|2/4 ≤ |Y (r′, r̄, f)|2. (3.15)

The equality is true if and only if |X(f)| = 0.

Corollary 3.2 gives the results for one beamformer. For two simultaneous beamformers,
similar results can be obtained. Denote the spatial domain of the passband region and
stopband region of r̄-beamformer by Sp(r̄) and Ss(r̄), respectively. The result is summarized
below.
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Corollary 3.3. Suppose that for any two points r̄′, r̄′′ ∈ S, the performance values of r̄′-
beamformer and r̄′′-beamformer satisfy the conditions (3.13). If the true source location r
belongs to Sp(r̄

′) and also belongs to Ss(r̄
′′), we have

|Y (r, r̄′′, f)|2 ≤ |Y (r, r̄′, f)|2, ∀f ∈ Ip. (3.16)

The equality is true if and only if |X(f)| = 0.

Next, we consider the localization optimization problem. Denote the complementary set
of Ss(r̄) by

(Ss(r̄))
c = S \ Ss(r̄),

and the performance value of the r̄-beamformer by E∗(r̄). We have the following result.

Theorem 3.4. Suppose that |X(f)| > 0 and for any r̄ ∈ S, the performance value E∗(r̄)
is less than 0.5. If

r̄ ∈ Sp(r̄), ∀r̄ ∈ S, (3.17)

then the true source location r satisfies

r ∈ Ss(r̄
∗)c, (3.18)

where r̄∗ is the maximizer of the function |Y (r, r̄, f)|2 with respect to r̄.

Proof. By (3.17), we have r ∈ Sp(r). Then, it follows by (3.15) that

|X(f)|2/4 ≤ |Y (r, r, f)|2.

Hence, the maximizer point r̄∗ must satisfy

|X(f)|2/4 < |Y (r, r̄∗, f)|2.

Then, it follows by (3.15) that r must not belong to Ss(r̄
∗), or the equation above can not

be satisfied. Thus, we have the result (3.18). This completes the proof.

By Theorem 3.4, the function Y (r, r̄, f)|2 can be used as the performance indicator to
be maximized for localization if and only if |X(f)| > 0. To prevent the case of |X(f)| = 0,
where the maximizer is not unique, we define the indicator function as

F (r̄) =

∫
Ip

|Y (r, r̄, f)|2df, (3.19)

where, for an acoustic signal, there exists some frequency f such that |X(f)| > 0. Then,
the localization problem can be formulated into the following optimization problem:

max
r̄∈S

F (r̄). (3.20)

4 Implementation

As described in the previous section, the localization problem is reduced to forming a col-
lection of optimized beamformers for the computational domain and maximizing on the
beamformer output levels, in this section, we discuss the implementation details and sum-
marize the final algorithm.
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4.1 Choice of Beamformers

From the previous section, we can see that the conditions in Theorem 3.4 must be satisfied.
Thus, the choice of beamformers can not be arbitrary. To formulate the r̄-beamformer
design problem for each r̄, we should define a suitable passband region and the corresponding
stopband region. First, for the frequency domain, sound produced by the human vocal tract
has the range from about 100Hz to 6kHz [16]. The frequency domain Ip should cover at
least part of this range [100Hz, 6kHz] for practical applications. In fact, the frequency range
of male voice is relatively lower while the frequency range of female voice is relatively higher.

For the the spatial domain, it follows by Theorem 3.4 that condition (3.13) must be
satisfied for any r̄. To satisfy this condition, we need to have a reasonable transition region
for all the beamformer design problems. If the transition region is too narrow, the actual
responseG will become oscillatory at the edges of the passband region as well as the stopband
region. The reason is that the actual response G is continuous with respect to r while the
desired response Gd is not continuous. Then, |G| should be allowed to transit from 1 to 0
gradually to avoid the performance value (3.12) of the beamformer being greater than or
equal to 0.5, which contradicts condition (3.13).

Following Theorem 3.4, the stopband region should be as large as possible in order to
achieve good localization accuracy. Also, as a rule of thumb, it is usually not easy to design
a good beamformer with a very large passband region. Hence, for any r̄, the r̄-beamformer
should be defined with a relatively small passband region.

4.2 Computation of Cost Function

Since the localization problem is a precursor to track speaker movements, the implementa-
tion efficiency is very important. However, the cost function (3.19) is expensive to compute.
This is because the computation of the function (3.5) requires the value of frequency re-
sponse vector H(r̄, f). Therefore, for any r̄ in S, H(r̄, f) is obtained by solving a minimax
optimization problem (3.8). Hence, the computation of the cost function (3.19) is rather ex-
pensive. To simplify the computation of H(r̄, f), we choose a sufficiently dense discrete set
of points in the spatial domain S, which replaces the original continuous set S. We then only
consider the point r̄ in a finite grid of S, which can be denoted by Sd = {r̄k : k = 1, . . . nS},
where nS is the number of points in the grid. For a typical room, an example of Sd can be
seen in Figure 1.

