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Moreover, the SOCCP contains a wide class of problems, such as the nonlinear complemen-
tarity problems (NCP) [2], the second-order cone programming (SOCP) [1, 12, 23], and so
on. For example, the SOCCP with n1 = n2 = · · · = nm = 1 and F (x, y, ζ) = f(x) − y is
the NCP, and the KKT conditions for the SOCP (possibly including nonlinear functions)
reduce to the SOCCP [13].

Without loss of generality we may assume that m = 1 and K = Kn in the following
analysis, since our analysis can be easily extended to the general case.

Recently great attention has been paid to smoothing methods, partially due to their
superior theoretical and numerical performances [7, 10, 14, 19]. Based on the smoothing
functions of the SOC complementarity functions, smoothing methods usually reformulate
the SOCCP as a system of equations [3, 4, 22, 24]. The smoothing parameter involved in
smoothing functions may be treated as a variable [21] or a parameter with an appropriate
parameter control [13]. In the later case, the Jacobian consistency plays an important role for
achieving the rapid convergence of Newton methods or Newton-like methods. Chen, Qi and
Sun [6] proposed a smoothing Newton method for the general box constrained variational
inequalities, and showed its global and superlinear convergence if the smoothing function f is
semismooth at the solution and satisfies the Jacobian consistency. Hayashi, Yamashita and
Fukushima [13] proposed a combined smoothing and regularized method for the monotone
SOCCP, and showed its global and quadratic convergence based on the Jacobian consistency
of the smoothed natural residual function. Ogasawara and Narushima [18] showed the
Jacobian consistency of a smoothed Fischer-Burmeister (FB) function for the SOCCP. Based
on the result in [18], Narushima, Ogasawara and Hayashi [17] constructed a smoothing
Newton method with appropriate parameter control for the SOCCP, which is shown to
possess the global and quadratic convergence with good numerical performances. Chi, Wan
and Hao [8] studied the directional derivative and B-subdifferential of a one-parametric class
of the SOC complementarity functions, proposed their smoothing functions, and showed the
Jacobian consistency of the one-parametric class of smoothing functions for the SOCCP.
Chen, Pan and Lin [5] presented a smoothing function of generalized FB function in the
context of the NCP, and proposed a global and local superlinear (or quadratic) convergent
smoothing algorithm for the mixed complementarity problem via the Jacobian consistency
of the smoothed generalized FB function.

In [20], Pan, Kum, Lim and Chen were concerned with the generalized Fischer-Burmeister
(FB) function ϕp : Rn ×Rn → Rn defined by

ϕp(x, y) :=
p
√
|x|p + |y|p − x− y, (1.2)

where p ∈ (1, 4) is an arbitrary but fixed parameter, and |x|p is the vector-valued function
(see Section 2 for the definition). When p = 2, ϕp reduces to the FB function for the SOCCP
given by

ϕFB(x, y) :=
√
x2 + y2 − x− y,

where x2 = x ◦ x being the Jordan product of x with itself, and
√
x with x ∈ Kn being the

unique vector such that
√
x ◦

√
x = x. They [20] showed that the generalized FB function

ϕp defined by (2) is an SOC complementarity function, the generalized FB merit function

ψp(x, y) :=
1

2
∥ϕp(x, y)∥2

is smooth for p ∈ (1, 4) and provided the condition for its coerciveness.
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In this paper, we study the smoothing function of ϕp, i.e., the smoothed generalized
FB function for the SOCCP. The motivations for us to study the smoothed generalized FB
function are as follows. (i) The SOC complementarity function ϕp is typically nonsmooth,
and therefore it can not be directly used to smoothing methods for solving the SOCCP.
Thus it is necessary to present a smoothing function of the generalized FB function for the
SOCCP. (ii) In the setting of the NCP, the smoothed generalized FB function is shown
to share some favorable properties as the smoothed FB function holds [5] -for example, the
Jacobian consistency. Thus, it is natural to ask whether a smoothed generalized FB function
has the desirable properties of the smoothed FB function or not in the setting of the SOCCP.
This work is the first step to resolve these questions, and makes it possible to design the
smoothing methods for the SOCCP based on the generalized FB function ϕp.

The main contribution of this paper is to propose a smoothing function of the generalized
FB function ϕp, and study its favorable properties. We show the Jacobian consistency of
the smoothed generalized FB function, which will play an important role for achieving the
rapid convergence of smoothing methods. Moreover, we estimate the distance between the
subgradient of the generalized FB function and the gradient of its smoothing function, which
will help to adjust a parameter appropriately in smoothing methods.

The organization of this paper is as follows. In Section 2, we review some preliminaries
including the Euclidean Jordan algebra associated with the SOC, subdifferentials and Ja-
cobian consistency. In Section 3, we propose a smoothing function of the generalized FB
function for the SOCCP, and derive the computable formula for its Jacobian. In Section 4,
we show the Jacobian consistency of the smoothed generalized FB function for the SOCCP.
And in Section 5, we estimate the distance between the subgradient of the generalized FB
function and the gradient of its smoothing function for the SOCCP. Finally, we close this
paper with some conclusions in Section 6.

In what follows, we denote the nonnegative orthant of R by R+. The symbol ∥ · ∥ means

the Euclidean norm defined by ∥x∥ :=
√
xTx for a vector x or the corresponding induced

matrix norm. For simplicity, we often use x = (x1;x2) for the column vector x = (x1, x
T
2 )

T .
For the SOC Kn, intKn and bdKn mean the topological interior and the boundary of Kn,
respectively. For a given set S ⊂ Rm×n, convS stands for the convex hull of S in Rm×n,
and dist(X,S) denotes inf{∥X − Y ∥ : Y ∈ S} for a matrix X ∈ Rm×n.

2 Preliminaries

In this section, we review some concepts and results, which include the Euclidean Jordan
algebra [1,11] associated with the SOC Kn, subdifferentials [9] and Jacobian consistency [6].

First, we recall the Euclidean Jordan algebra associated with the SOC and some useful
results. For any x = (x1;x2), y = (y1; y2) ∈ R×Rn−1(n ≥ 1), the Euclidean Jordan algebra
associated with the SOC Kn is defined by

x ◦ y = (xT y;x1y2 + y1x2),

with e = (1, 0, · · · , 0) ∈ Rn being its unit element. Given an element x = (x1;x2) ∈
R×Rn−1, we define

L(x) =

[
x1 xT2
x2 x1I

]
,

where I represents the (n − 1) × (n − 1) identity matrix. It is not difficult to see that
x ◦ y = L(x)y for any y ∈ Rn. Moreover, L(x) is symmetric positive definite (and hence
invertible) if and only if x ∈ intKn.
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Now we give the spectral factorization of vectors in Rn associated with the SOC Kn.
Each x = (x1;x2) ∈ R×Rn−1 has a spectral factorization associated with Kn given by

x = λ1(x)u1(x) + λ2(x)u2(x),

where λ1(x), λ2(x) and u1(x), u2(x) are the spectral values, and the associated spectral
vectors of x given by

λi(x) = x1 + (−1)i∥x2∥,

ui(x) =

{ 1
2 (1; (−1)i x2

∥x2∥ ) if x2 ̸= 0,
1
2 (1; (−1)iω) otherwise,

for i = 1, 2, with any ω ∈ Rn−1 such that ∥ω∥ = 1. By the spectral factorization, a scalar
function can be extended to a vector-valued function for the SOC. For any given p ∈ (1,+∞),
we define the vector-valued functions

|x|p = |λ1(x)|pu1(x) + |λ2(x)|pu2(x), ∀x ∈ Rn,

p
√
x = p

√
λ1(x)u1(x) +

p
√
λ2(x)u2(x), ∀x ∈ Kn.

Definition 2.1 ([13]). For a nondifferentiable function φ : Rm → Rn, we consider a function
φt : R

m → Rn with a parameter t > 0 that has the following properties:

(i) φt is differentiable for any t > 0;

(ii) lim
t↓0

φt(x) = φ(x) for any x ∈ Rm.

