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Abstract: We propose at first a method of computing validated solutions of mixed complementarity prob-
lem, here a validated solution is meant an approximate solution with guaranteed error bound. By utilizing
the component identification property of the validated solution, we then give a method which sharpens the
validated solution by solving systems of equations with reduced dimensions. The efficiency of the method is
illustrated by numerical results.
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Introduction

Let F: R — R", let | = (I;) € {RU{—o00}}" and u = (u;) € {RU {cc}}" be given with
I < u. The mixed complementarity problem, denoted by MCP(l, u, F), is to find 2* € R™
with [ < z* < u such that

(y— )T F(z*) >0 foralll<y<wu and ye€ R". (1.1)

Particularly, when I; = 0 and u; = oo, i = 1,...,n, MCP(l,u, F') reduces to the standard
nonlinear complementarity problem, which is to find an z* such that

>0,  F(z*) >0, ()T F(2*) = 0. (1.2)

MCPs have many real world applications, see [8]. For solving the problem, various
methods have been developed, see Facchinei and Pang [7] for a comprehensive treatment.
However, few of the existing methods can provide walidated solution, which is meant an
approximate solution with guaranteed error bounds accompanied. For solving the MCPs
in a real-world setting, several types of error arise, like the approximation error caused
in the practical implementation of an iterative method, the data error and the round-off
error caused in the numerical computation performed on the floating point number system.
An error bound is called guaranteed if it covers all these errors. Without reliable error
information a numerical solution may be only of doubtful utility. In some application settings
it does not even imply that the problem has a true solution.

In this paper, we propose a method for computing an interval vector that encloses a
true solution of the MCP. If our method is performed on some interval-arithmetic based
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platform for tracking the round-off error and for controlling the data error, then the method
delivers a validated solution, and this is very helpful for giving a safe solution of the applied
problem. Moreover, by the output interval vector, one can identify some components of
the true solution. Based on this, an approximate solution of the MCP can be computed by
solving some equations with reduced dimensions.

Throughout this paper we restrict our study on the complementarity problem with the
function F' fulfilling the following conditions.

Assumption 1.1. Let [z] be a given interval vector and let & = (Z;) € [z] be fixed. Assume:

e there exist constants 7,5, 4,7 = 1,...,n, j # i, such that for all x = (2;) € [2], z; # Z;
Fi(Z1,---  @5-1,25, %501, n) — Fi(@1, 251,85, 2511,- -+, Tp)
- < Vij;
{Ej — {I?j
e there exist nonnegative 7;; and positive v, with v;; < v/, ¢ = 1,...,n, such that for

all z = (z;) € [2] with z; # &;

Fi(&1, - &1, T, Tig1, -+ 5 Tn) — Fi(&1, -+, Tim1, &4, Tige1, -+, Tn) € Iy Ll.

l’i—.’fi

These conditions are often satisfied in the realistic settings, like in the discretization of the
free boundary problems. Actually, some special cases of the conditions were studied, for
instance: the almost linear case [16] and the tridiagonal nonlinear case [2]. For the general
case, a validated solution and an iterative method for sharpening it were given in [3], for
which however, the convergence is quite slow. Here we utilize the dimension reduction
technique used in [16] to give an algorithm, which can compute a sharp validated solution
of the problem quite fast.

The remaining parts of the paper are organized as follows. In Section 2, we present some
preliminaries on interval analysis and matrix analysis. In Section 3, we give a method for
computing an error bound with a certain component identification property, the property is
then used to give an algorithm for solving the MCP. In Section 4 we study the application
of our method, and the numerical results are reported to support its practical performance.

Preliminaries and Notations

We present some preliminaries on interval analysis since our method is based on interval

computation. Let A = (g;;), A = (a;;) € R™*" with a;; < @;;,i=1,...,n,j=1,...,n.
We denote by [A] = [A, A] an n x n interval matrix, which is a set

[A} = {A = (aij) € R Qjj < Qij < EZ‘]‘}.

