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Abstract: In this paper, the notion of the generalized Tykhonov well-posedness for a system of generalized
vector quasi-equilibrium problems with set-valued mappings is investigated. By using the gap functions of
a system of generalized vector quasi-equilibrium problems, we establish the equivalent relationship between
the generalized Tykhonov well-posedness of the systems of generalized vector quasi-equilibrium problems
and that of the minimization problems. We also present some metric characterizations for the generalized
Tykhonov well-posedness of the system of generalized vector quasi-equilibrium problems. The results in this
paper extend some known results in the literature.
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Introduction

Well-posedness plays a crucial role in the stability theory for optimization problems, which
guarantees that, for an approximating solution sequence, there exists a subsequence which
converges to a solution. The study of well-posedness for scalar minimization problems
started from Tykhonov [42] and Levitin and Polyak [26]. Since then, various notions of well-
posedness for scalar minimization problems have been defined and studied (see, e.g., [10,13,
19,24,36,44] and the references therein). Recent studies on various notions of well-posedness
for vector optimization problems can be found in [6,9,17,18,20,33,35]. It is worth noting
that the recent study for various types of well-posedness have been generalized to variational
inequalities [11,12, 22,30, 34|, generalized variational inequalities [7,21], quasi-variational
inequalities [29], generalized quasi-variational inequalities [23], generalized vector variational
inequalities [43], vector quasi-variational inequalities [31], equilibrium problems [32], vector
equilibrium problems ( [28, 38]), vector quasi-equilibrium problems [30], generalized vector
quasi-equilibrium problems [27,40], system of vector quasi-equilibrium problems with single-
valued maps [39] and many other problems.

There are some results on the gap functions or existence of solutions for several types
of systems of generalized vector equilibrium problems with set-valued maps [15,41], which
contain as special cases the mathematical models in [6,7,9-13, 16-24, 26-36, 38—40, 42—44].
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However, so far there is no study on the well-posedness of any classes of systems of generalized
vector quasi-equilibrium problems with set-valued maps. In this paper, we are interested in
investigating generalized Tykhonov well-posedness for a system of generalized vector quasi-
equilibrium problems with set-valued maps. The paper is organized as follows: In section 2,
we present some preliminaries. In section 3, the lower semi-continuous property of the gap
functions of the system of generalized vector quasi-equilibrium problems and the equivalent
relationship between the generalized Tykhonov well-posednesses of the system of generalized
vector quasi-equilibrium problems and that of the minimization problems are established.
In section 4, some metric characterizations for the generalized Tykhonov well-posedness of
the system of generalized vector quasi-equilibrium problems are obtained. The results in
this paper extend some known results in [16,27-29,31,39].

Preliminaries

Throughout this paper, let I be a countable index set and for each i € I, let (E;,d;)
be a metric space, X; be a nonempty convex subset of E;, and Y; be a locally convex
Hausdorff topological vector space. Let E = [[,c; Ei, X = [[;c; Xi, B = Hje[\i E; and
X, = Hje[\iXi' For each fixed i € I and z € X, we write z = (z;,2-;) = (;)ier,
where z; and z_; denote the projection of x onto X; and X_;, respectively. Let d(z,y) =

Sup;c; % for all z,y € E. It is easy to verify that (E,d) is a metric space. For

each i € I, let C; : X — 2% be a set-valued map such that for any z € X, C;(z) is a
proper, pointed, closed and convex cone in Y; with nonempty interior intC;(z). For each
1 €1, let e; : X — Y; be a continuous vector-valued map and satisfy that for any =z € X,
ei(x) € intCy(x), F; : X x X; — 2Y and A; : X — 2% be set-valued maps. We consider
the following system of generalized vector quasi-equilibrium problems with set-valued maps:
find Z in X such that for each i € I,

It is worth mentioning that (SGVQEP) was introduced and studied by Huang, Li and
Wu [15], Peng and Yang [41].

The following problems are special cases of the (SGVQEP).

(1) For each ¢ € I and for all x € X, if A;(x) = X;, then the (SGVQEP) reduces to
the system of generalized vector equilibrium problems with set-valued maps introduced and
studied by Ansari, Schaible and Yao in [4].

