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proposed a primal-dual IPM for SDO based on a parameterized version of the kernel func-
tion in [1] with the parameter p in the growth term and the best known complexity result
is obtained when p = 1, i.e., the kernel function in [1].

The motivation of the paper is to study a finite kernel function, to generalize a finite
kernel function defined in [1] and to define a new interior-point algorithm for SDO based on
a new kernel function and give a complexity result of large-update method. We obtained
the best known complexity result for all parameters in the kernel function.

The paper is organized as follows: In section 2, we give some definitions and fundamental
properties. In section 3, we define a class of new kernel functions and its properties. In
section 4, we propose a new primal-dual interior-point algorithm and show its complexity
results.

Conventional notations : Rn, Rn
+ and Rn

++ denote the set of real, nonnegative real and
positive real vectors with n components, respectively. Sn, Sn

+ and Sn
++ denote the set of

symmetric, symmetric positive semidefinite and symmetric positive definite n× n matrices,
respectively. ∥ · ∥ denotes the Frobenius norm for matrices. For A, B ∈ Sn, A ≽ B(A ≻ B)
means A − B is symmetric positive semidefinite(positive definite). For Q ∈ Sn

++, Q
1/2

stands for the symmetric square root of Q. For any V ∈ Sn, we denote by λ(V ) the vector
of eigenvalues of V and Λ := diag(λ(V )), the diagonal matrix from a vector λ(V ). E denotes
an n× n identity matrix. For a ∈ R, ⌈a⌉ denotes the smallest integer greater than or equal
to a. For f(x), g(x) : R++ → R++, f(x) = O(g(x)) if f(x) ≤ c1g(x) for some positive
constant c1 and f(x) = Θ(g(x)) if c2g(x) ≤ f(x) ≤ c3g(x) for some positive constants c2
and c3. log x stands for the natural logarithm of x ∈ R++.

2 Preliminaries

In this section, we give basic definitions and introduce generic IPMs for SDO. For V ∈ Sn
++,

let V := QTdiag(λ1(V ), λ2(V ), · · · , λn(V ))Q be the spectral decomposition. We generalize
an analytic function ψ(t) : R++ → R+ to the matrix function ψ(V ) : Sn

++ → Sn
+ as

follows( [5]):

ψ(V ) := QTdiag (ψ(λ1(V )), ψ(λ2(V )), · · · , ψ(λn(V )))Q,

ψ′(V ) := QTdiag (ψ′(λ1(V )), ψ′(λ2(V )), · · · , ψ′(λn(V )))Q.
(2.1)

In the following we define a matrix function.

Definition 2.1. A matrix M(t) is said to be a matrix function if each entry of M(t) is a
function of t, i.e., M(t) = [Mij(t)], 1 ≤ i, j ≤ n. M(t) is said to be differentiable if Mi,j ,
1 ≤ i, j ≤ n, is differentiable.

Let M(t) := [Mij(t)] and N(t) := [Nij(t)], 1 ≤ i, j ≤ n, be matrices of functions which are
differentiable at t. Then we have

d
dtM(t) =

[
d
dtMij(t)

]
:=M ′(t),

d
dtTr(M(t)) = Tr (M ′(t)) ,

d
dtTr(ψ(M(t))) = Tr (ψ′(M(t))M ′(t)) ,

where Tr denotes the trace.
Throughout the paper, we assume that the matrices Ai, 1 ≤ i ≤ m, are linearly independent
and SDO (1.1) and (1.2) satisfy the interior-point condition(IPC), i.e., there exists X ∈
FP , S ∈ FD with X ≻ 0, S ≻ 0, where FP and FD denote the feasible sets of the problem
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(1.1) and (1.2), respectively. Under these assumptions, finding an optimal solution of the
problems (1.1) and (1.2) is equivalent to solving the following system:

Ai •X = bi, 1 ≤ i ≤ m, X ≽ 0,

m∑
i=1

yiAi + S = C, S ≽ 0, XS = 0. (2.2)

The basic idea of primal-dual IPMs is to replace the complementarity condition of (2.2), i.e.,
XS = 0, by the parameterized equation XS = µE with X,S ≻ 0 and µ > 0. So we consider
the following system: for µ > 0,

Ai •X = bi, 1 ≤ i ≤ m, X ≻ 0,
m∑
i=1

yiAi + S = C, S ≻ 0, XS = µE. (2.3)

Under the assumptions, the system (2.3) has a unique solution (X(µ), y(µ), S(µ))
for µ > 0 and (X(µ), y(µ), S(µ)) converges to the optimal solution of the problem (1.1) and
(1.2) as µ goes to zero [9]. We call the set {(X(µ), y(µ), S(µ)) | µ > 0} the central path of
the problems (1.1) and (1.2). IPMs follow the central path approximately.
Let
P := X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2, D := P 1/2.
Define

