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However, so far there is no study on the well-posedness of any classes of systems of generalized
vector quasi-equilibrium problems with set-valued maps. In this paper, we are interested in
investigating generalized Tykhonov well-posedness for a system of generalized vector quasi-
equilibrium problems with set-valued maps. The paper is organized as follows: In section 2,
we present some preliminaries. In section 3, the lower semi-continuous property of the gap
functions of the system of generalized vector quasi-equilibrium problems and the equivalent
relationship between the generalized Tykhonov well-posednesses of the system of generalized
vector quasi-equilibrium problems and that of the minimization problems are established.
In section 4, some metric characterizations for the generalized Tykhonov well-posedness of
the system of generalized vector quasi-equilibrium problems are obtained. The results in
this paper extend some known results in [16,27–29,31,39].

2 Preliminaries

Throughout this paper, let I be a countable index set and for each i ∈ I, let (Ei, di)
be a metric space, Xi be a nonempty convex subset of Ei, and Yi be a locally convex
Hausdorff topological vector space. Let E =

∏
i∈I Ei, X =

∏
i∈I Xi, E−i =

∏
j∈I\i Ei and

X−i =
∏

j∈I\i Xi. For each fixed i ∈ I and x ∈ X, we write x = (xi, x−i) = (xi)i∈I ,

where xi and x−i denote the projection of x onto Xi and X−i, respectively. Let d(x, y) =

supi∈I
di(xi,yi)

1+di(xi,yi)
for all x, y ∈ E. It is easy to verify that (E, d) is a metric space. For

each i ∈ I, let Ci : X → 2Yi be a set-valued map such that for any x ∈ X, Ci(x) is a
proper, pointed, closed and convex cone in Yi with nonempty interior intCi(x). For each
i ∈ I, let ei : X → Yi be a continuous vector-valued map and satisfy that for any x ∈ X,
ei(x) ∈ intCi(x), Fi : X × Xi → 2Yi and Ai : X → 2Xi be set-valued maps. We consider
the following system of generalized vector quasi-equilibrium problems with set-valued maps:
find x̄ in X such that for each i ∈ I,

(SGVQEP) x̄i ∈ Ai(x̄) and Fi(x̄, yi) ̸⊂ −intCi(x̄),∀ yi ∈ Ai(x̄).

It is worth mentioning that (SGVQEP) was introduced and studied by Huang, Li and
Wu [15], Peng and Yang [41].

The following problems are special cases of the (SGVQEP).

(1) For each i ∈ I and for all x ∈ X, if Ai(x) ≡ Xi, then the (SGVQEP) reduces to
the system of generalized vector equilibrium problems with set-valued maps introduced and
studied by Ansari, Schaible and Yao in [4].

(2) For each i ∈ I, if the set-valued map Fi is replaced by a vector-valued map φi :
X×Xi → Yi, then the (SGVQEP) reduces to a system of vector quasi-equilibrium problems
(in short, SVQEP) which is to find x̄ = (x̄i, x̄i) in X such that for each i ∈ I,

x̄i ∈ Ai(x̄) and φi(x̄, yi) ̸∈ −intCi(x̄), for all yi ∈ Ai(x̄).

For each i ∈ I, let φi : X → Yi be a vector-valued map, and let fi(x, yi) = φi(x
i, yi) −

φi(x), then the (SVQEP) is equivalent to the following Debreu type equilibrium problem
for vector-valued maps (in short, Debreu VEP) which is to find x̄ = (x̄i, x̄i) in X such that
for each i ∈ I,

x̄i ∈ Ai(x̄) and φi(x̄
i, yi)− φi(x̄) ̸∈ −intCi(x̄), for all yi ∈ Ai(x̄).