(2) For each i € I, if the set-valued map Fj is replaced by a vector-valued map ¢; :
X x X; = Y;, then the (SGVQEP) reduces to a system of vector quasi-equilibrium problems
(in short, SVQEP) which is to find # = (2%, z;) in X such that for each i € I,

Z; € Ai(Z) and (T, y;) & —intCi(T), for all y; € A;(Z).

For each i € I, let ¢; : X — Y; be a vector-valued map, and let f;(z,v:) = @;(z%, y;) —
wi(z), then the (SVQEP) is equivalent to the following Debreu type equilibrium problem
for vector-valued maps (in short, Debreu VEP) which is to find z = (7%, %;) in X such that
for each i € I,

7 € Ay(Z) and (T, y;) — i (Z) & —intCi(Z), for all y; € A;(T).

The (SVQEP) and the (Debreu VEP) were introduced and studied by Ansari, Chan and
Yang [2]. And if A;(z) = X, for each ¢ € I and for all x € X, then the (Debreu VEP)
becomes the Nash equilibrium problem for vector-valued maps in [3].
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(3) Tt is easy to see that the system of generalized vector quasi-variational-like inequality
problems (in short, (SGVQVLIP) introduced by Peng [37], the system of generalized vector
variational inequality problems (in short, SGVVIP) introduced by Ansari, Schaible and Yao
in [4] and Allevi, Gnudi and Konnov [1] and the system of vector variational inequality
problems (in short, SVVIP) considered by Ansari, Schaible and Yao in [3] are all special
cases of the (SGVQEP).

It is worth noting that all of the above special cases of (SGVQEP) can not be handled
by a single generalized vector quasi-equilibrium problems with set-valued maps.

We denote by € the set of solutions of (SGVQEP).

Let (P,d) be a metric space, P, C P and © € P. We denote by d(x, P;) = inf{d(x,p) :
p € P1} the distance function from a point « € P to the set Pj.

Definition 2.1. A sequence {z"} C X is called an approximating solution sequence of
(SGVQERP) if there exists a sequence {¢"} C R4y = {r € R:r > 0} with € — 0+ such that
for each i € I,

di(z], Ay (2™)) < €, (2.1)

and
Fi(z",y;) + €"ei(z") ¢ —intCi(z"),Yy; € A;(z™). (2.2)

Definition 2.2. (SGVQEP) is said to be Tykhonov well-posed in the generalized sense (i.e.,
generalized Tykhonov well-posed) if Q # @ and for every approximating solution sequence
{z"} for (SGVQEP), there exists a subsequence {z™ } of {z"} and Z € {2 such that 2™ — Z.

Remark 2.3. (i) Generalized Tykhonov well-posedness for (SGVQEP) implies that the
solution set 2 is nonempty and compact.

(ii) If I is a singleton, then by Definitions 2.1 and 2.2, respectively, we recover Definitions
2.1 and 2.2 in [27]).

(iii) If for each i € I, F; is replaced by a single-valued map f; : X x X; — Y;, then
Definitions 2.1 and 2.2 reduce Definitions 2.1 and 2.2 in [39], respectively.

(iv) It is easy to see that Definition 2.2 extends and unifies the corresponding definitions
of well-posedness in [16,27-29,31,39].

Definition 2.4 ([5,25]). Let Z1, Z2 be two metric spaces. A set-valued map F from Z; to
272 g

(i) closed on Z3 C Zj, if for any sequence {z,} C Z3 with z,, —» = and y,, € F(z,) with
Yn — ¥, one has y € F(z);

(ii) lower semicontinuous (I.s.c. in short) at « € 71, if {x,} C Z1,2,, = x, and y € F(z)
imply that there exists a sequence {y,} C Z, satisfying y, — y such that y,, € F(x,) for n
sufficiently large. If F is [.s.c. at each point of Z;, we say that F'is [.s.c. on Z;.

(iii) upper semicontinuous (u.s.c. in short) at « € Zy, if for any neighborhood V' of F(z),
there exists a neighborhood U of z such that F(z) C V. Vz € U. If F is u.s.c. at each point
of Z,, we say that F is u.s.c. on Z.

(iv) continuous at x € Zy, if it is both u.s.c. and l.s.c. at x. If F' is continuous at each
point of Z;, we say that F' is continuous on Z;.