Such a function φt is called a smoothing function of φ.

Let G : Rm → Rn be a locally Lipschitzian function. Then G is differentiable almost
everywhere by Rademacher’s theorem [9]. The Bouligand (B-) subdifferential and the Clarke
subdifferential of G at z are defined by

∂GB(z) := { lim
ẑ→z

∇G(ẑ) : ẑ ∈ DG} and ∂G(z) = conv∂GB(z)

respectively, where DG denotes the set of points at which G is differentiable. It is obvious
that ∂G(z) = {∇G(z)} if G is continuously differentiable at z.

Based on the concepts of subdifferentials, we give the definition of Jacobian consistency,
which was first introduced by Chen, Qi and Sun [6]. It is a concept relating the generalized
Jacobian of a nonsmooth function with the Jacobian of a smoothing function [13].

Definition 2.2 ( [6]). Let G : Rm → Rn be a locally Lipschitzian function. Let Gt :
Rm → Rn be a continuously differentiable function for any t > 0 such that lim

t↓0
Gt(z) = G(z)

for any z ∈ Rm. We say that Gt satisfies the Jacobian consistency if for any z ∈ Rm,
lim
t↓0

dist(∇Gt(z), ∂G(z)) = 0.

It should be noted that the ”inf” appearing in the definition of dist(∇Gt(z), ∂G(z)) can
be replaced by ”min”, since the set ∂G(z) is compact at all z ∈ Rm [9].
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3 Smoothing Function

In this section, we propose a smoothing function of the generalized FB function for the
SOCCP, and derive the computable formula for its Jacobian.

Since the generalized FB function ϕp given by (1.2) is nonsmooth, we consider the func-
tion ϕp,t : R

n ×Rn → Rn defined by

ϕp,t(x, y) :=
p
√
|x|p + |y|p + |t|pe− x− y (3.1)

with p ∈ (1, 4) and the smoothing parameter t ∈ R.
In the following, we will show that the function ϕp,t given by (3.1) is a smoothing function

of ϕp. Thus we can solve a family of smoothing subproblems ϕp,t(x, y) = 0 for t ̸= 0 and
obtain a solution of ϕp(x, y) = 0 by letting |t| ↓ 0.

For convenience, we give some notations. For any p ∈ (1, 4), let q = (1 − p−1)−1.
For any x = (x1;x2), y = (y1; y2) ∈ R × Rn−1 and any t ∈ R, we define the mapping
wt : R2n → R×Rn−1 by

wt = (wt
1;w

t
2) = wt(x, y) := |x|p + |y|p + |t|pe,

and drop the subscript for simplicity for t = 0, and thus

w = (w1;w2) = w(x, y) := |x|p + |y|p.

By the definitions of |x|p and |y|p, we obtain

wt
1 =

|λ2(x)|p + |λ1(x)|p

2
+

|λ2(y)|p + |λ1(y)|p

2
+ |t|p = w1 + |t|p,

wt
2 =

|λ2(x)|p − |λ1(x)|p

2
x̄2 +

|λ2(y)|p − |λ1(y)|p

2
ȳ2 = w2,

where x̄2 = x2

∥x2∥ if x2 ̸= 0, and otherwise x̄2 is an arbitrary vector in Rn−1 such that

∥x̄2∥ = 1, and ȳ2 has the similar definition. Therefore wt = (wt
1;w2), and the spectral

factorization of wt is
wt = λ1(w

t)u1(w) + λ2(w
t)u2(w),

where λ1(w
t), λ2(w

t) are the spectral values and u1(w), u2(w) are the associated spectral
vectors of wt given by

λi(w
t) = w1 + |t|p + (−1)i∥w2∥, (3.2)

ui(w) =
1

2

(
1; (−1)iw̄2

)
(3.3)

for i = 1, 2. Here w̄2 := w2

∥w2∥ if w2 ̸= 0, and otherwise w̄2 is any vector in Rn−1 such that

∥w̄2∥ = 1.
For any x = (x1;x2), y = (y1; y2) ∈ R×Rn−1 and any t ∈ R, we can also define

zt = (zt1; z
t
2) = zt(x, y) :=

p
√
wt = p

√
|x|p + |y|p + |t|pe,

and for t = 0,
z = (z1; z2) = z(x, y) := p

√
|x|p + |y|p.
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The spectral factorization of zt and z are given by respectively,

zt = p
√
λ1(wt)u1(w) +

p
√
λ2(wt)u2(w),

z = p
√
λ1(w)u1(w) +

p
√
λ2(w)u2(w),

and therefore

zt1 =
p
√
λ2(wt) + p

√
λ1(wt)

2
, zt2 =

p
√
λ2(wt)− p

√
λ1(wt)

2
w̄2,

z1 =
p
√
λ2(w) +

p
√
λ1(w)

2
, z2 =

p
√
λ2(w)− p

√
λ1(w)

2
w̄2.

Thus we can partition R2n as R2n = S1 ∪ S2 ∪ {(0, 0)}, where

S1 := {(x, y) ∈ R2n : w ∈ intKn} = {(x, y) ∈ R2n : λ2(w) ≥ λ1(w) > 0},
S2 := {(x, y) ∈ R2n : w ∈ bdKn\{0}} = {(x, y) ∈ R2n : 2w1 = λ2(w) > λ1(w) = 0}.

Theorem 3.1. For any (x, y) ∈ Rn×Rn and t ̸= 0, let ϕp and ϕp,t with p ∈ (1, 4) be defined
by (1.2) and (3.1) respectively. Then the following results hold.

(i) The function ϕp,t is continuously differentiable everywhere and its Jacobian is given
by

∇ϕp,t(x, y) =
[

∇gsoc(x)∇gsoc(zt)−1 − I
∇gsoc(y)∇gsoc(zt)−1 − I

]
, (3.4)

where

∇gsoc(x) =

 psign(x1)|x1|p−1I if x2 = 0,[
b(x) c(x)x̄T2
c(x)x̄2 a(x)I + (b(x)− a(x))x̄2x̄

T
2

]
if x2 ̸= 0,

(3.5)

with

x̄2 =
x2
∥x2∥

, a(x) =
|λ2(x)|p − |λ1(x)|p

λ2(x)− λ1(x)
, (3.6)

b(x) =
p

2

[
sign(λ2(x))|λ2(x)|p−1 + sign(λ1(x))|λ1(x)|p−1

]
, (3.7)

c(x) =
p

2

[
sign(λ2(x))|λ2(x)|p−1 − sign(λ1(x))|λ1(x)|p−1

]
; (3.8)

and ∇gsoc(zt)−1 =
(
p q
√
w1 + |t|p

)−1

I if w2 = 0, and otherwise

∇gsoc(zt)−1 = L1(w
t) + L2(w

t) + L3(w
t)

=

[
e(wt) −f(wt)w̄T

2

−f(wt)w̄2 d(wt)I + (e(wt)− d(wt))w̄2w̄
T
2

]
(3.9)

with

L1(w
t) =

1

2p q
√
λ1(wt)

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
, L2(w

t) =
1

2p q
√
λ2(wt)

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
, (3.10)
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L3(w
t) = d(wt)

[
0 0T

0 I − w̄2w̄
T
2

]
, d(wt) =

p
√
λ2(wt)− p

√
λ1(wt)

λ2(wt)− λ1(wt)
, (3.11)

e(wt) =
1

2p

(
1

q
√
λ1(wt)

+
1

q
√
λ2(wt)

)
, f(wt) =

1

2p

(
1

q
√
λ1(wt)

− 1
q
√
λ2(wt)

)
. (3.12)

(ii) For any (x, y) ∈ Rn×Rn, lim
t→0

ϕp,t(x, y) = ϕp(x, y). Thus, ϕp,t is a smoothing function

of ϕp.