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ
(D−1XSD)1/2. (2.4)

Then D ∈ Sn
++ and V ∈ Sn

++. Define for µ > 0 and 1 ≤ i ≤ m,

Āi :=
1
√
µ
DAiD, DX :=

1
√
µ
D−1∆XD−1, DS :=

1
√
µ
D∆SD. (2.5)

Applying Newton’s method and using the NT symmetrizing scheme [7], we obtain the fol-
lowing system:

Āi •DX = 0, 1 ≤ i ≤ m,
m∑
i=1

∆yiĀi +DS = 0, DX +DS = V −1 − V. (2.6)

Note that the right-hand side V −1 − V of the third equation of (2.6) is −ψ′
c(V ), where

ψc(t) :=
t2−1
2 − log t, the classical kernel function. The solution (DX ,∆y,DS) of the system

(2.6) is called the scaled NT search direction. Using (2.5), we can find a unique search
direction (∆X,∆y,∆S) ∈ Sn ×Rm × Sn.

The generic primal-dual interior-point algorithm for SDO works as follows: Assume that
τ ≥ 1 and there is a strictly feasible point (X, y, S) which is in a τ -neighborhood of the given
µ-center [6]. We update µ to µ+ := (1 − θ)µ, for some fixed θ ∈ (0, 1) and then solve the
system (2.6) and (2.5) to obtain the NT search direction. The positivity condition for the
new iterates is ensured with the right choice of the step size α. This procedure is repeated
until we find new iterates (X+, y+, S+) that belongs to a τ -neighborhood of the µ+-center
and then we let µ := µ+ and (X, y, S) := (X+, y+, S+). We repeat the process until nµ < ε.

Primal-Dual Algorithm for SDO

Input:
A threshold parameter τ ≥ 1;



32 GYEONG-MI CHO

an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible (X0, S0) and µ0 = 1 such that Ψ(X0, S0, µ0) ≤ τ.

begin
X := X0; S := S0; µ := µ0;
while nµ ≥ ε do
begin

µ := (1− θ)µ;
while Ψ(X,S, µ) > τ do
begin

solve the system (2.6) for ∆X, ∆y, ∆S;
determine a step size α;
X := X + α∆X;
S := S + α∆S;
y := y + α∆y;

end
end

end

3 Kernel Functions

In this section, we define a class of kernel functions which are generalized version of the
barrier function in [1] and give its essential properties for complexity analysis. Each barrier
function is defined by its univariate kernel function. We consider a function ψ(t) as follows:

ψ(t) :=
(log q)(t2 − 1)

2
+

1

σ
(qσ(1−t) − 1), q ≥ e, σ ≥ 1, t > 0. (3.1)

For ψ(t) as in (3.1), the first three derivatives are as follows:

ψ′(t) = (log q)(t− qσ(1−t)),

ψ′′(t) = (log q)(1 + σ(log q)qσ(1−t)),

ψ(3)(t) = −σ2(log q)3qσ(1−t).

(3.2)

From (3.1) and (3.2), we have for q ≥ e, σ ≥ 1 and t > 0,

ψ′(1) = ψ(1) = 0, ψ′′(t) > log q, lim
t→0+

ψ(t) <∞, lim
t→∞

ψ(t) = ∞. (3.3)

Lemma 3.1. Let ψ(t) be defined as in (3.1). Then we have for q ≥ e and σ ≥ 1,
(i) tψ′′(t) + ψ′(t) ≥ 0, t > 1

σ(log q) ,

(ii) tψ′′(t)− ψ′(t) ≥ 0, t > 0,
(iii) ψ(3)(t) < 0, t > 0.

Remark 3.2. (Lemma 2.4 in [2]) If ψ(t) satisfy (ii) and (iii) of Lemma 3.1, then ψ′′(t)ψ′(βt)−
βψ′(t)ψ′′(βt) > 0, t > 0, β > 1.

Lemma 3.3. For ψ(t) as in (3.1), log q
2 (t − 1)2 ≤ ψ(t) ≤ 1

2 log q (ψ
′(t))2, q ≥ e, σ ≥ 1,

t > 0.



INTERIOR-POINT ALGORITHM FOR SDO 33

Lemma 3.4. Let ϱ : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. Then

ϱ(u) ≤ 1 +
√

2u
log q , q ≥ e, u ≥ 0.

Lemma 3.5. Let ρ : [0,∞) → (0, 1] be the inverse function of −1
2ψ

′(t) for 0 < t ≤ 1. Then

ρ(z) ≥ σ(log q)−log( 2z
log q+1)

σ log q , q > e, σ ≥ 1, z ≥ 0.