The (i,7)-th element of [A] is denoted by [a;;]. We call an n x 1 real interval matrix
[x] = [z, T] an interval vector, its i-th component is denoted by [z;]. For the interval vector
[x] we denote

1 1
me)) == Sz +7) and r(fa]) = (7 - )
For an interval vector [z] = [z, 7], we define the interval operator
median{l, u, [x]} := [median{l, u, z}, median{l, u, T}],

where median{-, -, -} is the median operation taken componentwise. We take an example for
clarification.
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Example 2.1. Letting | = (=1,0)7, u = (2, )7, 2 = (=9,—1)T and T = (—2,2)7, then we
compute

median{l,u, z} = (median{—1,2, —9}, median{0, 1, —1})* = (-1,0)%,
and
median{l, u, 7} = (median{—1,2, -2}, median{0, 1,2})* = (-1, 1)7,

and consequently

median{l, u, [z]} = [median{l, u, z}, median{l, u,T}] = ( (-1, 1—]1] ) :

For an interval matrix [A] we define the absolute value [[A]| € R"*" by
[All := (max{]ai; |, [ai;]})-

Let F : R™ — R™. Choose a fixed & from [z]. An interval slope, denoted by 0F (%, [z]), is
an n x n interval matrix such that for all z € [z]

F(z) — F(&) € 0F(, [z])([z] — ).

For more details on interval analysis and computation we refer to [12], for example.

A few words on matrix analysis. Let A € R™ ™ denote by A and —B the diagonal
and off-diagonal part of A, respectively. A is called a Z-matrix if its off-diagonal entries are
nonnegative, A is called an M-matrix if it is a Z-matrix and has a nonnegative inverse, A is
called an H-matrix if the so-called comparison matrix

(4) = [A] - |B]

is an M-matrix.

Enclosure of Solution

Provided an approximate solution z € R"™ of MCP(l,u, F) and an error guess d € R,
we have an interval vector [z] = [£ — d, & + d]. If we can validate that the MCP has a
true solution in [z], then d is just a guaranteed componentwise error bound. The following
theorem offers an existence validation.

Theorem 3.1. Let [x] be a given interval vector, and & € [x] be fized. Let F be Lipschitz
continuous over [z] and have an interval slope SF(Z, [x]) over [x]. Let A = diag(\;) € R™*"
be a given diagonal matriz such that \; >0, i=1,...,n. Define

D(z,[z], A) := median{l,u, & — AF (&) + (I — AdF(z,[z]))([z] — &)}, (3.1)

where I denotes the identity matriz. If T'(&,[x], A) C [z], then the problem MCP(l,u, F) has
a solution x* € [x]. Moreover, if [x] contains a solution x*, then x* € T'(&,[z], A).

The proof of the theorem can be found in [17]. Theorem 3.1 gives an existence validation
of a solution of MCP(l, u, F') in a given interval vector. Here we moreover use Theorem 3.1
to construct an interval [z] containing a solution of MCP(I, u, F'), namely, we compute an
interval vector [z] such that the inclusion T'(, [z], A) C [z] holds, and as a consequence of
Theorem 3.1, MCP(l, u, F') must have a solution in [z], and the radius of [z] is just an error
bound for the approximate solution given by the midpoint of the interval.
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Theorem 3.2. Let Assumption 1.1 be fulfilled for [2], & € [2], M = (fni;) be defined by
! { Yii if j=1i (3:2)

If there exists d > 0 such that Md > |F (&), and [z] := [#—d, &+d] C [2], and [z]N[l,u] # 0,
then MCP(l,u, F') has a solution in [z].