Definition 2.5 ([8]). Let X and Y be two locally convex Hausdorff topological vector spaces,
C: X — 2 a set-valued map such that, for any # € X, C(z) is proper, pointed, closed and
convex cone in Y with nonempty interior intC'(z). Let e : X — Y be a continuous vector-
valued map and satisfy that for any = € X, e(z) € intC(x). The nonlinear scalarization
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function &, : X x Y — R is defined as follows

Ee(zyy) =inf{A e R:y € de(z) — C(a)}.

Gap Functions of (SGVQEP)

In this section, the lower semi-continuous property of the gap functions of (SGVQEP) and
the equivalent relationship of the generalized Tykhonov well-posedness of (SGVQEP) and
that of minimization problems will be presented.

Definition 3.1. A map ¢ : X — RU {+o0} is said to be a gap function for (SGVQEP), if
(i) ¢(z) > 0,Va € X, where X = {zr € X : x; € Aj(x),i € [};
(i) ¢(z*) =0 and z* € X if and only if 2* € Q.

By similar arguments in the proof of Theorems 3.1 in [15], we can prove the following
result:

Proposition 3.2. Assume that for each i € I,

(i) for each x € X, the set-valued function F;(x,.) is compact-valued on X;;
(ii) for each xz € X, Fi(z,x;) C —Ci(x);

(iii) the set-valued map W; : X — 2Y¢ defined by W;(x) = Y; \ —intC;i(x) is upper semi-
coOntINUOUS.

Then the function ¢(x) is a gap function of (SGVQEP), where the function ¢ is defined
as follows:
¢(z) = sup o(z,1), Vo € X, (3.1)
i€l

and a(z,i) = sup inf  {—&,(z,2)}
yi €A (z) zi €Fi(z,y:)

Proof. For each z € X and for each i € I, F;(z,r;) C —C;(x) implies z; € —C;(x) for all
z; € Fy(x,x;). Tt follows from Proposition 2.3 in [8] that &, (x,z;) < 0 for all z; € Fy(x, ;).

So ianiEFi($7$i){_£ei (z, Zl)} = 0.
Since z; € A;(x), for any z € X and i € I,

a(a:,z’) = Ssup inf {_§Ei (@, Zz)} >0,
yi€A; (2) i EFi(T,y:)

and so
o(x) =supa(z,i) > 0,Vr € X. (3.2)
iel
If $(z) = 0 and 7 € X, then for each i € I, Z; € A;(Z) and ;n(f ){—gei (z,2:)} <0
2, €EFi (T,yq

for all y; € A;(Z). It follows (iii) and Theorem 2.1(i) in [8] that &, (-,-) is upper semi-
continuous. Since for any = € X, Fj(x,.) is compact-valued map, for any y; € A;(Z), there
exists z; € F;(Z,y;) such that &, (Z,z;) > 0. It follows from Proposition 2.3 in [8] that for
each i € I, 7, € A;(Z) and F;(Z,y;) ¢ —intCi(Z), Vy; € Ai(Z), and thus, T € Q.

Conversely, if Z € 2, then T € X and for each i € I,

x; € Al(i‘) : Fl(i‘,yz) §Z —intCi(:E),yi S AZ(.TJ)
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It follows that Z € X, and for each i € I and for any y; € A;(Z), v; ¢ —intC;(x) for
some v; € F;(Z,y;). Again by Proposition 2.3 in [8], we have

inf ){_gei(i'vzi)} < _gei(:f7vi) <0,

% €Fi(T,y:
and hence for each i € I, a(Z,i) = sup inf  {—&,(T,2)} <0. It follows that
yi€A; () % EFi(Z,y:)
¢1(Z) = sup a(Z, 1) < 0. (3.3)
iel
Now (3.2) and (3.3) imply that ¢(z) = 0. O

Now we present an important property of the gap function for (SGVQEP) as follows.

Proposition 3.3. Assume that for each i € I,

(i) the set-valued map F; : X x X; — 2% 4s upper semi-continuous and compact-valued;

(ii) the set-valued map W; : X — 2Y¢ defined by W;(z) = Y; \ intCy(z) is upper semi-
continuous;

(iii) the set-valued map A; is lower semi-continuous on X.