Then, we can calculate the optimal solution H(r̄, f) over the finite set Sd. This will be
implemented offline and the optimized solutions can be stored in advance to form different
beams in the domain. For a point r̄ which is not in Sd, we can use interpolation to calculate
the function value F (r̄). When the finite set Sd is sufficiently dense, the approximation
error should be small.

Since the frequency response function H(r̄, f) are computed in advance, the main com-
putational effort of the function (3.5) is the computation of Yi(r, f), which is the discrete
Fourier transform of the received data. This can be implemented very efficiently in practice
so that the evaluation of the cost function can be achieved in real time.

4.3 Decomposition Method

The problem (3.20) is a continuous optimization problem. We need to develop an efficient
and effective method to solve this problem and to implement it in real time. However, this
problem is very complicated and there are many local maximizers. This can be seen in the
figures in the examples below.
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Figure 1: An example of S, Sd, r∗d and N(r∗d).

Note that the size of the spatial domain S is limited and the feasible set is bounded.We
can find the solution over the mesh first to obtain an initial approximate solution, and refine
the global solution in a small area by a local optimization method. Hence, we can solve this
problem by the following algorithm in two steps as follows:

1. Solve the problem (3.20) with r̄ constrained in its discrete set Sd. That is,

max
r̄∈Sd

F (r̄). (4.1)

2. Solve the problem (3.20) with the search area constrained to only a small neighbour-
hood of r̄∗d, that is

max
r̄∈N(r̄∗d)

F (r̄), (4.2)

where N(r̄∗d) denotes a neighborhood of r̄∗d.

In the first stage, It can be seen that the optimization problem is discrete. That is,
the variables are defined in a discrete set Sd. Since H(r̄, f) over the finite set Sd is stored
in advance, the computation of F (r̄) over the finite set is computed very efficiently. The
problem can be solved by comparing all the function values in Sd and therefore the maximizer
can be found quickly.

In the second stage, after solving the subproblem (4.1), the maximizer is obtained, which
can be denoted by r̄∗d. Then the solution of problem (3.20) is close to the point r̄∗d. Hence,
a local search in a small neighbourhood will be sufficient to refine and pinpoint the final
source location. Since the optimization problem is continuous, while the feasible set is very
small. General continuous optimization method can be applied to solve this problem.

An example of N(r̄∗d) can be seen in Figure 1. From a practical point of view, it might
not be necessary to obtain a solution with high precision. For example, it take 10 and
100 iterations to obtain the solution with precision less than 10−3m and 10−4 respectively.
Then, it’s not necessary to obtain the solution less than 10−4. We only take a few iterations
to obtain an acceptable accuracy like precision less than 10−3. Hence, it will be very simple
to solve this problem. The total implementation complexity of this method is not high.
Therefore, it can be implemented in real time for practical applications.
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5 Numerical Examples

In this section, we show how the framework of localization works. We demonstrate that
if (3.13) is satisfied, the localization method will work and the accuracy can be controlled
as well. Three numerical examples will be given to illustrate the proposed method. The
computations were performed in Matlab running on a 2GHz PC with 2G RAM. The software
to solve the semi-definite programming problem (3.10) is SDPA 6.0 [15] and the function to
find the maximum of the problem (3.20) is fminicon in Matlab. The interpolation method
for the function F (r̄) is the cubic spline interpolation.

To show how the proposed method works, we define the sets Sp(r̄) and Ss(r̄) for any r̄
by

Sp(r̄) = {r =(rx, ry, rz) : rx ∈ [r̄x − hx, r̄x + hx],

ry ∈ [r̄y − hy, r̄y + hy],

rz ∈ [r̄z − hz, r̄z + hz]}, (5.1)

Ss(r̄) = {r =(rx, ry, rz) : rx /∈ [r̄x − hx − dx, r̄x + hx + dx],

ry /∈ [r̄y − hy − dy, r̄y + hy + dy],

rz /∈ [r̄z − hz − dz, r̄z + hz + dz]}, (5.2)

where hx, hy and hz are small positive numbers, and dx, dy and dz are three positive
numbers. For comparison, we first compare our proposed method with the method in [3],
where the frequency response vector H(f) is given by

Hi(f) = e−j2πf
||r−ri||−||r−rc||

c . (5.3)

This definition of H(f) is very easy for implementation. It’s not necessary to solve an
optimization problem to obtain the frequency response value. However, the localization
accuracy is not ensured, which can be seen in the following examples.