Proof. (i) Since wt ∈ intKn for any (x, y) ∈ Rn×Rn and any t ̸= 0, it follows from the proof
of Lemma 3.2 [20] and the chain rule for that relation (3.4) holds. Relations (3.9)-(3.12) are
due to Proposition 5.2 and its proof in [12].

(ii) Fix any x = (x1;x2), y = (y1; y2) ∈ R × Rn−1. For any t > 0, it follows from the
spectral factorization of w and wt that

ϕp(x, y) =
p
√
λ1(w)u1(w) +

p
√
λ2(w)u2(w)− x− y,

ϕp,t(x, y) =
p
√
λ1(wt)u1(w) +

p
√
λ2(wt)u2(w)− x− y,

where

λi(w) = w1 + (−1)i∥w2∥,

and λi(w
t) and ui(w) are respectively given by (3.2) and (3.3) for i = 1, 2. It is not difficult

to see that

lim
t→0

λi(w
t) = lim

t→0
(λi(w) + |t|p) = λi(w)

for i = 1, 2, and hence lim
t→0

ϕp,t(x, y) = ϕp(x, y). Therefore, it follows from (i) and Definition

2.1 that ϕp,t is a smoothing function of ϕp.

Remark It follows from λ2(w
t) > λ1(w

t) > 0 for any w2 ̸= 0 and t ̸= 0, and λi(z
t) =

p
√
λi(wt)(i = 1, 2) that

d(wt) =
p
√
λ2(wt)− p

√
λ1(wt)

λ2(wt)− λ1(wt)
=

λ2(z
t)− λ1(z

t)

|λ2(zt)|p − |λ1(zt)|p
=

1

a(zt)
,

where the functions a(·) and d(·) are given by (3.6) and (3.11), respectively.
Next we give some properties of ϕp (see Lemma 3.1 in [20]), which will be used in the

subsequent analysis.

Lemma 3.2. For any x = (x1;x2), y = (y1; y2) ∈ R × Rn−1 with w(x, y) ∈ bdKn, we have
the following equalities:

w1(x, y) = ∥w2(x, y)∥ = 2p−1(|x1|p + |y1|p) (3.13)

x21 = ∥x2∥2, y21 = ∥y2∥2, x1y1 = xT2 y2, x1y2 = y1x2. (3.14)

If, in addition, w2(x, y) ̸= 0, the following equalities hold with w̄2(x, y) =
w2(x,y)

∥w2(x,y)∥ :

xT2 w̄2(x, y) = x1, x1w̄2(x, y) = x2, y
T
2 w̄2(x, y) = y1, y1w̄2(x, y) = y2. (3.15)
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4 Jacobian Consistency

In this section, we show the Jacobian consistency of the smoothing function ϕp,t with p ∈
(1, 4), which will play an important role for establishing the rapid convergence of smoothing
methods.

It has been shown in Lemma 2.5 [20] that the function ϕp with any p ∈ (1, 4) satisfies

ϕp(x, y) = 0 ⇔ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0. (4.1)

Let (x, y, ζ) ∈ Rn ×Rn ×Rl and define

Φp,t(x, y, ζ) :=

[
ϕp,t(x, y)
F (x, y, ζ)

]
, (4.2)

Φp(x, y, ζ) :=

[
ϕp(x, y)
F (x, y, ζ)

]
. (4.3)

It is easy to see that Φp,t(x, y, ζ) = 0 is the perturbation of the system of equations
Φp(x, y, ζ) = 0. On account of (1.1), (4.1) and (4.3), we have

Φp(x, y, ζ) = 0 ⇔ (x, y, ζ) solves (1.1).

Since Φp(x, y, ζ) is typically nonsmooth, we can solve approximately the smooth system
Φp,t(x, y, ζ) = 0 by using Newton’s method at each iteration, and then obtain a solution of
Φp(x, y, ζ) = 0 by reducing the parameter t to zero.

First, we show that the function Φp,t(x, y, ζ) satisfies the Jacobian consistency.

Lemma 4.1. For any (x, y) ∈ Rn ×Rn, we have

J0
ϕp
(x, y) := lim

t→0
∇ϕp,t(x, y) =

[
Jx − I
Jy − I

]
(4.4)

with p ∈ (1, 4), where

Jx :=


∇gsoc(x)∇gsoc(z)−1 if (x, y) ∈ S1,
sign(x1)|x1|p−1

2 q
√

|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
if (x, y) ∈ S2,

O if (x, y) = (0, 0),

(4.5)

Jy :=


∇gsoc(y)∇gsoc(z)−1 if (x, y) ∈ S1,
sign(y1)|y1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
if (x, y) ∈ S2,

O if (x, y) = (0, 0).

(4.6)

Proof. By (3.4) and the symmetry of x and y, it suffices to show that

lim
t→0

∇gsoc(x)∇gsoc(zt)−1 = Jx.

Case (1) If (x, y) ∈ S1, we have from (3.2) that

lim
t→0

λi(w
t) = lim

t→0
[λi(w) + |t|p] = λi(w) > 0
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for i = 1, 2, and then

lim
t→0

zt = lim
t→0

[
p
√
λ1(wt)u1(w) +

p
√
λ2(wt)u2(w)

]
= p
√
λ1(w)u1(w) +

p
√
λ2(w)u2(w)

= z ∈ intKn.

Therefore,
lim
t→0

∇gsoc(x)∇gsoc(zt)−1 = ∇gsoc(x)∇gsoc(z)−1 = Jx.

Case (2) If (x, y) ∈ S2, we obtain w ∈ bdKn\{0} and Lemma 3.2 holds, and thus

w1 = ∥w2∥ = 2p−1(|x1|p + |y1|p),

2w1 = λ2(w) > λ1(w) = 0,

which imply w2 ̸= 0. Then for any t ̸= 0, we have from (3.2) that

λ1(w
t) = λ1(w) + |t|p = |t|p > 0, (4.7)

λ2(w
t) = λ2(w) + |t|p = 2p(|x1|p + |y1|p) + |t|p > 0. (4.8)

If x2 = 0, we have x = 0 from (3.14) and ∇gsoc(x) = O. Therefore,

lim
t→0

∇gsoc(x)∇gsoc(zt)−1 = lim
t→0

O · ∇gsoc(zt)−1 = O

=
sign(x1)|x1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
= Jx.

Hence, we consider x2 ̸= 0 in the following analysis of Case (2). For any t ̸= 0, it follows
from (3.9) that

∇gsoc(zt)−1 = L1(w
t) + L2(w

t) + L3(w
t).

We first show that ∇gsoc(x)L1(w
t) = O for any t ̸= 0. Since w ∈ bdKn\{0} implies

(3.14) holds, i.e., |x1| = ∥x2∥, we have from (3.6), (3.7) and (3.8) that

a(x) = 2p−1sign(x1)|x1|p−1, b(x) = 2p−2psign(x1)|x1|p−1, c(x) = 2p−2p|x1|p−1. (4.9)

Taking into account the fact that w2 ̸= 0, x2 ̸= 0 and w ∈ bdKn\{0}, we obtain from (3.15)
that

x̄T2 w̄2 = sign(x1), w̄2 = sign(x1)x̄2. (4.10)

It follows from (4.9) and (4.10) that

∇gsoc(x)L1(w
t)

=
1

2p q
√
λ1(wt)

[
b(x) c(x)x̄T2
c(x)x̄2 a(x)I + (b(x)− a(x))x̄2x̄

T
2

] [
1

−w̄2

] [
1 −w̄T

2

]
=

1

2p|t|p−1

[
b(x)− c(x)x̄T2 w̄2

c(x)x̄2 − a(x)w̄2 − (b(x)− a(x))x̄2x̄
T
2 w̄2

] [
1 −w̄T

2

]
=

1

2p|t|p−1

[
b(x)− sign(x1)c(x)

(c(x)− sign(x1)b(x))x̄2 − a(x)(w̄2 − sign(x1)x̄2)

] [
1 −w̄T

2

]
=
b(x)− sign(x1)c(x)

2p|t|p−1

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
= O.