4 Complexity Results

In this section, we define a new primal-dual interior-point algorithm for SDO and give the
complexity of large-update methods.
First of all, we replace V −1−V of (2.6) by −ψ′(V ). This defines new search directions. For
the complexity analysis, we follow the similar framework in [2].
Define Ψ(V ) : Sn

++ → R+ by

Ψ(V ) := Tr (ψ(V )) =
n∑

i=1

ψ(λi(V )). (4.1)

Then Ψ(V ) is strictly convex with respect to V ≻ 0 and vanishes at its global minimal point
V = E and Ψ(E) = 0. Since DX and DS are orthogonal, for µ > 0,

Ψ(V ) = 0 ⇔ V = E ⇔ DX = DS = 0 ⇔ X = X(µ), S = S(µ).

Hence we can use Ψ(V ) as a proximity function to measure the distance between the current
iteration and the corresponding µ-center. For the analysis of the algorithm, we also define
the norm-based proximity measure δ(V ) as follows: For V ∈ Sn

++,

δ(V ) :=
1

2
∥ψ′(V )∥ =

1

2

√√√√ n∑
i=1

(ψ′(λi(V )))2 =
1

2
∥DX +DS∥. (4.2)

In the following we compute upper bounds of proximity function during an outer iteration.
Using (4.2) and Lemma 3.3, we have the following lemma.

Lemma 4.1. Let δ(V ) and Ψ(V ) be defined as in (4.2) and (4.1), respectively. Then

δ(V ) ≥
√

log q
2 Ψ(V ), V ∈ Sn

++, q ≥ e.

Lemma 4.2 (Theorem 3.2 in [2]). Let ϱ be defined as in Lemma 3.4. Then Ψ(βV ) ≤
nψ

(
βϱ

(
Ψ(V )
n

))
, V ∈ Sn

++, β ≥ 1.

Using Lemma 4.2, Lemma 3.3 and Lemma 3.4, we have the following theorem.

Theorem 4.3. Let 0 < θ < 1 and V+ := V√
1−θ

. If Ψ(V ) ≤ τ, then we have for q ≥ e,

Ψ(V+) ≤ log q
2(1−θ)

(√
nθ +

√
2τ

log q

)2

.

Define for q > e and 0 < θ < 1, Ψ̃0 := log q
2(1−θ)

(√
nθ +

√
2τ

log q

)2

. We will use Ψ̃0 for the

upper bounds of Ψ(V ).

Remark 4.4. For large-update method with τ = O(n) and θ = Θ(1), Ψ̃0 = O((log q)n).
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Define λ1(V ) := min{λi(V ), 1 ≤ i ≤ n} for V ∈ Sn
++.

Now we compute a feasible step size α and the decrement of the proximity function during
an inner iteration.

Lemma 4.5 (Modification of Proposition 5.2.6 in [8]). Let V1 and V2 ∈ Sn
++ satisfying

λ1(V1), λ1(V2) ≥ 1
σ(log q) . Then we have

Ψ

([
V

1/2
1 V2V

1/2
1

]1/2)
≤ 1

2
(Ψ(V1) + Ψ(V2)) .

For fixed µ, if we take a step size α along the search direction (∆X,∆y,∆S), we obtain a new
iteration (X+, y+, S+), where X+ := X+α∆X, y+ := y+α∆y, S+ := S+α∆S, α > 0.

From (2.4), we have V+ = 1√
µ

(
D−1X+S+D

)1/2
. Hence, we have V 2

+ = (V+αDX)(V+αDS).

Since V, DX , DS ∈ Sn
++, V +αDX ∈ Sn

++ and V +αDS ∈ Sn
++ for some α > 0. Thus V 2

+ is

similar to (V + αDX)
1/2

(V + αDS)(V + αDX)1/2. This implies that the eigenvalues of V+

are the same as those of
(
(V + αDX)1/2(V + αDS)(V + αDX)1/2

)1/2
. From (4.1), we have

Ψ(V+) = Ψ
((

(V + αDX)1/2(V + αDS)(V + αDX)1/2
)1/2)

.

By Lemma 4.5, we obtain

Ψ(V+) ≤
1

2
(Ψ(V + αDX) + Ψ(V + αDS)) . (4.3)

Define for α > 0,

f(α) := Ψ(V+)−Ψ(V ), f1(α) :=
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ).

From (4.3), f(α) ≤ f1(α) and f(0) = f1(0) = 0.
Let

α̃ :=
1

ψ′′(ρ(2δ))
. (4.4)

Let t := ρ(2δ). Then 0 < t ≤ 1 and α̃ = 1
(log q)(1+σ(log q)qσ(1−t))

. On the other hand,

−1
2ψ

′
(t) = 2δ. By (3.2) and 0 < t ≤ 1, −(log q)(t − qσ(1−t)) = 4δ. (log q)qσ(1−t) =

4δ + (log q)t ≤ 4δ + log q. Thus

(log q)(1 + σ(log q)qσ(1−t)) ≤ (log q)(1 + σ(4δ + log q)).