The (SVQEP) and the (Debreu VEP) were introduced and studied by Ansari, Chan and
Yang [2]. And if Ai(x) ≡ Xi for each i ∈ I and for all x ∈ X, then the (Debreu VEP)
becomes the Nash equilibrium problem for vector-valued maps in [3].
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(3) It is easy to see that the system of generalized vector quasi-variational-like inequality
problems (in short, (SGVQVLIP) introduced by Peng [37], the system of generalized vector
variational inequality problems (in short, SGVVIP) introduced by Ansari, Schaible and Yao
in [4] and Allevi, Gnudi and Konnov [1] and the system of vector variational inequality
problems (in short, SVVIP) considered by Ansari, Schaible and Yao in [3] are all special
cases of the (SGVQEP).

It is worth noting that all of the above special cases of (SGVQEP) can not be handled
by a single generalized vector quasi-equilibrium problems with set-valued maps.

We denote by Ω the set of solutions of (SGVQEP).

Let (P, d) be a metric space, P1 ⊂ P and x ∈ P . We denote by d(x, P1) = inf{d(x, p) :
p ∈ P1} the distance function from a point x ∈ P to the set P1.

Definition 2.1. A sequence {xn} ⊂ X is called an approximating solution sequence of
(SGVQEP) if there exists a sequence {ϵn} ⊆ R+ = {r ∈ R : r ≥ 0} with ϵn → 0+ such that
for each i ∈ I,

di(x
n
i , Ai(x

n)) ≤ ϵn, (2.1)

and

Fi(x
n, yi) + ϵnei(x

n) ̸⊂ −intCi(x
n), ∀yi ∈ Ai(x

n). (2.2)

Definition 2.2. (SGVQEP) is said to be Tykhonov well-posed in the generalized sense (i.e.,
generalized Tykhonov well-posed) if Ω ̸= ∅ and for every approximating solution sequence
{xn} for (SGVQEP), there exists a subsequence {xnj} of {xn} and x̄ ∈ Ω such that xnj → x̄.

Remark 2.3. (i) Generalized Tykhonov well-posedness for (SGVQEP) implies that the
solution set Ω is nonempty and compact.

(ii) If I is a singleton, then by Definitions 2.1 and 2.2, respectively, we recover Definitions
2.1 and 2.2 in [27]).

(iii) If for each i ∈ I, Fi is replaced by a single-valued map fi : X × Xi → Yi, then
Definitions 2.1 and 2.2 reduce Definitions 2.1 and 2.2 in [39], respectively.

(iv) It is easy to see that Definition 2.2 extends and unifies the corresponding definitions
of well-posedness in [16,27–29,31,39].

Definition 2.4 ([5, 25]). Let Z1, Z2 be two metric spaces. A set-valued map F from Z1 to
2Z2 is

(i) closed on Z3 ⊆ Z1, if for any sequence {xn} ⊆ Z3 with xn → x and yn ∈ F (xn) with
yn → y, one has y ∈ F (x);

(ii) lower semicontinuous (l.s.c. in short) at x ∈ Z1, if {xn} ⊆ Z1, xn → x, and y ∈ F (x)
imply that there exists a sequence {yn} ⊆ Z2 satisfying yn → y such that yn ∈ F (xn) for n
sufficiently large. If F is l.s.c. at each point of Z1, we say that F is l.s.c. on Z1.

(iii) upper semicontinuous (u.s.c. in short) at x ∈ Z1, if for any neighborhood V of F (x),
there exists a neighborhood U of x such that F (z) ⊆ V ,∀z ∈ U . If F is u.s.c. at each point
of Z1, we say that F is u.s.c. on Z1.

(iv) continuous at x ∈ Z1, if it is both u.s.c. and l.s.c. at x. If F is continuous at each
point of Z1, we say that F is continuous on Z1.