(4.11)
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We next show
lim
t→0

∇gsoc(x)[L2(w
t) + L3(w

t)] = Jx.

In fact, we obtain from (3.5), (3.10), (4.8), (4.9) and (4.10) that

lim
t→0

∇gsoc(x)L2(w
t)

= lim
t→0

1

2p q
√
λ2(wt)

[
b(x) c(x)x̄T2
c(x)x̄2 a(x)I + (b(x)− a(x))x̄2x̄

T
2

] [
1
w̄2

] [
1 w̄T

2

]
=

1

2p q
√
2p(|x1|p + |y1|p)

[
b(x) + sign(x1)c(x)

(c(x) + sign(x1)b(x))x̄2 + a(x)(w̄2 − sign(x1)x̄2)

] [
1 w̄T

2

]
=

b(x) + sign(x1)c(x)

2p q
√
2p(|x1|p + |y1|p)

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
(4.12)

=
sign(x1)|x1|p−1

2 q
√

|x1|p + |y1|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
.

Moreover, it follows from (3.5), (3.11), (4.7), (4.8), (4.9) and (4.10) that

lim
t→0

∇gsoc(x)L3(w
t)

= lim
t→0

d(wt)

[
b(x) c(x)x̄T2
c(x)x̄2 a(x)I + (b(x)− a(x))x̄2x̄

T
2

] [
0 0T

0 I − w̄2w̄
T
2

]
= lim

t→0
d(wt)

[
0 c(x)(x̄T2 − sign(x1)w̄

T
2 )

0 a(x)(I − w̄2w̄
T
2 ) + (b(x)− a(x))(x̄2x̄

T
2 − sign(x1)x̄2w̄

T
2 )

]
= lim

t→0
d(wt)

[
0 0T

0 a(x)(I − w̄2w̄
T
2 )

]
= lim

t→0

p
√

2p(|x1|p + |y1|p) + |t|p − |t|
2p(|x1|p + |y1|p)

[
0 0T

0 2p−1sign(x1)|x1|p−1(I − w̄2w̄
T
2 )

]
=

sign(x1)|x1|p−1

q
√

|x1|p + |y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
.

(4.13)

Combining (4.11), (4.12) and (4.13) yields

lim
t→0

∇gsoc(x)∇gsoc(zt)−1 = lim
t→0

∇gsoc(x)[L2(w
t) + L3(w

t)] = Jx. (4.14)

Case (3) If (x, y) = (0, 0), then we obtain from Theorem 3.1 that ∇gsoc(zt)−1 =
(p q
√
|t|p)−1I, ∇gsoc(0) = O, and therefore

lim
t→0

∇gsoc(x)∇gsoc(zt)−1 = lim
t→0

O · (p q
√
|t|p)−1I = O = Jx.

This completes the proof.

Lemma 4.2. For any (x, y) ∈ Rn ×Rn, we have[
Ux − I
Uy − I

]
∈ ∂Bϕp(x, y)

with p ∈ (1, 4), where

Ux = ±Z + Jx, Uy = Jy, (4.15)
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with Jx and Jy defined by (4.5) and (4.6) respectively, and

Z =


O if (x, y) ∈ S1,
1

2

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
if (x, y) ∈ S2,

I if (x, y) = (0, 0).

(4.16)

Proof. It follows from Lemma 3.2 [20] and the chain rule for differentiation that the gener-
alized FB function ϕp for the SOC complementarity problem is continuously differentiable
at any (x, y) ∈ S1 with

∇ϕp(x, y) =
[

∇gsoc(x)∇gsoc(z)−1 − I
∇gsoc(y)∇gsoc(z)−1 − I

]
∈ ∂Bϕp(x, y).

Therefore, it suffices to consider the two cases: (x, y) ∈ S2 and (x, y) = (0, 0).
For any (x, y) ∈ S2 or (x, y) = (0, 0), let (x̂, y) = (x+ εe, y) with sufficiently small ε ̸= 0,

and define
ŵ = (ŵ1; ŵ2) := |x̂|p + |y|p = |x+ εe|p + |y|p,

ẑ = (ẑ1; ẑ2) :=
p
√
ŵ, w̃2 :=

ŵ2

∥ŵ2∥
,

λi(ŵ) := ŵ1 + (−1)i∥ŵ2∥, i = 1, 2.

Direct calculations yield

λi(x̂) = x1 + ε+ (−1)i∥x2∥ = λi(x) + ε, i = 1, 2,

ŵ1 =
|λ2(x̂)|p + |λ1(x̂)|p

2
+

|λ2(y)|p + |λ1(y)|p

2
, (4.17)

ŵ2 =
|λ2(x̂)|p − |λ1(x̂)|p

2
x̄2 +

|λ2(y)|p − |λ1(y)|p

2
ȳ2. (4.18)

Therefore, as ε→ 0 we have (x̂, y) → (x, y), ŵ → w, ẑ → z and λi(ŵ) → λi(w) for i = 1, 2.
By the definition of B-subdifferential and (1.2), it suffices to show

lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = Ux, (4.19)

lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1 = Uy, (4.20)

if ϕp is differentiable at (x̂, y).
Case (1) If (x, y) = (0, 0), it is easy to see that ŵ = |ε|pe ∈ intKn, ẑ = |ε|e and ϕp is

differentiable at (x̂, y). Then we have

lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = lim
ε→0

psign(ε)|ε|p−1I · 1

p|ε|p−1
I = lim

ε→0
sign(ε)I

= ±I = Ux,

lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1 = lim
ε→0

O · 1

p|ε|p−1
I

= O = Uy.
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Case (2) If (x, y) ∈ S2, we obtain w ∈ bdKn\{0}. It follows from (3.14) and w ∈ bdKn

that |x| + |y| ∈ bdKn. Therefore, by Lemma 2.4 [20] we have that one of the following
subcases must hold: (i) x = 0, |y| ∈ bdKn\{0}; (ii) |x| ∈ bdKn\{0}, y = 0; (iii) |x| ∈
bdKn\{0}, |y| ∈ bdKn\{0}.

Subcase (2.1) If x = 0, |y| ∈ bdKn\{0}, we have by (3.5), (4.17) and (4.18) that

∇gsoc(x̂) = psign(ε)|ε|p−1I,

ŵ1 =
|λ2(y)|p + |λ1(y)|p

2
+ |ε|p, ŵ2 =

|λ2(y)|p − |λ1(y)|p

2
ȳ2.

We first consider the case y1 = ∥y2∥ > 0, and thus

λ1(ŵ) = ŵ1 − ∥ŵ2∥ = |ε|p > 0,

λ2(ŵ) = ŵ1 + ∥ŵ2∥ = |2y1|p + |ε|p > 0,

w̃2 =
ŵ2

∥ŵ2∥
= ȳ2 = w̄2.

Thus we obtain ŵ ∈ intKn, which together with Lemma 3.2 [20] implies that ϕp is differen-
tiable at (x̂, y).

Now we will show
lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = Ux.

By Theorem 3.1, we have ∇gsoc(ẑ)−1 = L1(ŵ) + L2(ŵ) + L3(ŵ), where L1(ŵ), L2(ŵ) and
L3(ŵ) are given by (3.10) and (3.11) with ŵ and w̃2 replacing wt and w̄2, respectively. Then
we obtain

lim
ε→0

∇gsoc(x̂)L1(ŵ) = lim
ε→0

psign(ε)|ε|p−1

2p q
√
|ε|p

[
1 −w̃T

2

−w̃2 w̃2w̃
T
2

]
= ±1

2

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
,

(4.21)

lim
ε→0

∇gsoc(x̂)L2(ŵ) = lim
ε→0

psign(ε)|ε|p−1

2p q
√
|2y1|p + |ε|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
= O,

(4.22)

lim
ε→0

∇gsoc(x̂)L3(ŵ) = lim
ε→0

psign(ε)|ε|p−1
(

p
√
|2y1|p + |ε|p − |ε|

)
|2y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
= O.