Proof. Choose A := diag((7/;)™"), which is well defined under Assumption 1.1. Write
Fi(z, 2o, @, Tigr, 0y Tn) — Fi(@1,0 0 81, B, g, oo, B)

n
=3 [Fi(@1, &1, T4, s Tn) — Fi(&1, -+, Tj-1, &5, 41, -, Tp)]
=1

Assumption 1.1 gives moreover an interval slope 6F(Z, [2]) of F(x) over [z]:

. _ =761 if j#1,
or L ={ Gl e 33)
which gives an interval slope dF (&, [z]) := 0F (&, [2]) of F(x) over [z]. We verify the inclusion
(&, [z],A) = [T'(2, [z], A), T(, [z], A)] C [z]. It is easy to see

I(Z, [x], A) = median{l,u, & — AF (&) + |I — AdF (&, [z])|d},
(&, 2], A) = median{l,u, & — AF (&) — |I — A6F (&, [z])|d},

where §F(, [x]) and 0F (&, [z]) denote the lower and the upper bound of the interval matrix
0F(Z,[z]), respectively, and where

[T — AOF (&, [z])| = max{|] — AA|: A € §F(z,[x])}
with

11— ASF(#, [a])];; = { 9@(;;()73)(%) ii i ’ i

Obviously, we have
|I — ASF (&, [z])|d = |I — A(OF (2, [z]))|d = A(A™F — M)d.
If Md > |F ()], then we have

—AF(2) + I — ASF(, [2])|d <
—AF(&) — |I — ASF (2, [z])|d > —d.

From these two inequalities, it follows that

& —AF(2)+ |I — AdF (2, [z])|d < T +d, (3.4)
& —AF(&) — |I — A6F (&, [z])|d > & — d. '
Noting the condition [z] N [I,u] # 0, we have & +d > [ and & — d < u, which together with
(3.4), yield
(&, [x], A) = median{l,u,& — AF (&) + |I — A6F(&,[z])|d} < 2 +d,
I, [x], A) = median{l,u,& — AF (&) — |I — A6F(&,[z])|d} > & —d,
so we have I'(z, [z], A) C [z]. From Theorem 3.1 it follows that z* € I'(x, [z], A). O
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Theorem 3.3. Let Assumption 1.1 be fulfilled for [2], let M = (rny;), defined by (3.2), be
an M-matriz, let & € [2], and let d* = M~'e, where e = (1,--- ,1)T, let T := {1,...,n}.
Define

m(@)={iel 3, <}, m(T):={i€l:a>u},

define
0 Zf 71'[(55) = 03
pi(&) = l; — . R
max{ kRS m(:c)} if m(z) #0,
and
0 if 71'u(i') =0,
pu(l') max { o a ! JE ’/Tu(-%)} Zf Wu(f%) # @a
and define
o max{pi(Z),p.(Z)} if m(2) Umy(2) #£0,
o = e i m(@) Um (@) = 0. (35)

Let [z] = [& — w(@)d*, & + w(T)d*] C [z], let T'(&,[z],A) be defined as in (3.1), where
A = diag((v};,)™Y), vl is given in Assumption 1.1 for i = 1,...,n, and let §F(%,[x]) be
given by (3.3). Then MCP(l,u, F') has a solution =* in T'(Z, [z], A) provided that

w(@) = [|F()]]oo-

If, moreover,

m(2) Uy () # 0,

then there is at least an index k € m (&) U my(Z) such that [x]x =l or [x]k = uk. In this
case, correspondingly at least one component xi, =l or xj, = uy of x* is identified.

Proof. From the condition that M = (mi;) is an M-matrix, it follows that d* is well defined
with d* > 0 and d* # 0. Note that w(z) is well defined with w(#) > 0. Then we have
d = w(z)d* > 0. The assumption of Theorem 3.3 that w(z) > ||F(£)||e implies that

Md = w(&)Md* = w(i)e > |F(2)).

We show £+d > [ and & —d < u. For the index ¢ such that l; < Zz; < u;, we have &; +d; > I;
and &; — d; < u; since d; > 0. For the index ¢ € m(Z), we have (I; — &;)/df < w(Z) and
#; < w4, from which it follows that &; +d; = &; + w(2)d} > l; and &; —d; < u; as d; > 0. We
can show in the similar way that &; + d; > [; and &; — d; < w; for the index i € 7, (&). Then
the conditions required in Theorem 3.2 are all verified to be valid, and we can conclude that
MCP(l,u, F) has a solution z* € I'(z, [z],A) and I'(z, [z],A) C [z].