Hence

α̃ ≥ 1

(log q)(1 + σ(4δ + log q))
≥ 1

7(log q)2σδ
.

Define the default step size ᾱ as follows:

ᾱ :=
1

7(log q)2σδ
. (4.5)

Lemma 4.6. Let L ≥ 8 and Ψ(V ) ≤ L. If σ ≥ 1 + 2 log(1 + L), e ≤ q ≤ e2(
L2+2L

1+2 log(1+L)
−L),

then λi(V ) ≥ 3
2(log q)σ , 1 ≤ i ≤ n.
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Proof. Let t := λ1(V ). If t ≥ 1, then t = λ1(V ) ≥ 1 > 3
2(log q)σ . Suppose that t < 1.

Since Ψ(V ) ≤ L, ψ(t) ≤ L, i.e., (log q)(t2−1)
2 + 1

σ (q
σ(1−t) − 1) ≤ L. This implies that

1
σ (q

σ(1−t)−1) ≤ L+ (log q)(1−t2)
2 ≤ L+ log q

2 , q1−σt ≤ 1+σ(L+ log q
2 )

qσ−1 . Let g1(σ) :=
1+σ(L+ log q

2 )

qσ−1 .

Then g1(σ) is monotone decreasing in σ. Since σ ≥ 1 + 2 log(1 + L) by assumption,

q1−σt ≤ 1+(1+2 log(1+L))(L+ log q
2 )

q2 log(1+L)

≤ 1+(1+2 log(1+L))(L+ log q
2 )

e2 log(1+L)

=
1+(1+2 log(1+L))(L+ log q

2 )

(1+L)2 .

Let g2(L) :=
1+(1+2 log(1+L))(L+ log q

2 )

(1+L)2 . Then g2(L) is monotone decreasing in L and q1−σt ≤

g2(L). This implies that t ≥ 1
σ(log q) log

q
g2(L) . Let g3(q, L) :=

q
g2(L) :=

q(1+L)2

1+(1+2 log(1+L))(L+ log q
2 )

.

g3(q, L) is monotone increasing in q and L, respectively. Since q ≥ e and L ≥ 8, g3(q, L) ≥
81e

1+8.5(1+4 log 3) ≥ 4.6. Hence t ≥ log(4.6)
σ(log q) ≥ 3

2σ(log q) .

By Lemma 4.6 and Lemma 5.2 in [4], λi(V +αDX) ≥ λ1(V )− 2ᾱδ ≥ 3
2σ(log q) −

2δ
7(log q)2σδ ≥

17
14σ(log q) >

1
σ(log q) , 1 ≤ i ≤ n. By the same way, λi(V + αDS) ≥ 1

σ(log q) , 1 ≤ i ≤ n.

In the following we compute the complexity bound of large-update methods.

Lemma 4.7 (Lemma 4.6 in [2]). Let α̃ be defined as in (4.4). Then f(α) ≤ −αδ2, α ≤ α̃.

Using Lemma 4.7, we have the following lemma.

Lemma 4.8. Let ᾱ be defined as in (4.5). Then f(ᾱ) ≤ − Ψ
1
2

7
√
2(log q)

3
2 σ
.

We denote the value of Ψ after µ-update as Ψ0 and the subsequent values in the same outer
iteration are denoted as Ψl, l = 0, 1, 2, 3, · · · ,K, where K denotes the total number of inner
iterations per an outer iteration. Then we have Ψ0 ≤ Ψ̃0. Then we have ΨK−1 > τ and
0 ≤ ΨK ≤ τ .
Using Proposition 1.3.2 in [8] and letting L := Ψ̃0, we have the following theorem.

Theorem 4.9. Let a SDO (1.1) and (1.2) be given and 0 < θ < 1 and τ ≥ 1. Let L ≥ 8,

Ψ(V ) ≤ L and σ = 1 + 2 log(1 + L), e ≤ q ≤ e2(
L2+2L

1+2 log(1+L)
−L). If there is a strictly feasible

starting point (X0, S0) s.t. Ψ(X0, S0, µ0 := 1) ≤ τ , then the total number of iterations
required by the algorithm to have an approximate solution such that nµ < ε is bounded by⌈
14
√
2(log q)

3
2σΨ̃

1
2
0

1
θ log

n
ε

⌉
.

Remark 4.10. Using Remark 4.4, Theorem 4.9 and σ = O(log n), we have

O((log q)
3
2
√
n(log n) log n

ϵ ) iteration complexity for large-update method. This is the best
known complexity result for such methods.
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