Definition 2.5 ([8]). LetX and Y be two locally convex Hausdorff topological vector spaces,
C : X → 2Y a set-valued map such that, for any x ∈ X, C(x) is proper, pointed, closed and
convex cone in Y with nonempty interior intC(x). Let e : X → Y be a continuous vector-
valued map and satisfy that for any x ∈ X, e(x) ∈ intC(x). The nonlinear scalarization
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function ξe : X × Y → R is defined as follows

ξe(x, y) =: inf{λ ∈ R : y ∈ λe(x)− C(x)}.

3 Gap Functions of (SGVQEP)

In this section, the lower semi-continuous property of the gap functions of (SGVQEP) and
the equivalent relationship of the generalized Tykhonov well-posedness of (SGVQEP) and
that of minimization problems will be presented.

Definition 3.1. A map ϕ : X → R ∪ {+∞} is said to be a gap function for (SGVQEP), if
(i) ϕ(x) ≥ 0, ∀x ∈ X̄, where X̄ = {x ∈ X : xi ∈ Ai(x), i ∈ I};
(ii) ϕ(x∗) = 0 and x∗ ∈ X̄ if and only if x∗ ∈ Ω .

By similar arguments in the proof of Theorems 3.1 in [15], we can prove the following
result:

Proposition 3.2. Assume that for each i ∈ I,

(i) for each x ∈ X, the set-valued function Fi(x, .) is compact-valued on Xi;

(ii) for each x ∈ X, Fi(x, xi) ⊂ −Ci(x);

(iii) the set-valued map Wi : X → 2Yi defined by Wi(x) = Yi \ −intCi(x) is upper semi-
continuous.

Then the function ϕ(x) is a gap function of (SGVQEP), where the function ϕ is defined
as follows:

ϕ(x) = sup
i∈I

α(x, i), ∀x ∈ X, (3.1)

and α(x, i) = sup
yi∈Ai(x)

inf
zi∈Fi(x,yi)

{−ξei(x, zi)}.

Proof. For each x ∈ X̄ and for each i ∈ I, Fi(x, xi) ⊂ −Ci(x) implies zi ∈ −Ci(x) for all
zi ∈ Fi(x, xi). It follows from Proposition 2.3 in [8] that ξei(x, zi) ≤ 0 for all zi ∈ Fi(x, xi).
So infzi∈Fi(x,xi){−ξei(x, zi)} ≥ 0.

Since xi ∈ Ai(x), for any x ∈ X and i ∈ I,

α(x, i) = sup
yi∈Ai(x)

inf
zi∈Fi(x,yi)

{−ξei(x, zi)} ≥ 0,

and so
ϕ(x) = sup

i∈I
α(x, i) ≥ 0, ∀x ∈ X. (3.2)

If ϕ(x̄) = 0 and x̄ ∈ X̄, then for each i ∈ I, x̄i ∈ Ai(x̄) and inf
zi∈Fi(x̄,yi)

{−ξei(x̄, zi)} ≤ 0

for all yi ∈ Ai(x̄). It follows (iii) and Theorem 2.1(i) in [8] that ξei(·, ·) is upper semi-
continuous. Since for any x ∈ X, Fi(x, .) is compact-valued map, for any yi ∈ Ai(x̄), there
exists zi ∈ Fi(x̄, yi) such that ξei(x̄, zi) ≥ 0. It follows from Proposition 2.3 in [8] that for
each i ∈ I, x̄i ∈ Ai(x̄) and Fi(x̄, yi) ̸⊂ −intCi(x̄), ∀yi ∈ Ai(x̄), and thus, x̄ ∈ Ω.

Conversely, if x̄ ∈ Ω, then x̄ ∈ X and for each i ∈ I,

x̄i ∈ Ai(x̄) : Fi(x̄, yi) ̸⊂ −intCi(x̄), yi ∈ Ai(x̄).
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It follows that x̄ ∈ X̄, and for each i ∈ I and for any yi ∈ Ai(x̄), vi /∈ −intCi(x̄) for
some vi ∈ Fi(x̄, yi). Again by Proposition 2.3 in [8], we have

inf
zi∈Fi(x̄,yi)

{−ξei(x̄, zi)} ≤ −ξei(x̄, vi) ≤ 0,

and hence for each i ∈ I, α(x̄, i) = sup
yi∈Ai(x̄)

inf
zi∈Fi(x̄,yi)

{−ξei(x̄, zi)} ≤ 0. It follows that

ϕ1(x̄) = sup
i∈I

α(x̄, i) ≤ 0. (3.3)

Now (3.2) and (3.3) imply that ϕ(x̄) = 0.