(4.23)

Combining (4.21), (4.22) and (4.23) yields

lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = ±Z + Jx = Ux.

Next we will show
lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1 = Uy.
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By following the proof of Case (2) in Lemma 4.1, we have

lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1

= lim
ε→0

∇gsoc(y)[L1(ŵ) + L2(ŵ) + L3(ŵ)]

= O +
sign(y1)|y1|p−1

2 q
√
|y1|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
+

sign(y1)|y1|p−1

q
√

|y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
=

sign(y1)|y1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
= Jy = Uy.

By using the same arguments, we can prove that (4.19) and (4.20) hold under the case
y1 = −∥y2∥ < 0.

Subcase (2.2) If |x| ∈ bdKn\{0}, y = 0, we have from (4.17) and (4.18) that

ŵ1 =
|λ2(x̂)|p + |λ1(x̂)|p

2
, ŵ2 =

|λ2(x̂)|p − |λ1(x̂)|p

2
x̄2.

We first consider the case x1 = ∥x2∥ > 0, and thus

λ1(ŵ) = ŵ1 − ∥ŵ2∥ = |ε|p > 0,

λ2(ŵ) = ŵ1 + ∥ŵ2∥ = |2x1 + ε|p > 0,

w̃2 =
ŵ2

∥ŵ2∥
= x̄2 = w̄2.

Then we obtain ŵ ∈ intKn, which together with Lemma 3.2 [20] implies that ϕp is differen-
tiable at (x̂, y). It follows from (3.5), (3.6), (3.7) and (3.8) that

∇gsoc(x̂) =
[

b(x̂) c(x̂)x̄T2
c(x̂)x̄2 a(x̂)I + (b(x̂)− a(x̂))x̄2x̄

T
2

]
,

where

a(x̂) =
|2x1 + ε|p − |ε|p

2x1
, d(ŵ) =

|2x1 + ε| − |ε|
|2x1 + ε|p − |ε|p

,

b(x̂) =
p

2

[
sign(2x1 + ε)|2x1 + ε|p−1 + sign(ε)|ε|p−1

]
,

c(x̂) =
p

2

[
sign(2x1 + ε)|2x1 + ε|p−1 − sign(ε)|ε|p−1

]
.

Now we will show
lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = Ux.

By using (3.10), (3.11) and (4.10), and following the proof of Case (2) in Lemma 4.1, we
obtain

lim
ε→0

∇gsoc(x̂)L1(ŵ) = lim
ε→0

b(x̂)− sign(x1)c(x̂)

2p q
√
λ1(ŵ)

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
= lim

ε→0

psign(ε)|ε|p−1

2p q
√
|ε|p

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
= ±1

2

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
,

(4.24)
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lim
ε→0

∇gsoc(x̂)L2(ŵ) = lim
ε→0

b(x̂) + sign(x1)c(x̂)

2p q
√
λ2(ŵ)

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
= lim

ε→0

psign(2x1 + ε)|2x1 + ε|p−1

2p q
√

|2x1 + ε|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
=

sign(x1)

2

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
=

sign(x1)|x1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
,

(4.25)

lim
ε→0

∇gsoc(x̂)L3(ŵ) = lim
ε→0

a(x̂)d(ŵ)

[
0 0T

0 I − w̄2w̄
T
2

]
= lim

ε→0

|2x1 + ε| − |ε|
2x1

[
0 0T

0 I − w̄2w̄
T
2

]
= sign(x1)

[
0 0T

0 I − w̄2w̄
T
2

]
=

sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
.

(4.26)

Combining (4.24), (4.25) and (4.26) yields

lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1 = ±Z + Jx = Ux.

Under this subcase, we have from (3.5)

lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1 = lim
ε→0

O · ∇gsoc(ẑ)−1 = O = Jy = Uy.

By using the same arguments, we can prove that (4.19) and (4.20) hold under the case
x1 = −∥x2∥ < 0.

Subcase (2.3) If |x| ∈ bdKn\{0}, |y| ∈ bdKn\{0}, we first consider the case x1 =
∥x2∥ > 0, y1 = −∥y2∥ < 0, and thus from Lemma 3.2

w̄2 = sign(x1)x̄2 = x̄2, w̄2 = sign(y1)ȳ2 = −ȳ2.

Then we have by (3.5), (4.17) and (4.18) that

ŵ1 =
|2x1 + ε|p + |ε|p

2
+

|2y1|p

2
,

ŵ2 =
|2x1 + ε|p − |ε|p

2
x̄2 −

|2y1|p

2
ȳ2 =

|2x1 + ε|p − |ε|p

2
w̄2 +

|2y1|p

2
w̄2,

and thus

λ1(ŵ) = ŵ1 − ∥ŵ2∥ = |ε|p > 0,

λ2(ŵ) = ŵ1 + ∥ŵ2∥ = |2x1 + ε|p + |2y1|p > 0,

w̃2 =
ŵ2

∥ŵ2∥
= x̄2 = w̄2.
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Then we have ŵ ∈ intKn, which together with Lemma 3.2 [20] implies that ϕp is differen-
tiable at (x̂, y). It follows from (3.5), (3.6), (3.7) and (3.8) that

∇gsoc(x̂) =
[

b(x̂) c(x̂)x̄T2
c(x̂)x̄2 a(x̂)I + (b(x̂)− a(x̂))x̄2x̄

T
2

]
,

where

a(x̂) =
|2x1 + ε|p − |ε|p

2x1
, d(ŵ) =

p
√
|2x1 + ε|p + |2y1|p − |ε|

|2x1 + ε|p + |2y1|p − |ε|p
,

b(x̂) =
p

2

[
sign(2x1 + ε)|2x1 + ε|p−1 + sign(ε)|ε|p−1

]
,

c(x̂) =
p

2

[
sign(2x1 + ε)|2x1 + ε|p−1 − sign(ε)|ε|p−1

]
.

By using (3.10), (3.11) and (4.10), and following the proof of Case (2) in Lemma 4.1, we
obtain

lim
ε→0

∇gsoc(x̂)∇gsoc(ẑ)−1

= lim
ε→0

∇gsoc(x̂)[L1(ŵ) + L2(ŵ) + L3(ŵ)]

= ±1

2

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
+

sign(x1)|x1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
+
sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
= ±1

2

[
1 −w̄T

2

−w̄2 w̄2w̄
T
2

]
+

sign(x1)|x1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
= ±Z + Jx = Ux.

Similarly, we have

lim
ε→0

∇gsoc(y)∇gsoc(ẑ)−1

= lim
ε→0

∇gsoc(y)[L1(ŵ) + L2(ŵ) + L3(ŵ)]

= O +
sign(y1)|y1|p−1

2 q
√
|x1|p + |y1|p

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
+

sign(y1)|y1|p−1

q
√

|x1|p + |y1|p

[
0 0T

0 I − w̄2w̄
T
2

]
=

sign(y1)|y1|p−1

2 q
√

|x1|p + |y1|p

[
1 w̄T

2

w̄2 2I − w̄2w̄
T
2

]
= Jy = Uy.

By using the same arguments, we can prove that (4.19) and (4.20) hold under the cases:
x1 = ∥x2∥ > 0, y1 = ∥y2∥ > 0; x1 = −∥x2∥ < 0, y1 = −∥y2∥ < 0; and x1 = −∥x2∥ < 0, y1 =
∥y2∥ > 0. This completes the proof.

By Lemma 4.1 and Lemma 4.2, we obtain the following result.

Theorem 4.3. The function Φp,t defined by (4.2) with p ∈ (1, 4) and t > 0 satisfies the
Jacobian consistency.
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Proof. By (4.2), it suffices to show the Jacobian consistency of the function ϕp,t with p ∈
(1, 4) and t > 0. Let

V i :=

[
U i
x − I

Uy − I

]
,

where

U i
x = (−1)iZ + Jx, Uy = Jy,

for i = 1, 2, and Jx, Jy and Z are given by (4.5), (4.6) and (4.16). Define

V :=
1

2
(V 1 + V 2) =

[
Jx − I
Jy − I

]
.

