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termination of iterative algorithms for solving the VIP. For example, Marcotte and Zhu [15]
established some equivalences among the above properties of the VIP under the condition
that F is pseudo-monotone+ and X is compact. Some generalizations of these results were
developed by many authors. One extension is to relax the compactness assumption on X
and the pseudo-monotonicity+ of F [27]; another extension is to treat the problem in an
infinite-dimensional setting [23, 24]. It should be noted, however, that the characterization
of subdifferential of the dual gap function established in [27] was given only at the points
restricted in the relative interior of effective domain of G, and explicit formulae for global
error bound were not provided in [15,23,24,27].

We shall show in this paper that these problems can be overcome by using the variational
analysis technique. First, the characterization of the subderivative of the dual gap function
is developed and the expression of the subdifferential is established in the whole domain
of the gap function without the restriction in the relative interior. The explicit expression
of subdifferential plays an essential role in the following two aspect: one is to provide an
estimate of the largest global error bound constant; another is to establish the equivalence
among weak sharpness of X∗, minimum principle sufficiency property, global error bound,
and linear regularity.

The paper is organized as follows. Section 2 contains some preliminary results. In Section
3 we present characterizations of subderivatives and subdifferentials of the dual gap function.
Based on these, we study the relationship among the concepts of global error bound, weak
sharpness of the solution set, MPS property, and linear regularity for pseudo-monotone VIP
in Section 4. Conclusion is drawn in Section 5.

We shall make use of the following notations throughout the paper. Let A be a nonempty
set in Rn. The closure, convex hull, interior, and relative interior of A are denoted by clA,
coA, intA, and riA, respectively. We denote the cone of feasible directions by FA(x), and the
normal cone by NA(x). The tangent cone is defined dually by the relation TA(x) = NA(x)

◦,
where A◦ denotes the polar set of A ⊆ Rn, i.e., A◦ = {v ∈ Rn| ⟨v, x⟩ ≤ 0, ∀x ∈ A}.
Let δ(x|S) and σ∗(x|S) stand for the indicator function and the support function of some
set S, respectively; i.e., δ(x|S) = 0 if x ∈ S and δ(x|S) = ∞ if x /∈ S, and σ∗(x|S) :=
sup{⟨x, y⟩| y ∈ S}. We denote by ∥ · ∥ the usual Euclidean norm, and by B the closed unit
ball in Rn.

2 Preliminaries

A mapping F : Rn → Rn is said to be monotone on X ⊂ Rn if for any x, y ∈ X,

⟨F (y)− F (x), y − x⟩ ≥ 0.

The mapping F is said to be pseudo-monotone on X if for any x, y ∈ X,

⟨F (x), y − x⟩ ≥ 0 =⇒ ⟨F (y), y − x⟩ ≥ 0.

The VIP is said to have the minimum principle sufficiency property (MPS property) if

Γ(x∗) = X∗, ∀x∗ ∈ X∗,

where Γ(x) := argmax
y∈X

⟨F (x), x − y⟩. Similarly, the VIP has the maximum principle suffi-

ciency property if
Λ(x∗) = X∗, ∀x∗ ∈ X∗,
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where Λ(x) := argmax
y∈X

⟨F (y), x− y⟩.

The following geometric characterization was adopted in [15,17] as the definition of weak
sharpness, i.e., the solution set X∗ of VIP is said to be weakly sharp if

−F (x∗) ∈ int
∩

x∈X∗

[
TX(x)

∩
NX∗(x)

]◦
, ∀x∗ ∈ X∗. (2.1)

We say that G has a global error bound on X, if there exists some positive scalar α such
that

G(x) ≥ α dist(x,X∗), ∀x ∈ X, (2.2)

where dist(x,X∗) = inf{∥x − x∗∥| x∗ ∈ X∗}. Let {Ci|i = 1, 2, . . . ,m} be an arbitrary
collection of nonempty sets in Rn with a nonempty intersection C =

∩m
i=1 Ci. The collection

{Ci|i = 1, 2, . . . ,m} is said to be linearly regular over some set S ⊆ Rn with modulus β
(see [4, 7, 13,28] for more information) if

β dist(x,C) ≤ max
i=1,...,m

dist(x,Ci), ∀x ∈ S.

Let f : Rn → R̄ := R ∪ {+∞} be an extended-real-valued function. Denote the effective
domain by domf := {x ∈ Rn| f(x) < +∞} and the epigraph by epif := {(x, α) ∈ Rn ×
R| f(x) ≤ α}. The function f is said to be Gâteaux differentiable at x ∈ domf provided
that there exists ξ ∈ Rn such that

f ′(x;w) := lim
λ↓0

f(x+ λw)− f(x)

λ
= ⟨ξ, w⟩, ∀w ∈ Rn.

As shown in [23, 24], the Gâteaux differentiability of G is essentially important for study-
ing the weak sharpness of the solution set and for deriving finite termination of iterative
algorithms for solving VIP. The function f is said to be (Fréchet) differentiable at x if
f(x+ h) = f(x) + ⟨∇f(x), h⟩+ o(∥h∥).

In this paper, we mainly employ the following two concepts, the subderivative and the
subdifferential. The subderivative of f at x̄, denoted by df(x̄), is defined as

df(x̄)(w̄) = lim inf
w→w̄
λ↓0

f(x̄+ λw)− f(x̄)

λ
,

and the subdifferential of G at x̄, denoted by ∂f(x̄), is specified as

∂f(x̄) = {v ∈ Rn|⟨v, w⟩ ≤ df(x̄)(w), ∀w ∈ Rn}.