Now we present an important property of the gap function for (SGVQEP) as follows.

Proposition 3.3. Assume that for each i ∈ I,

(i) the set-valued map Fi : X ×Xi → 2Xi is upper semi-continuous and compact-valued;

(ii) the set-valued map Wi : X → 2Yi defined by Wi(x) = Yi \ intCi(x) is upper semi-
continuous;

(iii) the set-valued map Ai is lower semi-continuous on X.

Then the function ϕ : X → R∪{+∞} defined by (3.1) is lower semi-continuous. Further
assume that the solution set Ω of (SGVQEP) is nonempty, then Dom(ϕ) ̸= ∅.

Proof. First, it is obvious that ϕ(x) > −∞, ∀x ∈ X. Otherwise, suppose that there exists
x0 ∈ X such that

ϕ(x0) = sup
i∈I

sup
yi∈Ai(x0)

inf
zi∈Fi(x0,yi)

{−ξei(x0, zi)} = −∞.

Then for each i ∈ I,

inf
zi∈Fi(x0,yi)

{−ξei(x0, zi)} = −∞., ∀yi ∈ Ai(x0)

It follows from (ii) and Theorem 2.1(i) in [8] that ξei(·, ·) is upper semi-continuous. Since
Fi is compact-valued on X × Xi, for all yi ∈ Ai(x0), there exists vi ∈ F (x0, yi) such that
ξei(x0, vi)) = +∞, which is impossible since ξei(x0, ·) is a finite function on Yi.

From (i), the upper semi-continuity of ξei and Proposition 21 (pp. 119) in [5], we know
that for each i ∈ I, and for each x ∈ X, inf

zi∈Fi(x,yi)
{−ξei(x, zi)} = − sup

zi∈Fi(x,yi)

{ξei(x, zi)} is

lower semi-continuous on Xi. It follows from (iii) and Proposition 19 (pp. 118) in [5] that
for each i ∈ I, α(x, i) = sup

yi∈Ai(x)

inf
zi∈Fi(x,yi)

{−ξei(x, zi)} is lower semi-continuous on X.

Thus,

ϕ(x) = sup
i∈I

α(x, i) = sup
i∈I

sup
yi∈Ai(x)

inf
zi∈Fi(x,yi)

{−ξei(x, zi)}

is lower semi-continuous on X.
Furthermore, if Ω ̸= ∅, by Proposition 3.2, we see that Dom(ϕ) ̸= ∅. This completes the

proof.
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In order to relate the well-posedness of (SGVQEP) to that of constrained minimization
problems, we consider the well-posedness of the following general constrained mathematical
program:

(P )

{
minϕ(x)
s.t. xi ∈ Ai(x), ∀i ∈ I,

where ϕ : X → R ∪ {∞} is proper and lower semicontinuous. The optimal set and optimal
value of (P) are denoted by Ω̄ and v̄, respectively.

Definition 3.4 ([27]). A sequence {xn} ⊂ X is called a minimizing sequence for (P) if
lim sup
n→+∞

ϕ(xn) ≤ v̄, (3.4)

and for each i ∈ I,
di(x

n
i , Ai(x

n)) → 0. (3.5)

Definition 3.5 ([27]). (P) is said to be generalized Tykhonov well-posed if Ω̄ ̸= ∅, and for
any minimizing sequence {xn} for (P), there exist a subsequence {xnj} of {xn} and x̄ ∈ Ω̄
such that xnj → x̄.