Then the function ¢ : X — RU{+o00} defined by (5.1) is lower semi-continuous. Further
assume that the solution set Q of (SGVQEP) is nonempty, then Dom(¢) # 0.

Proof. First, it is obvious that ¢(z) > —oo,Vz € X. Otherwise, suppose that there exists
zg € X such that

é(xo) =sup sup inf  {—&, (x0,2)} = —oc.
i€l y;€A; (o) 2 €Fi(T0,yi)

Then for each ¢ € I,

inf {_Sei ({170, ZZ)} = _OO»Vyz € AZ(xO)
2, €Fi(z0,Yi)

It follows from (ii) and Theorem 2.1(i) in [8] that &, (-, ) is upper semi-continuous. Since
F; is compact-valued on X x X;, for all y; € A;(xg), there exists v; € F(xg,y;) such that
e, (x0,v;)) = +00, which is impossible since &, (xo, ) is a finite function on Y;.

From (i), the upper semi-continuity of &, and Proposition 21 (pp. 119) in [5], we know

that for each i € I, and for each z € X, inf  {—&,(z,2:)} =— sup {&,(z,2)} s
2 €F;i(x,y:) 2z, €F;(x,y:)

lower semi-continuous on X;. It follows from (iii) and Proposition 19 (pp. 118) in [5] that

for cach i € I, a(x,i) = sup inf  {—¢&.,(x,2)} is lower semi-continuous on X.
yi€A; () #EF(2,:)

Thus,

¢(z) =supa(w,i) =sup sup  inf {=E (7, 2)}
iel i€l y,eAy(x) 2 €Fi(2,yi)

is lower semi-continuous on X.
Furthermore, if Q # (), by Proposition 3.2, we see that Dom(¢) # (. This completes the
proof. O
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In order to relate the well-posedness of (SGVQEP) to that of constrained minimization
problems, we consider the well-posedness of the following general constrained mathematical
program:

min ¢(x)
@ AL e

where ¢ : X - RU {00} is proper and lower semicontinuous. The optimal set and optimal
value of (P) are denoted by €2 and o, respectively.

Definition 3.4 ([27]). A sequence {z"} C X is called a minimizing sequence for (P) if

limsup ¢p(2™) < o, (3.4)
n—-+4oo

and for each ¢ € I,
di(z, A;i(z™)) — 0. (3.5)

Definition 3.5 ([27]). (P) is said to be generalized Tykhonov well-posed if  # (), and for
any minimizing sequence {2"} for (P), there exist a subsequence {z"} of {2} and Z € Q2
such that 2" — .

The following result reveals the relationship between generalized Tykhonov well-posedness
of (SGVQEP) and that of (P).

Theorem 3.6. Let all Assumptions in Proposition 3.2 hold. Then (SGVQEP) is generalized
Tykhonov well-posed if and only if (P) is generalized Tykhonov well-posed with ¢(x) defined
by (3.1).
Proof. Let ¢(x) be defined by (3.1). Since Q # 0, it follows from Proposition 3.2 that Z €
is a solution of (SGVQEP) if and only if Z is an optimal solution of (P) with v = ¢(z) = 0.
We first prove the necessity. Assume that {z™} is an approximating solution sequence of
(SGVQEP). Then there exists {¢"} C R, with € — 0 such that (2.1) and (2.2) hold for each
i € I. Tt follows from (2.1) that (3.5) holds. By (2.2) and Proposition 2.3 in [8], we know that
for each i € I, for all y; € A;(z™), there exists v}* € F;(z",y;) such that &, (2™, v]") > —€™.

It follows that for each i € I, for all y; € A;(z™), we have Flr(lf ){ffei (z™v;)} < €.
v € (T, Y4

Thus, ¢(z™) = sup sup inf  {=&,(z", v;)} < €, which implies that (3.4) holds
i€l y, €A, (zn) vi€Fi(a™,ys)

with o = 0. Hence, {2} is an approximating solution sequence of (P). It follows from
the generalized Tykhonov well-posedness of (SGVQEP) that (P) is generalized Tykhonov
well-posed.