The remaining of the theorem can be shown in a similar manner as used for proving
Theorem 2.2 in [17]. O

Remark 3.4. Theorem 3.3 gives an enclosure of a solution of MCP(l, u, F'), which yields a
natural error bound: | — z*| < d. For the linear complementarity problem (when F(x) =
Max + q for M € R™*™ and ¢ € R™), Assumptions 1.1 are fulfilled if M is an H-matrix with
positive diagonals. Hence, Theorem 3.3 delivers the error bound

|& — 2| < w(@)(M) e, (3.6)
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In [4] Chen and Xiang gave the following error bound for the linear complementarity problem
with M = (m;;) being an H-matrix and its diagonal part D = diag(m;;) being positive:

& — 2" loe < | max{Z, D}(M) ™l || min{, Mz + q} | c. (3.7)

Although we are not in a position to compare these bounds theoretically, our error bound
is in some case better than the one given by Chen et al. For example, we let

1 _1 1
a
_1 1 -1
M=\ * A
1
;T -1
1 1 1

Obviously, when 2 = —M ~1q, we must have w(2) > ||[M# + ¢||ooc = 0. Choose & ~ —M~1q
such that w(Z) > ||M% + q|| is fulfilled: for instance

4 = (1.4681,1.8577,1.9577,1.9767, 1.9431, 1.8065, 1.2865, —0.6791) .

One can test that w(#) = 0.4638 > 0.0046 = ||[MZ + ¢|lcc- The error bound by Chen et
al. reads 1.3493, while our bound reads ||w(Z)(M) 'e|loc = 0.9216. Note that (3.6) is a
componentwise error bound, whereas in (3.7) the norm of & — z* is bounded.

Collorary 3.5. Suppose that an interval extension 0F(Z,[x]) of F(x) over [z] is available
such that 0F(Z,[z]) C 6F(&,[z]) defined by (3.8). Let T'(&,[x],A) be defined by (3.1). If,
moreover, (%) U m, (&) # O, then there is at least an index k € m (&) U my(Z) such that
(T(z, [z], )k = Ik or (D(&, [x],A))r = uk. In this case, correspondingly at least one compo-
nent xj =l or x, = uy, of x* is identified.

Proof. The proof can be given by a simple computation, we omit the details. See [17]. O

Remark 3.6. Let F(z) = 0 have a solution Z, and let {2°}2%, — & be a given sequence ob-
tained via a certain numerical algorithm. It is obvious that, if Z is a solution of MCP(l,u, F),
then a good approximation to Z can be selected from the sequence {z°}52,; otherwise, if Z

is not a solution of MCP (I, u, F), then m(&) = m(Z) Uy (%) # 0 and w(Z) > 0 = || F(Z)||co-
Then there must be an iterate x° that is close to Z sufficiently, fulfilling

(@) 20 and w(@) > [F)]w. (3.8)

in this case, as indicated by Corollary 3.5, at least one component zj, = [}, or x} = uy, of the
solution z* of MCP(l,u, F) can be identified.

Algorithm for Validated Solution

We present in this section an algorithm for computing the validated solution of the MCP.
The algorithm successively uses a procedure, which returns either a good approximation of
the solution of the MCP, or determines at least one component of the solution. We describe
the procedure as follows, it is based on the mathematical justification given in the preceding
section.
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Procedure 4.1. (Components Identification Algorithm)

Step 0. (Initialization)

Let [I] = [I,1] and [u] = [u,u] be the interval representation of | and u, respectively. Set
l:=1 and v =u. Choose a small floating number € > 0 as the error tolerance, set s := 0,
Z:={1,...,n} and a(l,u, F) = 8(l,u, F) = 0.

Step 1. (Stopping Criterion)

Compute the interval evaluation |median{x® — I,2° — u, F(2°)}||cc = [0,05]. If 05 < ¢,
then return the enclosure [#] := [2°] and return the approximate solution & := m([z®]),
and return the index sets a(l,u, F') and B(l,u, F'), and terminate this procedure.