In the first example, we consider a non-reflective case, where an acoustic signal of length
0.2s is used and the received data of the microphones are simulated by the transfer function
(2.2). There are 25 microphones, which are placed at the z-coordinate of 1.5m and the
(x, y)-coordinates {(x, y) : x = −2.5 + 1.25k, y = −2.5 + 1.25l; k, l = 0, . . . , 4}. The center
point (0m, 0m) is set as the reference point. The placement of the microphone array and
the reference point can be seen in Figure 2. The feasible source location field is given by a
5m× 5m region with the z-coordinate 0 and (x, y)-domain [−2.5m, 2.5m]× [−2.5m, 2.5m].

We choose the discrete grid set of [−2.5m, 2.5m] × [−2.5m, 2.5m] by taking the points
every 0.1m, that is, the total number of the discrete set is 51 ∗ 51 = 2601. For the frequency
domain, we set Ip = [0.2kHz, 1kHz]. For the parameters of the specified domain Ω, we set

hx = hy = 0.025m, dx = dy = 0.4m.

For each discrete point r̄, we set up the problem (3.8) and solve it by semi-definite
programming software. The performance values E∗(r̄) can be obtained and are depicted as
Figure 3. It can be seen that all these values are less than 0.5 and the condition (3.13) is
satisfied. Then, we can use the obtained solution H(r̄, f) to do the localization.

With these settings, we can formulate problem (4.1) and estimate the source location.
For example, set the source location as (0.8m, 2.25m). Then, by apply the proposed method,
we can locate the source point as (0.8034m, 2.2970m), where the localization error is about
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Figure 2: The placement of microphone array and the reference point in the first example.

Figure 3: Performance values E∗(r̄) (3.12) of the beamformer design problem with the
specified domain Ω(r̄) in the first example.
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Figure 4: The values F (r̄) (3.19) using the proposed method in the first example, where the
source location is (0.8m, 2.25m).

0.0472m. The function value (3.19) of the discrete grid set can be seen in Figure 4, where
the points around (0.8m, 2.25m) have the largest values compared to the other points.

For comparison, we use the the frequency response function defined in (5.3), the F
function values (3.19) of the discrete grid set are depicted in Figure 5. It follows from Figure
5 that there exist many peaks and it’s difficult to judge whether the maximum point is the
real source point. We can find the best point manually, where it’s around (0.6m, 0.7m),
which is far away from the original source location. Hence, not all beamformers can be
employed here.

Next, we randomly choose 100 sample points in [−2.5m, 2.5m] × [−2.5m, 2.5m] as the
source locations by using the function 5 ∗ rand(2, 100)− 2.5. Then, we apply the proposed
method to locate these points. The average localization error is 0.058m and the average
running time to locate the source point is 1.06 seconds. The efficiency and the effectiveness
of the algorithm are acceptable.

In the second example, we consider a reflection case, where an acoustic signal of 1s is
used and the received data of the microphones are simulated by the transfer function given
by [11]. The room structure is [−2m, 2m]× [−2m, 2m]× [0m, 3m]. We use the reverberation
time T60 = 0.2s which is larger than the value estimated by the Sabine equation to compute
the transfer function. The acoustic signal is received by the microphone array with 25
elements. The microphones are placed with the coordinates which can be seen from Figure
6. The point (0m, 0m, 2.9m) is set as the reference point. The feasible source location field
is in the region with the z-coordinate 1.5m and (x, y)-domain [−2m, 2m]× [−2m, 2m].

We choose the discrete grid set of [−2m, 2m]×[−2m, 2m] by taking the points every 0.1m,
and the setting of hx ,hy, dx, dy are the same as those given in the first example. Then, for
each discrete point r̄, we set up the problem (3.8) and solve it by semi-definite programming
software. The performance values E∗(r̄) of the problem can be obtained and are depicted
as Figure 7. It can be seen that all these values are less than 0.5 and the condition (3.13) is
satisfied. Then, we use the obtained solution H(r̄, f) to do the localization.

With these settings, we can formulate the problem (4.1) and estimate the source loca-
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Figure 5: The values F (r̄) (3.19) using (5.3) in the first example, where the source location
is (0.8m, 2.25m).