On the one hand, we obtain from (4.4) that V = J0
ϕp
(x, y) = lim

t→0
∇ϕp,t(x, y). On the

other hand, we have by Lemma 4.2 that V 1, V 2 ∈ ∂Bϕp(x, y) and therefore V = 1
2 (V

1 +
V 2) ∈ ∂ϕp(x, y). This together with Theorem 3.1 and Definition 2.2 implies the Jacobian
consistency of ϕp,t with p ∈ (1, 4) and t > 0.

5 Estimation of the Distance Between ∇Φp,t and ∂Φp

In this section, we estimate the distance between the subgradient of the generalized FB
function Φp and the gradient of its smoothing function Φp,t in terms of t precisely. There-
fore, we may control the parameter t so that dist(∇Φp,t(x, y, ζ), ∂Φp(x, y, ζ)) becomes small
appropriately, which will help to establish a rapid convergence in smoothing methods. We
begin with two technical lemmas that will be used in the subsequent analysis.

Lemma 5.1 ([18]). Let α, β, γ ∈ R and v ∈ Rn−1 with ∥v∥ = 1(n ≥ 2). Let

G =

[
β −γvT
−γv αI + (β − α)vvT

]
.

Then the eigenvalues of the symmetric matrix G are α of multiplicity n− 2 and β ± γ.

Lemma 5.2. Let λ2 > λ1 > 0 and w1 > 0 be arbitrarily fixed. Then the functions g1, g2, g3 :
[0,∞) → R defined by

g1(τ) :=
1

p q
√
λ1 + τ

−
p
√
λ2 + τ − p

√
λ1 + τ

λ2 − λ1
, (5.1)

g2(τ) :=
p
√
λ2 + τ − p

√
λ1 + τ

λ2 − λ1
− 1

p q
√
λ2 + τ

, (5.2)

g3(τ) :=
p
√
2w1 + τ − p

√
τ

2w1
− 1

p q
√
2w1 + τ

, (5.3)

are all decreasing, and hence g1(0) ≥ g1(τ), g2(0) ≥ g2(τ) and g3(0) ≥ g3(τ) for all τ ≥ 0.
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Proof. For any fixed λ2 > λ1 > 0 and w1 > 0, we prove our assertion only for g1 and g2. The
claim for g3 can be proved similarly, since g3 can be given by (5.2) with 2w1 and 0 replacing
λ2 and λ1, respectively.

We first show that the function g1(τ) is decreasing in τ ∈ [0,∞). Direct calculations
yield

g′1(τ) = − 1

pq(λ1 + τ)
1
q+1

− 1

p(λ2 − λ1)

[
1

(λ2 + τ)
1
q

− 1

(λ1 + τ)
1
q

]

= − λ2 + τ

pq(λ2 − λ1)(λ1 + τ)
1
q+1

{
λ2 − λ1
λ2 + τ

+
q(λ1 + τ)

λ2 + τ

[(
λ1 + τ

λ2 + τ

) 1
q

− 1

]}
= − λ2 + τ

pq(λ2 − λ1)(λ1 + τ)
1
q+1

f1

(
λ1 + τ

λ2 + τ

)
,

where the function f1 : [0, 1] → R is defined by

f1(s) := qs1+
1
q − (1 + q)s+ 1.

Since

f ′1(s) = (1 + q)(s
1
q − 1) ≤ 0

for any 0 ≤ s ≤ 1, the function f1 is decreasing and 0 = f1(1) ≤ f1(s) ≤ f1(0) = 1 for any
s ∈ [0, 1]. For any τ ∈ [0,∞), we have 0 < s = λ1+τ

λ2+τ < 1, and thus 0 ≤ f1(
λ1+τ
λ2+τ ) ≤ 1, and

therefore g′1(τ) ≤ 0.
We next show that the function g2(τ) is decreasing in τ ∈ [0,∞). By direct calculations,

we have

g′2(τ) =
1

p(λ2 − λ1)

[
1

(λ2 + τ)
1
q

− 1

(λ1 + τ)
1
q

]
+

1

pq(λ2 + τ)
1
q+1

=
1

pq(λ2 − λ1)(λ1 + τ)
1
q

{
q

[(
λ1 + τ

λ2 + τ

) 1
q

− 1

]
+

(
λ1 + τ

λ2 + τ

) 1
q λ2 − λ1
λ2 + τ

}
=

1

pq(λ2 − λ1)(λ1 + τ)
1
q

f2

(
λ1 + τ

λ2 + τ

)
,

where the function f2 : [0, 1] → R is defined by

f2(s) := −s1+
1
q + (1 + q)s

1
q − q.

Since

f ′2(s) =

(
1 +

1

q

)
(−s

1
q + s−

1
p ) ≥ 0

for any 0 ≤ s ≤ 1, the function f2 is increasing and −q = f2(0) ≤ f2(s) ≤ f2(1) = 0 for any
s ∈ [0, 1]. For any τ ∈ [0,∞), we obtain 0 < s = λ1+τ

λ2+τ < 1, and thus −q ≤ f2(
λ1+τ
λ2+τ ) ≤ 0,

and therefore g′2(τ) ≤ 0. This completes our proof.

Theorem 5.3. Let p ∈ (1, 4) be given, and (x, y, ζ) ∈ R2n+l be any point. Let the function
Θ : R2n → R+ be defined by

Θ(x, y) := ∥∇gsoc(x) ∇gsoc(y)∥ =
√
∥∇gsoc(x)2 +∇gsoc(y)2∥,
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and for any t ∈ R, the function hp,t : R
2n → R+ be defined by

hp,t(x, y) :=


e(wt) + f(wt) =

1

p q
√
λ1(w) + |t|p

if (x, y) ∈ S1,

d(wt) =
p
√
2w1 + |t|p − |t|

2w1
if (x, y) ∈ S2,

0 if (x, y) = (0, 0).

(5.4)

Then for any nonzero t ∈ R,

dist(∇Φp,t(x, y, ζ), ∂Φp(x, y, ζ)) ≤ Θ(x, y)[hp,0(x, y)− hp,t(x, y)]. (5.5)

Proof. Since it follows from the proof of Theorem 4.3 that J0
ϕp
(x, y) = V ∈ ∂ϕp(x, y) for

any (x, y, ζ) ∈ R2n+l, we obtain

J0
Φp

(x, y, ζ) :=

(
J0
ϕp
(x, y) ∇x,yF (x, y, ζ)

O ∇ζF (x, y, ζ)

)
∈ ∂Φp(x, y, ζ).

Thus, we have from (3.4), (4.2) and (4.4) that

dist(∇Φp,t(x, y, ζ), ∂Φp(x, y, ζ)) = min{∥∇Φp,t(x, y, ζ)−W∥ :W ∈ ∂Φp(x, y, ζ)}
≤ ∥∇Φp,t(x, y, ζ)− J0

Φp
(x, y, ζ)∥

= ∥∇ϕp,t(x, y, ζ)− J0
ϕp
(x, y, ζ)∥

=

∥∥∥∥ Jx −∇gsoc(x)∇gsoc(zt)−1

Jy −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥ .
(5.6)

By (5.6), it suffices to estimate

∥∥∥∥ Jx −∇gsoc(x)∇gsoc(zt)−1

Jy −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥ . For simplicity, we write

λti := λi(w
t) and λi := λi(w) for i = 1, 2 in the following analysis.