Step 2. (Checking Assumption 1.1)

Let an approximate solution z° of F(z) = 0 be given. Choose an interval [z] = [z° —
d®, x® 4+ d°] with d°* € R™ and d* > 0. For [z] and & = 2® and for i,j = 1,...,n, compute
the intervals [7;;] for bounding the parameters 7;; required in Assumption 1.1, compute
the interval matrix [M] = ([f;;]) with

bss] = { [vii] it j=i.

And solve the solution [d*] of the interval linear system [M][y] = [e], where [d*] is an
interval vector, and [e] is the interval representation of the vector e. If the lower bound
of a [df] is less than €, then abort the procedure.

Step 3. (Checking conditions of Theorem 3.3)

Compute the interval evaluation ||F(z°)|/o € [s,<], compute (I; — z5)/[d};] = [Hj,ﬂj] for
jgem@®) ={ieT:x} <l}and (v5 —u;)/[d;] = [v;,7] for j € my(2°) :={i € T:
x$ > u;}, and compute

w(a®) = max{max{f,;, 7;} : i € m(z®) Um,(z®)} if i (z®) Umy(z®) # 0,
RS it m(z®)Umy(z%) = 0.
Compute [z50] = [z — w(z*)d*, 2 + w(x*)d*], where d* and d  are the lower and the

upper bounds of [d*] respectively. If w(z®) < ¢ or [z%°]  [2], then go to Step 6; otherwise,
set j =0, a® = 357 = .

Step 4. (Updating Enclosure)

Let 2% = m([z®7]), compute [z%IH1] = [2%7] N (2%, [257], A57), where A®7 is the
inverse of the midpoint of the interval slope of F' with respect to the interval vector
[2%7] and the vector z%J. Compute o1 = {i € T : [2%911]; C [l; — €,1; + €]} and
Bt =i e T [%97Y); C [u; — €,u; + €]}

Step 5. (Updating Index Sets)

If a®i*tt = o/ and B°9T1 = %I then return & = m([z*7*!]) and the index sets
a(l,u, F) = a®*1 and B(l,u, F) = 8%9*! and terminate this procedure, otherwise, set
j:=j4+1, and go to Step 4.

Step 6. (Updating Iterate z°)

Compute another approximate solution z°! to replace z°, set s := s + 1 and go to Step
1.

Remark 4.2. (1) In Step 0, [[,/] and [u, 7] are the floating number interval representations
of the original data [ and w. The setting [ := [ and uv = u may give an MCP with a little
larger domain, whose solution must be the one of the original MCP.
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(2) In Step 1, o5 is a floating number, and the comparison o, < € can be carried out
successfully.

(3) In Step 2, the vectors 2° and d® should have the floating point representation, this
can be done when we use in coding some interval data types provided in round-off tracking
software to represent z® and d®. If the lower bound of a [d}] is greater than €, then we can
guarantee that M is an M-matrix, therefore the Assumption 1.1 is validated.

(4) In Step 3, if w(x®) > g, then the condition w(&) > || F(Z)]| is validated reliably.

(5) In Step 4, we have the inclusion T'(z*0, [2%0], A%:0) C [2°9], and the second part of
Theorem 3.1 guarantees that T'(x*7, [2%7], A*7) N [2°7] contains a solution of the MCP.

Algorithm 4.1 delivers a vector & and two index sets a(l, u, F) and 8(,u, F). If Z is not
a good approximation of the solution of MCP(I, u, F'), then we have

all,u, FYUB(Lu, F) #0,

by which we can determine exactly the component z = I;, for k € a(l,u, F) and/or z} = uy,
for k € B(l,u, F).