Figure 6: The placement of microphone array and the reference point in the second example.
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Figure 7: Performance values E∗(r̄) (3.12) of the beamformer design problem with the
specified domain Ω(r̄) in the second example.

tion. For example, we randomly set the source location as (−0.9661m,−0.474m). Then, by
applying the proposed method, for about one second, we can localize the source point as
(−0.9879m,−0.4707m), where the localization error is about 0.022m. The function (3.19)
of the discrete grid set can be seen in Figure 8, where the points around (−0.5m, 1.2m) have
the largest values compared to the other points.

Next, we randomly choose 100 sample points in [−2m, 2m]×[−2m, 2m] as source locations
by using the function 4 ∗ rand(2, 100) − 2. Then, we apply the proposed method to locate
these points. The average localization error is 0.072m and the average running time to locate
the source point is 1.21 seconds. The efficiency and the effectiveness of the algorithm are
acceptable.

In the third example, we consider another reflective case with stronger reflection pa-
rameters of six walls. An acoustic signal of 3s is used and the received data of the mi-
crophones are simulated by the transfer function given in [11]. The room structure is
[−2.5m, 2.5m] × [−1.5m, 1.5m] × [0m, 2.5m]. We use the reverberation time T60 = 0.45s
which is larger than the value estimated by the Sabine equation to compute the transfer
function. The acoustic signals are received by the microphone array with 21 elements, which
are placed at the z-coordinate 2.4m and the (x, y)-coordinates {(x, y) : x = −2.4+0.8k, y =
−1.2+1.2l; k = 0, . . . , 6, l = 0, . . . , 2}, shown in Figure 9. The point (0m, 0m, 2.4m) is set as
the reference point. The feasible source location field is in the region with the z-coordinate
1m and (x, y)-domain [−2.5m, 2.5m] × [−1.5m, 1.5m]. We choose the discrete grid set of
[−2.5m, 2.5m] × [−1.5m, 1.5m] by taking the points every 0.1m, and the setting of hx ,hy,
dx, dy are the same as those given in the first example.

Similarly, we can set up the problem (3.8) for each discrete point r′, and solve it by
semi-definite programming software. The performance values E∗(r̄) of the problem can be
obtained and are depicted in Figure 10. It can be seen that there are a few points with the
performance values larger than 0.5. Then, the condition (3.13) is not satisfied completely.
To demonstrate the effect of this condition, we still use the obtained solution H(r̄, f) to do
the localization.
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Figure 8: The F (r̄) (3.19) using proposed method in the second example, where the source
location is (−0.5m, 1.2m).

Figure 9: The placement of microphone array and the reference point in the third example.
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Figure 10: Performance values E∗(r̄) (3.12) of the beamformer design problem with the
specified domain Ω(r̄) in the third example, where the number of microphones is 21.

By randomly choosing 100 sample points in [−2.5m, 2.5m]× [−1.5m, 1.5m] as the source
locations uniformly, we locate these points with the proposed method. We find that there
are four cases with larger localization errors. For example, when the source location is
(−0.9027m, 0.7952m), we localize the point as (−2.2998m,−1.3119m), which is 2.5283m
away from the true source point. For the other 96 source points, the average localization
error is 0.051m. The reason for the larger errors is because the condition (3.13) is not fully
satisfied. To overcome it, we increment the microphone number to 25 by adding 4 more
microphones. The 4 additional microphones are placed at the z-coordinate 2.4m and the
(x, y)-coordinates {(x, y) : x = ±2.4m, y = ±0.6m}. Then, by formulating the problem (3.8)
for each discrete point r̄, we solve H(r̄, f). The performance values E∗(r̄) of the problem
are depicted as Figure 11. It can be seen that all the performance values are now less than
0.5. Then, the condition (3.13) is satisfied.

Next, the obtained solution H(r̄, f) can be used to do the localization. By randomly
choosing 100 sample points in [−2.5m, 2.5m] × [−1.5m, 1.5m] as the source locations uni-
formly, we can now locate all these points with the proposed method. The average localiza-
tion error is 0.047m and the average running time is 1.57 seconds.

6 Conclusion

In this paper, we have developed a new framework for the acoustic source localization. By
formulating a series of beamformer design problems with specified passband regions and
stopband regions within a room, the localization problem can be formulated as a global
optimization problem of a two-dimensional function. In order to implement the method in
real-time, the frequency response vectors corresponding to a set of grid points are computed
in advance and stored. We have also provided several numerical examples to demonstrate
the efficiency and effectiveness of the proposed method.
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Figure 11: Performance values E∗(r̄) (3.12) of the beamformer design problem with the
specified domain Ω(r̄) in the third example, where the number of microphones is 25.
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