The following result reveals the relationship between generalized Tykhonov well-posedness
of (SGVQEP) and that of (P).

Theorem 3.6. Let all Assumptions in Proposition 3.2 hold. Then (SGVQEP) is generalized
Tykhonov well-posed if and only if (P) is generalized Tykhonov well-posed with ϕ(x) defined
by (3.1).

Proof. Let ϕ(x) be defined by (3.1). Since Ω ̸= ∅, it follows from Proposition 3.2 that x̄ ∈ Ω
is a solution of (SGVQEP) if and only if x̄ is an optimal solution of (P) with v̄ = ϕ(x̄) = 0.

We first prove the necessity. Assume that {xn} is an approximating solution sequence of
(SGVQEP). Then there exists {ϵn} ⊆ R+ with ϵn → 0 such that (2.1) and (2.2) hold for each
i ∈ I. It follows from (2.1) that (3.5) holds. By (2.2) and Proposition 2.3 in [8], we know that
for each i ∈ I, for all yi ∈ Ai(x

n), there exists vni ∈ Fi(x
n, yi) such that ξei(x

n, vni ) ≥ −ϵn.
It follows that for each i ∈ I, for all yi ∈ Ai(x

n), we have inf
vi∈Fi(xn,yi)

{−ξei(x
n, vi)} ≤ ϵn.

Thus, ϕ(xn) = sup
i∈I

sup
yi∈Ai(xn)

inf
vi∈Fi(xn,yi)

{−ξei(x
n, vi)} ≤ ϵn, which implies that (3.4) holds

with v̄ = 0. Hence, {xn} is an approximating solution sequence of (P). It follows from
the generalized Tykhonov well-posedness of (SGVQEP) that (P) is generalized Tykhonov
well-posed.

Now we show the Sufficiency. Assume that {xn} is an approximating solution sequence
of (P). Then there exists {ϵn} ⊆ R+ with ϵn → 0 such that (3.4) and (3.5) hold for each
i ∈ I. It follows from (3.5) that (2.1) holds.

Furthermore, it follows from (3.4) that there exists {ϵn} ⊆ R+ with ϵn → 0 such that
ϕ(xn) = ϕ(xn) ≤ ϵn. Then, for each i ∈ I, for all yi ∈ Ai(x

n), inf
vi∈Fi(xn,yi)

{−ξei(x
n, vi)} ≤ ϵn.

Since −ξei(x
n, ·) is lower semi-continuous and Fi(x

n, .) is compact-valued on Xi, for all yi ∈
Ai(x

n), there exists vni ∈ F (xn, yi) such that −ξei(x
n, vni ) = inf

vi∈Fi(xn,yi)
{−ξei(x

n, vi)} ≤ ϵn.

So, for each i ∈ I, for all yi ∈ Ai(x
n), there exists vni ∈ F (xn, yi) such that ξei(x

n, vni ) ≥ −ϵn.
It follows from Proposition 2.3 in [8] that for each i ∈ I, (2.2) holds. Thus, {xn} is an
approximating solution sequence of (SGVQEP). It follows from the generalized Tykhonov
well-posedness of (P) that (SGVQEP) is generalized Tykhonov well-posed. This completes
the proof.
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Remark 3.7. (i) If for each i ∈ I, Fi is replaced by a single-valued map fi, then by
Propositions 3.2, 3.3 and Theorem 3.6 reduce to Lemmas 3.1, 3.2, and Theorem 3.3 in [39],
respectively.

(ii) If I is a singleton, then by Theorem 3.6, we can obtain Theorem 3.9(i) in [27].

(iii) Proposition 3.2 improves Theorem 3.1 in [15] since the continuity of ξei has been
replaced by the upper-semicontinuity of ξei .

4 Metric Characterizations for Generalized Tykhonov
Well-Posedness of (SGVQEP)

In this section, we give some metric characterizations for the generalized Tykhonov well-
posedness of (SGVQEP).