Now we show the Sufficiency. Assume that {#"} is an approximating solution sequence
of (P). Then there exists {¢"} C Ry with € — 0 such that (3.4) and (3.5) hold for each
i € I. Tt follows from (3.5) that (2.1) holds.

Furthermore, it follows from (3.4) that there exists {¢"} C R4 with €* — 0 such that
¢(z™) = ¢p(a™) < €. Then, for each i € I, for all y; € A;(z™),  inf ){—fei (2™, v;)} < €.

vi€F;(x™,y;
Since —&,, (2", -) is lower semi-continuous and F;(z",.) is compact-valued on X;, for all y; €
A;(z™), there exists v]' € F(a",y;) such that —&, (x",v]") = ir(lf ){—gei (2™ v;)} < €™
vi €F (27 ,y;

So, for each i € I, for all y; € A;(z™), there exists v € F(z™,y;) such that &, (™, v}) > —€™.
It follows from Proposition 2.3 in [8] that for each ¢ € I, (2.2) holds. Thus, {z,} is an
approximating solution sequence of (SGVQEP). It follows from the generalized Tykhonov
well-posedness of (P) that (SGVQEP) is generalized Tykhonov well-posed. This completes
the proof. O
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Remark 3.7. (i) If for each ¢ € I, F; is replaced by a single-valued map f;, then by
Propositions 3.2, 3.3 and Theorem 3.6 reduce to Lemmas 3.1, 3.2, and Theorem 3.3 in [39],
respectively.

(ii) If I is a singleton, then by Theorem 3.6, we can obtain Theorem 3.9(i) in [27].

(iii) Proposition 3.2 improves Theorem 3.1 in [15] since the continuity of &, has been
replaced by the upper-semicontinuity of &,.

Metric Characterizations for Generalized Tykhonov
Well-Posedness of (SGVQEP)

In this section, we give some metric characterizations for the generalized Tykhonov well-
posedness of (SGVQEP).
Now we consider the Kuratowski measure of noncompactness for a nonempty subset A
of X (see [25]) defined by
a(A) =inf{e > 0: A C U A;, for every A;,diamA; < e},

where diamA; is the diameter of A; defined by
diamA; = sup{d(z1,22) : ¢1,22 € A;}.
Given two nonempty subsets A and B of X, the excess of set A and B is defined by

e(A, B) = sup{d(a,B) : a € A},
and the Hausdorff distance between A and B is defined by

H(A, B) = max{e(A, B),e(B, A)}.

For any € > 0, the approximating solution set for (SGVQEP), is defined by
O(e) :={zr e X:Viel,di(x;,Ai(z)) <€ and Fi(z,y;) + eei(z) ¢ —intCi(z),Vy: € Ai(z)}.

Theorem 4.1. (SGVQEP) is generalized Tykhonov well-posed if and only if the solution
set 2 is nonempty, compact and
e(©(€),Q2) > 0 ase — 0. (4.1)

Proof. Let (SGVQEP) be generalized Tykhonov well-posed. Then (2 is nonempty and com-
pact. Now we show that (4.1) holds. Suppose to the contrary that there exist [ > 0, € > 0
with €” — 0 and 2" € O4(€") such that

(=", Q) > 1. (4.2)

Since {z"} C ©1(e™), we know that {z"} is an approximating solution sequence for (SGVQEP).
By the generalized Tykhonov well-posedness of (SGVQEP), there exists a subsequence {2"7 }
of {z"} converging to some element of 2. This contradicts (4.2). Hence, (4.1) holds.

Conversely, suppose that  is nonempty, compact and (4.1) hold. Let {#"} be an approx-
imating solution sequence for (SGVQEP). Then there exist a sequence {€"} with {¢"} C R
and €” — 0 such that (2.1) and (2.2) hold for each i € I. Thus, {z"} C O(e"). It follows
from (4.1) that there exists a sequence {z"} C Q such that

d(z™,z") =d(z", Q) <e(©1(¢"),2) = 0.
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Since  is compact, there exists a subsequence {z"*} of {z"} converging to zo € Q. So
the corresponding subsequence {z™} of {z"} converging to xz¢. Therefore, (SGVQEP) is
generalized Tykhonov well-posed. This completes the proof. O

Theorem 4.2. Assume that for each i € I,

(i) the set-valued map F; is upper semi-continuous with compact-valued on X x X;;
(ii) the set-valued map W; : X — 2Y¢ defined by W;(x) = Y; \ —intC;(x) is closed;

(iil) the set-valued map A; is lower semi-continuous and closed on X .