Denote 7 = a(l, u, F) U (I, u, F), and denote its complement by 7. Denote I, = (I;)icr,
Iz = (Li)ier, ur = (Ui)icr, ur = (Ui)ier, T5 = (2])ier and zf = (2])ier, denote by
F; = (Fi(z))ier- We know that z¥ can be determined by applying Algorithm 4.1 to the
original problem MCP (I, u, F'). Obviously, z% is the solution of the problem MCP (17, uz, F;).
It can be seen that Assumption 1.1 holds still for F. Hence, if & can not be accepted as an
approximate solution of MCP(l,u, F'), then 7 # () and we can apply Algorithm 4.1 to the
problem MCP(I-, us, F7), which is of the dimension ||, where |7| denotes the cardinality
of 7 and obviously |7| = n — |7| < n. Therefore, by applying Algorithm 4.1 to at most
n reduced MCPs from the original one, we can get a good approximate solution of the
problem MCP(l, u, F'). We summarize the procedure of the application of Algorithm 4.1 to
the reduced MCPs in Algorithm 4.3.

Algorithm 4.3. (Dimension-Reduced Algorithm)

Step 0. Set a:=0, B:=0and k:=Z —aUp.

Step 1. Apply Procedure 4.1 to MCP(l,,u, F};). If Procedure 4.1 is aborted, then we
call the function “verifynlss.m” provided in INTLAB to compute the verified solution of
the nonlinear system F,;(x) = 0; otherwise Procedure 4.1 returns an interval vector [&],
a vector ¥, and the index sets a(lx, ux, Fi) and B(lx, uyx, Fi).

Step 2. Compute the interval evaluation ||median{Z, — l,., T — Uy, Fx(Ex) }Hoo = [0, 05].
If 05 < €, then set the enclosure [x]of the solution of the MCP:

l; if 7€ q,
[Xi] = (7 if 7€ B,
and set the approximate solution x of the MCP:
l; if i€ aq,
X, =< U if i€ p,
.i‘i if 4 ¢ al B

Step 3. Set a = aUa(ly, us, F) and = U B(l,, uk, Fi), and set £ := T — U S, then
go to Step 1.
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Remark 4.4. Algorithm 4.3 is an extension of the algorithm proposed in [3] for solving the
MCP with an almost linear function. It, however, can be applied in a quite general setting
if Assumption 1.1 is fulfilled.

Numerical Experiments

In this section we study the numerical performance of Algorithm 4.3 by using two examples.

Application to simulation of free boundary problem

Consider a model arising from the simulation of the free boundary problems of the form:

Au = f(s,t,u) = —% + ﬁ + arctan(u) + 2u (s,t) € Dy,
u = g(s,t) =5sin(s) — 3cos(2t) — 5, (s,t) € 9(]0,1]?).

where the set Dy := {(s,t) € (0,1)? : u(s,t) > 0} is unknown.

This problem was studied in [3], where, by imposing grid (s;,t,,) = (jh, mh) over [0, 1]?,
jym=1,...,k, h =1/(k+1), and by using the so-called Mehrstellenverfahren (see [6], Table
ITI, p.538, second to the last line) to discretize the Laplace operator, a complementarity
problem MCP(I, u, F) is formulated with [; = 0 and u; = 400 for i = 1,...,n, and F(z) =
Mz + ¢(x). Its solution z* = (xf) € R" can offer an approximation of a solution of the free
boundary problem over the grid, i.e., } = ujm =~ u(s;,tn) for ¢ = (j — 1)k + m. Here the
matrix M reads

H I
M = 3 . . € R, (5.1)
-1 H
where
4 -1
g=| "t * " € RF¥k, (5.2)
. 4
-1 4

and the i-th component of the nonlinear part ¢(z) has the form

1
QDl(fE) = Ehz[f(sjflvtmvxifk) + f(sjvtmflaxifl) + 20f(8]atmaxl) (53)
+1(8j, tma1, Tix1) + F(Sj41, tms Titr)]-

It is easy to verify that Assumption 1.1 are fulfilled with the matrix M = (Mj), where

-4—%# if j=i—k
-4—%m if j=i—1
44 2h? i =i
-4—%# if j=i+1
—1— 3h? if j=i+k
0 otherwise,

mij =

i=1,...,n. One can see that M is an M-matrix.
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Table 1: Numerical results for Algorithm 4.3