Case (1) If (x, y) ∈ S1, we have λ2 ≥ λ1 > 0. Then it follows from (4.5) and (4.6) that∥∥∥∥ Jx −∇gsoc(x)∇gsoc(zt)−1

Jy −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥ =

∥∥∥∥ ∇gsoc(x)∇gsoc(z)−1 −∇gsoc(x)∇gsoc(zt)−1

∇gsoc(y)∇gsoc(z)−1 −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥
≤
∥∥∥∥ ∇gsoc(x)

∇gsoc(y)

∥∥∥∥ ∥∇gsoc(z)−1 −∇gsoc(zt)−1∥

= Θ(x, y)∥G∥,

where G := ∇gsoc(z)−1 −∇gsoc(zt)−1. Now we will show ∥G∥ = hp,0(x, y)− hp,t(x, y).
Subcase (1.1) If (x, y) ∈ S1 and w2 = 0, we have λ1 = λ2 = w1 > 0. By Theorem 3.1,

we have

∥G∥ = ∥∇gsoc(z)−1 −∇gsoc(zt)−1∥ =

∥∥∥∥∥ 1

p q
√
w1
I − 1

p q
√
w1 + |t|p

I

∥∥∥∥∥
=

1

p q
√
λ1

− 1

p q
√
λt1

= hp,0(x, y)− hp,t(x, y).

Subcase (1.2) If (x, y) ∈ S1 and w2 ̸= 0, we have λ2 > λ1 > 0. Then by (3.9), the
matrix G can be written as

G = ∇gsoc(z)−1 −∇gsoc(zt)−1

=

[
e0 − et −(f0 − ft)w̄

T
2

−(f0 − ft)w̄2 (d0 − dt)I + [(e0 − et)− (d0 − dt)]w̄2w̄
T
2

]
=

[
β −γw̄T

2

−γw̄2 αI + (β − α)w̄2w̄
T
2

]
,
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where dt := d(wt), et := e(wt), ft := f(wt) are given by (3.11) and (3.12), and α := d0 −
dt, β := e0 − et, γ := f0 − ft. From Lemma 5.1, the eigenvalues of the symmetric matrix
G are α and β ± γ. Since λ2 > λ1 > 0 and λti = λi + |t|p (i = 1, 2), it is not difficult to
verify that dt = d|t|, et + ft = e|t| + f|t| and et − ft = e|t| − f|t| are all strictly decreasing
functions in |t| ≥ 0, i.e., for any |t1| > |t2|, we have dt1 < dt2 , et1 + ft1 < et2 + ft2 and
et1 − ft1 < et2 − ft2 . Therefore for any t ̸= 0,

α = d0 − dt =
p
√
λ2 − p

√
λ1

λ2 − λ1
−

p
√
λt2 − p

√
λt1

λt2 − λt1
=

p
√
λ2 − p

√
λ1

λ2 − λ1
−

p
√
λt2 − p

√
λt1

λ2 − λ1
> 0, (5.7)

β + γ = (e0 − et) + (f0 − ft) = (e0 + f0)− (et + ft) =
1

p

(
1

q
√
λ1

− 1
q
√
λt1

)
> 0, (5.8)

β − γ = (e0 − et)− (f0 − ft) = (e0 − f0)− (et − ft) =
1

p

(
1

q
√
λ2

− 1
q
√
λt2

)
> 0. (5.9)

Thus, for any t ̸= 0, the matrix G is a positive definite matrix with ∥G∥ = max{α, β ± γ}.
We will show below that β + γ ≥ α ≥ β − γ holds. For any t ∈ R, it follows from (5.1),

(5.7), (5.8) and Lemma 5.2 that

(β + γ)− α =
1

p

(
1

q
√
λ1

− 1
q
√
λt1

)
−

(
p
√
λ2 − p

√
λ1

λ2 − λ1
−

p
√
λt2 − p

√
λt1

λ2 − λ1

)

=

(
1

p q
√
λ1

−
p
√
λ2 − p

√
λ1

λ2 − λ1

)
−

(
1

p q
√
λt1

−
p
√
λt2 − p

√
λt1

λ2 − λ1

)
= g1(0)− g1(|t|p) ≥ 0.

By (5.2), (5.7), (5.9) and Lemma 5.2, we obtain for any t ∈ R that

α− (β − γ) =

(
p
√
λ2 − p

√
λ1

λ2 − λ1
−

p
√
λt2 − p

√
λt1

λ2 − λ1

)
− 1

p

(
1

q
√
λ2

− 1
q
√
λt2

)

=

(
p
√
λ2 − p

√
λ1

λ2 − λ1
− 1

p q
√
λ2

)
−

(
p
√
λt2 − p

√
λt1

λ2 − λ1
− 1

p q
√
λt2

)
= g2(0)− g2(|t|p) ≥ 0.

Therefore, we have proved β + γ ≥ α ≥ β − γ, and hence for any t ̸= 0,

∥G∥ = β + γ =
1

p q
√
λ1

− 1

p q
√
λt1

= hp,0(x, y)− hp,t(x, y).

Case (2) If (x, y) ∈ S2, we have 2w1 = λ2 > λ1 = 0. Then from (4.14), we obtain

Jx = ∇gsoc(x)[L2(w) + L3(w)]

with L2(w) = lim
t→0

L2(w
t), L3(w) = lim

t→0
L3(w

t). Therefore it follows from (4.11) and (4.14)
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that∥∥∥∥ Jx −∇gsoc(x)∇gsoc(zt)−1

Jy −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥ =

∥∥∥∥ ∇gsoc(x)[L2(w) + L3(w)]−∇gsoc(x)[L2(w
t) + L3(w

t)]
∇gsoc(y)[L2(w) + L3(w)]−∇gsoc(y)[L2(w

t) + L3(w
t)]

∥∥∥∥
≤
∥∥∥∥ ∇gsoc(x)

∇gsoc(y)

∥∥∥∥ ∥L2(w) + L3(w)− L2(w
t)− L3(w

t)∥

= Θ(x, y)∥G∥,

where G := L2(w) + L3(w)− L2(w
t)− L3(w

t). Now we will show again ∥G∥ = hp,0(x, y)−
hp,t(x, y).

From (3.10) and (3.11), the matrix G can be written as

G = L2(w) + L3(w)− L2(w
t)− L3(w

t)

=
1

2p q
√
λ2

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
+ d0

[
0 0T

0 I − w̄2w̄
T
2

]
− 1

2p q
√
λt2

[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
− dt

[
0 0T

0 I − w̄2w̄
T
2

]
=

(
1

2p q
√
λ2

− 1

2p q
√
λt2

)[
1 w̄T

2

w̄2 w̄2w̄
T
2

]
+ (d0 − dt)

[
0 0T

0 I − w̄2w̄
T
2

]
=

[
δ δw̄T

2

δw̄2 αI + (δ − α)w̄2w̄
T
2

]
,

with α := d0 − dt and δ := 1
2 [(e0 − f0) − (et − ft)]. By Lemma 5.1, the eigenvalues of the

symmetric matrix G are α, 0 and 2δ. Since 2w1 = λ2 > λ1 = 0 and λti = λi + |t|p (i = 1, 2),
it is not difficult to verify that dt = d|t| and et − ft = e|t| − f|t| are all strictly decreasing
functions in |t| ≥ 0, i.e., for any |t1| > |t2|, we have dt1 < dt2 and et1 − ft1 < et2 − ft2 . Then
for any t ̸= 0,

α = d0 − dt =
p
√
λ2 − p

√
λ1

λ2 − λ1
−

p
√
λt2 − p

√
λt1

λt2 − λt1

=
p
√
2w1

2w1
−

p
√
2w1 + |t|p − |t|

2w1
> 0,

2δ = (e0 − f0)− (et − ft) =

(
1

p q
√
λ2

− 1

p q
√
λt2

)

=
1

p

(
1

q
√
2w1

− 1
q
√
2w1 + |t|p

)
> 0.