Now we consider the Kuratowski measure of noncompactness for a nonempty subset A
of X (see [25]) defined by

α(A) = inf{ϵ > 0 : A ⊂ ∪n
i=1Ai, for every Ai, diamAi < ϵ},

where diamAi is the diameter of Ai defined by

diamAi = sup{d(x1, x2) : x1, x2 ∈ Ai}.

Given two nonempty subsets A and B of X, the excess of set A and B is defined by

e(A,B) = sup{d(a,B) : a ∈ A},

and the Hausdorff distance between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)}.

For any ϵ > 0, the approximating solution set for (SGVQEP), is defined by
Θ(ϵ) := {x ∈ X : ∀i ∈ I, di(xi, Ai(x)) ≤ ϵ and Fi(x, yi) + ϵei(x) ̸⊂ −intCi(x), ∀yi ∈ Ai(x)}.

Theorem 4.1. (SGVQEP) is generalized Tykhonov well-posed if and only if the solution
set Ω is nonempty, compact and

e(Θ(ϵ),Ω) → 0 as ϵ → 0. (4.1)

Proof. Let (SGVQEP) be generalized Tykhonov well-posed. Then Ω is nonempty and com-
pact. Now we show that (4.1) holds. Suppose to the contrary that there exist l > 0, ϵn > 0
with ϵn → 0 and zn ∈ Θ1(ϵ

n) such that

d(zn,Ω) ≥ l. (4.2)

Since {zn} ⊂ Θ1(ϵ
n), we know that {zn} is an approximating solution sequence for (SGVQEP).

By the generalized Tykhonov well-posedness of (SGVQEP), there exists a subsequence {znj}
of {zn} converging to some element of Ω. This contradicts (4.2). Hence, (4.1) holds.

Conversely, suppose that Ω is nonempty, compact and (4.1) hold. Let {xn} be an approx-
imating solution sequence for (SGVQEP). Then there exist a sequence {ϵn} with {ϵn} ⊆ R+

and ϵn → 0 such that (2.1) and (2.2) hold for each i ∈ I. Thus, {xn} ⊂ Θ(ϵn). It follows
from (4.1) that there exists a sequence {zn} ⊆ Ω such that

d(xn, zn) = d(xn,Ω) ≤ e(Θ1(ϵ
n),Ω) → 0.
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Since Ω is compact, there exists a subsequence {znk} of {zn} converging to x0 ∈ Ω. So
the corresponding subsequence {xnk} of {xn} converging to x0. Therefore, (SGVQEP) is
generalized Tykhonov well-posed. This completes the proof.

Theorem 4.2. Assume that for each i ∈ I,

(i) the set-valued map Fi is upper semi-continuous with compact-valued on X ×Xi;

(ii) the set-valued map Wi : X → 2Yi defined by Wi(x) = Yi \ −intCi(x) is closed;

(iii) the set-valued map Ai is lower semi-continuous and closed on X.

Then (SGVQEP) is generalized Tykhonov well-posed if and only if
Θ(ϵ) ̸= ∅, ∀ϵ > 0 and lim

ϵ→0
α(Θ(ϵ)) = 0. (4.3)

Proof. Suppose that (4.3) holds. Then, for any ϵ > 0, Cl(Θ(ϵ)) is nonempty closed and
increasing with ϵ > 0, where Cl(Θ(ϵ)) is the closure of Θ(ϵ). By (4.3), we obtain that
lim
ϵ→0

α(Cl(Θ(ϵ))) = lim
ϵ→0

α(Θ(ϵ)) = 0. By the generalized Cantor theorem (P. 412 in [25]), we

know that

H(Cl(Θ(ϵ)),∆) → 0, as ϵ → 0, (4.4)

where ∆ = ∩ϵ>0Cl(Θ(ϵ)) is nonempty compact.
Now we show that

∆ = Ω. (4.5)