L. NIU AND Z. WANG

= n =25 n = 36 n = 64 n = 100

K T || Nk || Ny || Nk || T
9 3 25 3 36 4 64 2 100 3
7 3 21 3 32 2 63 2 98 1
6 2 19 2 29 1 57 1 97 4
4 ) 14 1 21 4 52 4 89 3
- 11 7 18 ) 46 3 81 5
- - - - 15 7 43 2 78 3
- - - - - - 38 1 75 1
- - - - - - 36 4 70 2
- - - - - - 33 11 67 3
- - - - - - - - 62 4
- - - - - - - - 48 8

We test the performance of Algorithm 4.3. The algorithm is performed in MATLAB with
the support of the toolbox INTLAB (Rump [14]), which is used to track the rounding errors.
We choose € in Algorithm 4.1 as the floating point relative accuracy in Matlab setting, it

reads about
€ = 2.220446049250313¢ — 016.

The main computational cost for Algorithm 4.3 is for computing the sequence {z*}
required in Algorithm 4.1, for which many methods can be adopted, here the Newton’s
method is used. We report in Table 1 the numbers (abbreviated by n,) of Newton iteration
in Algorithm 4.1 for each reduced problem MCP(l,;, u., F,) associated with the index subset
k. The cardinality |k| of the index subset x, which is just the dimension of the problem
MCP(ly, ux, Fy), is also reported.

Application to obstacle problem

Consider a model arising from the obstacle problem. This problem consists of finding the
equilibrium position of an elastic membrane under tension. We formulate at first its math-
ematical model.

Let © C R? be a bounded open set with piecewise smooth boundary 9. Denote by
H}(Q) the space of functions with compact support set in  such that for every v € H}(Q),
v and ||Vol|2 belong to the square integrable class L?(£2). Here v represents the position of
the membrane. Given two obstacle functions: v;,v, : Q — R and a force f € L?(Q2). Then
the obstacle problem can be modeled by the minimization of the membrane energy

1
min,ep {5/§2||Vv||§d9—/ﬂvf(v)dﬂ},

D:={vec H}Q):

where
v < v <w, a.e on N}

It can be shown that the energy functional has a unique minimizer in D. Refer to [5, Chapter
5.1] for the physical interpretation of the mathematical formulation.

Let © = (0,1) x (0,1), and again impose grid (s;,t,) = (jh, mh) over [0,1]>. Denote
n = k? and denote by x € R"™ the approximation of v over the gird points, namely z; =
Vjm =~ 0(8j,tm) for i = (j — 1)k 4+ m and j,m = 1,...,k. Then, the discretization of
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the functional by the Mehrstellenverfahren together with the optimality condition yields an
MCP(l,u, F) with F(z) = Mx — ¢(z), where M is defined by (5.1) and (5.2). The function
o is determined by the choice of the force function f. Here we take f = fo + Ae¥, fo is
a constant force dependent only on the position where it is exerted, A is a small positive
constant, and so ¢(v) = Ae¥. Then we have

A
wi(z) = EhQ [exp(x;—) + exp(zi—1) + 20 exp(z;) + exp(ziy1) + exp(@ipr)].
Here we take A = 0.08 and take the obstacle: v;(s,t) = —0.2 and v, (s,t) = 1/(1 + s + ¢2).
Their values at the mesh points give the vectors [ and w.
Now we check Assumption 1.1. Given an interval [z] involved in Assumption 1.1 with

[2i] = [2;,7:], it is easy to verify that Assumption 1.1 are fulfilled with the matrix M = (1n;;),
where ) N
—-1- 112)\hzexp(€2 k) }f J :z.—k
—-1- 1§>\h xp(Zi—1) if j=i—-1
o) A= Dntewn(z) it j=i
g -1- 112>\h2 exp(Zip1) if j=i+1
—1— 5 W2 exp(Zitr) if j=i+k
0 otherwise,

i,j=1,...,n. Note that M = M + 11—2)\h2AM, where

—exp(Zi—k) if j=i—k

—exp(Z;—1) if j=i-1

—20exp(z;) if j=1

— eXp(Ei_H) if j=1+ 1

—exp(Zitk) it j=i+k
0 otherwise.