Therefore, it follows from (5.3) and Lemma 5.2 that for any t ∈ R,

α− 2δ =
p
√
2w1

2w1
−

p
√
2w1 + |t|p − |t|

2w1
− 1

p

(
1

q
√
2w1

− 1
q
√
2w1 + |t|p

)

=
p
√
2w1

2w1
− 1

p q
√
2w1

−

(
p
√
2w1 + |t|p − p

√
|t|p

2w1
− 1

p q
√

2w1 + |t|p

)
= g3(0)− g3(|t|p) ≥ 0.
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Hence, for any t ̸= 0, the matrix G is a positive definite matrix with

∥G∥ = α =
p
√
2w1

2w1
−

p
√

2w1 + |t|p − |t|
2w1

= hp,0(x, y)− hp,t(x, y).

Case (3) If (x, y) = (0, 0), we obtain from (3.5), (4.5) and (4.6) that Jx = Jy = O,
∇gsoc(x) = ∇gsoc(y) = O, and therefore∥∥∥∥ Jx −∇gsoc(x)∇gsoc(zt)−1

Jy −∇gsoc(y)∇gsoc(zt)−1

∥∥∥∥ = 0.

Hence it is obvious that dist(∇Φp,t(x, y, ζ), ∂Φp(x, y, ζ)) = 0 and (5.5) holds. This completes
the proof.

Now we are in a position to estimate an upper bound of the parameter t > 0 for the
predicted accuracy of the distance between the gradient of Φp,t and the subgradient of Φp.

Theorem 5.4. Let p ∈ (1, 4), δ > 0 be given, and (x, y, ζ) ∈ R2n+l be any point. Let θ(x, y)
be any function such that θ(x, y) ≥ Θ(x, y), and the function t̄ : R2n × R+ → R+ ∪ {+∞}
be defined by

t̄(x, y, δ) :=


p

√
λ1(w)

2(pδ)q

θ(x, y)q − λ1(w)(pδ)q
if (x, y) ∈ S1 and δ <

θ(x, y)

p q
√
λ1(w)

,

2w1δ

θ(x, y)
if (x, y) ∈ S2 and δ <

θ(x, y)
q
√
2w1

,

+∞ otherwise.

Then for any t ∈ R such that 0 < |t| ≤ t̄(x, y, δ), we have

dist(∇Φp,t(x, y, ζ), ∂Φp(x, y, ζ)) < δ.

Moreover, one of the easily computable functions θ(x, y) that dominate Θ(x, y) is

θ(x, y) := p
√
2p−1(∥x∥2p−2 + ∥y∥2p−2).

Proof. (i) Without loss of generality, we may assume that θ(x, y) > 0, since otherwise
Θ(x, y) = 0, and thus ∇gsoc(x) = O,∇gsoc(y) = O, which together with (3.5) imply (x, y) =
(0, 0) ̸∈ S1 ∪ S2. Therefore

dist(∇Φp,t(0, 0, ζ), ∂Φp(0, 0, ζ)) = 0 < δ

for any t ∈ R. Then by Theorem 5.3, it suffices to show that

θ(x, y)[hp,0(x, y)− hp,t(x, y)] < δ

for any (x, y) ∈ S1 ∪ S2. We will show below that

hp,0(x, y)− hp,t(x, y) < δ/θ(x, y)

for any t ∈ R such that 0 < |t| ≤ t̄(x, y, δ). For simplicity, we write λ1 := λ1(w), θ := θ(x, y)
and t̄ := t̄(x, y, δ) in the following analysis.
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Case (1) If (x, y) ∈ S1, we have by (5.4)

hp,0(x, y)− hp,t(x, y) < hp,0(x, y) =
1

p q
√
λ1

≤ δ

θ

for any given δ ≥ θ
p q√λ1

and any t ∈ R∪{+∞}. Now let δ < θ
p q√λ1

and t̄ = p

√
λ2
1(pδ)

q

θq−λ1(pδ)q
. By

(5.4), we obtain for any t ∈ R such that 0 < |t| ≤ t̄,

hp,0(x, y)− hp,t(x, y) =
1

p q
√
λ1

− 1

p q
√
λ1 + |t|p

=
q
√
λ1 + |t|p − q

√
λ1

p q
√
λ1

q
√
λ1 + |t|p

<
q
√
|t|p

p q
√
λ1

q
√
λ1 + |t|p

=
1

p q
√
λ1

q
√
1 + λ1/|t|p

≤ 1

p q
√
λ1

q
√
1 + λ1/|t̄|p

=
1

p q
√
λ1 q

√
1 + λ1

θq−λ1(pδ)q

λ2
1(pδ)

q

=
δ

θ
,

where the first inequality is due to the fact that q
√
a− q

√
b < q

√
a− b for any a > b > 0.

Case (2) If (x, y) ∈ S2, we obtain from (5.4)

hp,0(x, y)− hp,t(x, y) < hp,0(x, y) =
p
√
2w1

2w1
≤ δ

θ

for any given δ ≥ θ/ q
√
2w1 and any t ∈ R ∪ {+∞}. Now let δ < θ/ q

√
2w1 and t̄ = 2w1δ/θ.

From (5.4), we have

hp,0(x, y)− hp,t(x, y) =
p
√
2w1

2w1
−

p
√
2w1 + |t|p − |t|

2w1

<
p
√
2w1

2w1
−

p
√
2w1 − |t|
2w1

=
|t|
2w1

≤ |t̄|
2w1

=
2w1δ

2w1θ

=
δ

θ

for any t ∈ R such that 0 < |t| ≤ t̄.
(ii) Since Θ(x, y) = ∥∇gsoc(x) ∇gsoc(y)∥ is not easy to compute in general, we estimate

Θ(x, y) as

Θ(x, y) = ∥∇gsoc(x) ∇gsoc(y)∥ =

∥∥∥∥[∇gsoc(x) ∇gsoc(y)]
[

∇gsoc(x)
∇gsoc(y)

]∥∥∥∥1/2
=
√

∥∇gsoc(x)2 +∇gsoc(y)2∥
≤
√

∥∇gsoc(x)∥2 + ∥∇gsoc(y)∥2.

If x2 = 0, we obtain from (3.5) that

∥∇gsoc(x)∥ = ∥psign(x1)|x1|p−1I∥ = p|x1|p−1 = p(|x1|+ ∥x2∥)p−1.

If x2 ̸= 0, we obtain from (3.5), (3.6), (3.7), (3.8) and Lemma 5.1 that the eigenvalues of
the matrix ∇gsoc(x) are

b(x) + c(x) = psign(λ2(x))|λ2(x)|p−1,
b(x)− c(x) = psign(λ1(x))|λ1(x)|p−1,
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|a(x)| = p|νλ2(x) + (1− ν)λ1(x)|p−1

for some ν ∈ (0, 1), where the last relation is due to (3.6) and the mean-value theorem.
Then, the norm of the matrix ∇gsoc(x) is given by

∥∇gsoc(x)∥ = max{|b(x) + c(x)|, |b(x)− c(x)|, |a(x)|}
= pmax{|λ2(x)|p−1, |λ1(x)|p−1}
= p(|x1|+ ∥x2∥)p−1,

and thus

Θ(x, y) ≤
√
∥∇gsoc(x)∥2 + ∥∇gsoc(y)∥2

= p
√

(|x1|+ ∥x2∥)2p−2 + (|y1|+ ∥y2∥)2p−2

≤ p
√

(2|x1|2 + 2∥x2∥2)p−1 + (2|y1|2 + 2∥y2∥2)p−1

= p
√

2p−1(∥x∥2p−2 + ∥y∥2p−2).

Therefore, we can take θ(x, y) := p
√

2p−1(∥x∥2p−2 + ∥y∥2p−2) as one of the easily com-
putable functions θ(x, y) that dominate Θ(x, y).

6 Conclusions

In this paper, we show the Jacobian consistency of the smoothed generalized FB function
ϕp,t with p ∈ (1, 4). Moreover, we estimate the distance between the subgradient of the
generalized FB function ϕp and the gradient of its smoothing function ϕp,t. These results
will help to adjust a parameter appropriately, and play an important role for establishing the
rapid convergence of the smoothing methods for the SOCCP via the smoothed generalized
FB function.
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