Then (SGVQEP) is generalized Tykhonov well-posed if and only if
O(e) # 0, Ve > 0 and li_r}é a(O(e)) = 0. (4.3)

Proof. Suppose that (4.3) holds. Then, for any € > 0, Cl(O(¢)) is nonempty closed and
increasing with ¢ > 0, where Cl(O(¢)) is the closure of O(¢). By (4.3), we obtain that
lin%) a(Cl(B(€))) = lin%) a(6(€)) = 0. By the generalized Cantor theorem (P. 412 in [25]), we
€E—> €E—>
know that

H(Cl(O(e)),A) = 0,as € — 0, (4.4)

where A = N~oCl(O(¢)) is nonempty compact.
Now we show that
A=Q. (4.5)

Let z € A. Then d(z,0(¢)) = 0, for every e > 0. Given " > 0, € — 0, for every n there
exists u™ € ©(e") such that d(Z,u") < €". Hence, u" — Z and for each i € I,

di(ul, A;(u™)) <€, (4.6)

70

and
Fi(u™,y;) + €"e;(u™) ¢ —intC;(a™),Yy; € A;(u™). (4.7)

By (4.6) and u™ — Z, for each ¢ € I, there exists w] € A;(u™) such that w] — z;. It
follows from the closedness of A; that for each i € I, T; € A;(Z). For any y; € A;(Z), by the
lower semicontinuity of A; and (4.7), we have a sequence {y}'} with y* € A;(z™) convergeing
to y; such that for each i € I,

Fi(u™,yl') + €"e;(u") ¢ —intCi(z™). (4.8)

From (i) and Proposition 2.59 in [14] (page 59), we know that for each i € I, G,(.,.,.) is
upper semi-continuous with compact-valued on X x Y; x R*, where G;(z, y;, €) := F(x,y;)+
eei(x), V(z,yi,€) € X x Y; x RT. Tt follows from (ii) and Theorem 8 in [5] (page 110) that
for each i € I and for any (z,y;,¢) € X xY; x R, Gi(z,y;,¢) N Wi(x) = (Fi(z,y;) +
ee;(x)) N W;(z) is upper semi-continuous. Hence, by (4.8), we get for each ¢ € I, there
exists ul' € (Fy(a™, yl) + €"e;(x™)) N W;(x™). Tt follows from the upper semi-continuity
and compact-valuedness of G,(.,.,.) N W;(.) that for each i € I, {u'} has a subsequence
converging to a point @; with @; € F;(Z,y;) N W;(Z). That is, for each i € I, F;(Z,y;) ¢
—intCy(Z),Yy; € A;(Z). Thus, € Q, which implies that A C Q. The opposite inclusion
Q C A is obvious. So, (4.5) holds. It follows from (4.5) and (4.4) that e(01(€),Q2) — 0 as
e — 0. Thus, (SGVQEP) is generalized Tykhonov well-posed by Theorem 4.1.
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Conversely, let (SGVQEP) be generalized Tykhonov well-posed. Observe that for every
€ >0,
H(©(e), Q) = max{e(6(€),Q),e(Q,0(e))} = e(O(e), Q).

Hence,
a(O(e)) < 2H(O(¢), Q) + ()
= 2¢(0(e), ), (4.9)

where a(€2) = 0 since  is compact. By Theorem 4.1, we get that e(©(¢), ) — 0 as € — 0.
It follows from (4.9) that (4.3) holds. This completes the proof. O

Remark 4.3. (i) If [ is a singleton, then Theorem 4.2 reduces to Theorem 3.2 [27] with the
continuity of A replaced by the lower semi-continuity of A.

(ii) If F; is replaced by a single-valued function f; : X x X; — Y;, then Theorems 4.1
and 4.2 reduce to Theorems 4.1 and 4.2 in [39], respectively.

(iii) Theorems 4.1 and 4.2 extend and improve the corresponding results in [16,28,29,31]
and the references therein.
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