(AM);; =

One can see that M is an M-matrix, and so is M when Ah? is small enough. This follows
from the perturbation property of the M-matrices, see [18].

We test the performance of Algorithm 4.3 in the same computational settings as stated
for the previous example, and report the numerical results in Table 2. In (a) of Figure 1 we
plot the surface given by the approximate values of v(s;,t,,) at the mesh points which are
returned by the algorithm, and plot in (b) the subset of D where the lower obstacle is not
attained by the numerical solution, namely the set

{(s,t) € D: v(s,t) > I(s,1)}.

Then the empty domain gives an approximation of the region where the membrane touches
the lower obstacle, it is of practical importance and not known in advance.

Concluding remarks

The numerical experiments show that Algorithm 4.3 performs quite well for the test prob-
lems. It can exactly identify a large part of the components of the solution which is equal
to [; or u;, and deliver an interval vector bounding the rest of the components of the solu-
tion, the vector covers all the possible error arising in the practical computation. The exact
identification of the components of the solution is based on the validation of the inclusion
(&, [x],A) C [z]. Applying Procedure 4.1 to the discretized obstacle problem returns the
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Table 2: Numerical results for Algorithm 4.3

n =25 n = 100 n = 225 n = 400 n = 900
|| Mg || Ny || Ny || s || Ny
25 3 100 2 225 4 400 2 900 3
5 4 68 3 132 3 204 3 301 3
- 24 4 108 3 156 3 269 3
- - - — 106 3 144 4 263 3
- - - 103 6 - 260 2
- - - - - - - - 256 3
- - — - - — - - 240 2
- - - - - - - - 238 )
Figure 1: Numerical results for v(s,t)
(a). surface given by the numerical results
-0.1

0.2

0.6

0 0 0.4
t s
(b): the set where the lower obstacle is attained
1 - la . | = - - ! = ol - . -
— 05} R
0 . R I Vo R .
0 0.2 0.4 0.6 0.8 1

bounds of the interval vectors [z] and T'(&,[z], A). Here we denote by [[|; and [Ty the
lower and the upper bounds of T'(Z, [x], A), and denote by [z];, and [z]y the lower and upper
bounds of [z]. Clearly [I'|z, [['u, []r and [z]y are vectors of the same sizes. We first apply
Procedure 4.1 to the discretized obstacle problem with k = 30, namely n = 900. In (a) of
Figure 2 we plot the values of the above four vectors [I']z, [['|y, []r and [z]y, the numerical
results indicate that the inclusion is fulfilled, which rigorously ensures the existence of the
solution in the interval vector. We then apply Procedure 4.1 to the reduced problem of the
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original MCP, which is a 301-dimensional MCP. In (b) of Figure 2 we plot the values of the
four vectors, which rigorously validate the existence of the solution in the returned interval
vector.

Figure 2: Numerical results for [z] and I'(Z, [z], A)

(a): Procedure 4.1 for the original problem (900—-dimensional)
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(b): Procedure 4.1 for the reduced problem (301-dimensional)
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®©
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Besides, in each call of Algorithm 4.1, except for the last one, a system of nonlinear
equations of reduced dimension is solved under a low precision, for which quite small com-
putational cost is needed. These phenomena can be illustrated by the numerical results.
For example, we notice in Table 1 that for the 100-dimensional problem, 52 components of
the solution which are equal to 0 are exactly identified. For the identification, ten systems
of nonlinear equations (of the dimension || = 100, 97, 92, 89, 83, 80, 77, 71, 65 and 48,
respectively) are solved. The first nine systems of equations are solved with just one or two
iterations (n, = 1 or n,, = 2). For the last system (of dimension |x| = 48), nine iterations
are needed (n, = 9), which is larger, because we use the solution of this system to approxi-
mate the 48 components of *. The other 52 components of z* have been determined during
calling Algorithm 4.1 for the first nine problems of the form MCP(l,;, u, F;).
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