Let x̄ ∈ ∆. Then d(x̄,Θ(ϵ)) = 0, for every ϵ > 0. Given ϵn > 0, ϵn → 0, for every n there
exists un ∈ Θ(ϵn) such that d(x̄, un) < ϵn. Hence, un → x̄ and for each i ∈ I,

di(u
n
i , Ai(u

n)) ≤ ϵn, (4.6)

and

Fi(u
n, yi) + ϵnei(u

n) ̸⊂ −intCi(x
n), ∀yi ∈ Ai(u

n). (4.7)

By (4.6) and un → x̄, for each i ∈ I, there exists wn
i ∈ Ai(u

n) such that wn
i → x̄i. It

follows from the closedness of Ai that for each i ∈ I, x̄i ∈ Ai(x̄). For any yi ∈ Ai(x̄), by the
lower semicontinuity of Ai and (4.7), we have a sequence {yni } with yni ∈ Ai(x

n) convergeing
to yi such that for each i ∈ I,

Fi(u
n, yni ) + ϵnei(u

n) /∈ −intCi(x
n). (4.8)

From (i) and Proposition 2.59 in [14] (page 59), we know that for each i ∈ I, Gi(., ., .) is
upper semi-continuous with compact-valued on X×Yi×R+, where Gi(x, yi, ϵ) := Fi(x, yi)+
ϵei(x), ∀(x, yi, ϵ) ∈ X × Yi ×R+. It follows from (ii) and Theorem 8 in [5] (page 110) that
for each i ∈ I and for any (x, yi, ϵ) ∈ X × Yi × R, Gi(x, yi, ϵ) ∩ Wi(x) = (Fi(x, yi) +
ϵei(x)) ∩ Wi(x) is upper semi-continuous. Hence, by (4.8), we get for each i ∈ I, there
exists un

i ∈ (Fi(x
n, yni ) + ϵnei(x

n)) ∩ Wi(x
n). It follows from the upper semi-continuity

and compact-valuedness of Gi(., ., .) ∩ Wi(.) that for each i ∈ I, {un
i } has a subsequence

converging to a point ūi with ūi ∈ Fi(x̄, yi) ∩ Wi(x̄). That is, for each i ∈ I, Fi(x̄, yi) ̸⊂
−intCi(x̄),∀yi ∈ Ai(x̄). Thus, x̄ ∈ Ω, which implies that ∆ ⊂ Ω. The opposite inclusion
Ω ⊂ ∆ is obvious. So, (4.5) holds. It follows from (4.5) and (4.4) that e(Θ1(ϵ),Ω) → 0 as
ϵ → 0. Thus, (SGVQEP) is generalized Tykhonov well-posed by Theorem 4.1.
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Conversely, let (SGVQEP) be generalized Tykhonov well-posed. Observe that for every
ϵ > 0,

H(Θ(ϵ),Ω) = max{e(Θ(ϵ),Ω), e(Ω,Θ(ϵ))} = e(Θ(ϵ),Ω).

Hence,

α(Θ(ϵ)) ≤ 2H(Θ(ϵ),Ω) + α(Ω)

= 2e(Θ(ϵ),Ω), (4.9)

where α(Ω) = 0 since Ω is compact. By Theorem 4.1, we get that e(Θ(ϵ),Ω) → 0 as ϵ → 0.
It follows from (4.9) that (4.3) holds. This completes the proof.

Remark 4.3. (i) If I is a singleton, then Theorem 4.2 reduces to Theorem 3.2 [27] with the
continuity of A replaced by the lower semi-continuity of A.

(ii) If Fi is replaced by a single-valued function fi : X × Xi → Yi, then Theorems 4.1
and 4.2 reduce to Theorems 4.1 and 4.2 in [39], respectively.

(iii) Theorems 4.1 and 4.2 extend and improve the corresponding results in [16,28,29,31]
and the references therein.
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