3 Subdifferentiability

In this section, we study the subderivative and the subdifferential of dual gap function,
respectively.

3.1 Subderivative

In order to state the structural expression of the subderivative of the dual gap function,
we first review the following two key lemmas. Letting δ ∈ R, for the notation convenience,
write the set {y ∈ X| ⟨F (y), x− y⟩ ≥ δ} simply by θ(x, δ).
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Lemma 3.1 ([27, Theorem 3.3]). If x̄ ∈ domG, then

G′(x̄;w) =

{
lim

δ↗G(x̄)
sup{⟨F (y), w⟩| y ∈ θ(x̄, δ)}, w ∈ FdomG(x̄),

+∞, w /∈ FdomG(x̄).

Lemma 3.2 ([20, Proposition 8.21] and [19, Theorem 23.2]). For a convex function f :
Rn → R̄ and any point x̄ where f is finite, the directional derivative f ′(x̄;w) exists for all
w ∈ Rn, and

df(x̄)(w) = lim inf
w′→w

f ′(x̄;w′), ∀w ∈ Rn.

With the preparations, the characterization of dG(x̄) can be stated as follows.

Theorem 3.3. If x̄ ∈ domG and

lim sup
w′→w

w′∈TdomG(x̄)

lim
δ↗G(x̄)

sup {⟨F (y), w − w′⟩| y ∈ θ(x̄, δ)} ≤ 0, ∀w ∈ TdomG(x̄) (3.1)

then

dG(x̄)(w) =

{
lim

δ↗G(x̄)
sup {⟨F (y), w⟩| y ∈ θ(x̄, δ)} , w ∈ TdomG(x̄),

+∞, w /∈ TdomG(x̄).

Proof. We first show that dG(x̄)(w) = +∞ for any w /∈ TdomG(x̄). In fact, if w /∈ TdomG(x̄),
then for any positive sequences {λi} converging to 0 and {wi} converging to w, we have
x̄ + λiwi /∈ domG for all i sufficiently large. Hence, by the definition of subderivative of G
at x̄, we get dG(x̄)(w) = +∞.

Now let w ∈ TdomG(x̄) be given. Since TdomG(x̄) = clFdomG(x̄) due to the convexity of
domG [5, Proposition 2.55], we get

dG(x̄)(w) = lim inf
w′→w

G′(x̄;w′)

= lim inf
w′→w

w′∈FdomG(x̄)

G′(x̄;w′)

= lim inf
w′→w

w′∈FdomG(x̄)

lim
δ↗G(x̄)

sup {⟨F (y), w′⟩| y ∈ θ(x̄, δ)} , (3.2)

where the first equation is due to Lemma 3.2 and the second equality comes from Lemma
3.1, since G′(x̄;w) = +∞ for all w /∈ FdomG(x̄).

Define
π(w) := lim

δ↗G(x̄)
sup {⟨F (y), w⟩| y ∈ θ(x̄, δ)} . (3.3)

Note that π is convex. In fact, for any w1, w2 ∈ Rn and λ ∈ [0, 1], we have

sup
y∈θ(x̄,δ)

⟨F (y), λw1 + (1− λ)w2⟩ = sup
y∈θ(x̄,δ)

[
λ⟨F (y), w1⟩+ (1− λ)⟨F (y), w2⟩

]
≤ λ sup

y∈θ(x̄,δ)

⟨F (y), w1⟩+ (1− λ) sup
y∈θ(x̄,δ)

⟨F (y), w2⟩.

Taking the limits on both sides yields

π(λw1 + (1− λ)w2) ≤ λπ(w1) + (1− λ)π(w2).
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We now show that π is lower semi-continuous over TdomG(x̄). This is equivalent to
showing that the level set lev≤απ := {w ∈ TdomG(x̄)| π(w) ≤ α} is closed for every α ∈
R [19]; i.e., for any given sequence {wn} in lev≤απ with limit w̄, we need to show that
w̄ ∈ lev≤απ. Note that w̄ ∈ TdomG(x̄), since wn ∈ TdomG(x̄) and TdomG(x̄) is closed. From
wn ∈ lev≤απ for all n, we have

lim
δ↗G(x̄)

sup{⟨F (y), wn⟩| y ∈ θ(x̄, δ)} ≤ α. (3.4)

Note that

sup{⟨F (y), w̄⟩| y ∈ θ(x̄, δ)} = sup{⟨F (y), w̄ − wn + wn⟩| y ∈ θ(x̄, δ)}
≤ sup{⟨F (y), w̄ − wn⟩| y ∈ θ(x̄, δ)}

+sup{⟨F (y), wn⟩| y ∈ θ(x̄, δ)}.

Hence

lim
δ↗G(x̄)

sup{⟨F (y), w̄⟩| y ∈ θ(x̄, δ)}

≤ lim
δ↗G(x̄)

sup{⟨F (y), w̄ − wn⟩| y ∈ θ(x̄, δ)}+ lim
δ↗G(x̄)

sup{⟨F (y), wn⟩| y ∈ θ(x̄, δ)}

≤ lim sup
w′→w̄

w′∈TdomG(x̄)

lim
δ↗G(x̄)

sup{⟨F (y), w̄ − w′⟩| y ∈ θ(x̄, δ)}+ α

≤ α,

where the second inequality is due to the fact that wn ∈ TdomG(x̄) and (3.4) and the last
inequality comes from (3.1). Hence π(w̄) ≤ α, i.e., w̄ ∈ lev≤απ.

It follows from (3.2) that

dG(x̄)(w) = lim inf
w′→w

w′∈FdomG(x̄)

π(w′)

≥ lim inf
w′→w

w′∈TdomG(x̄)

π(w′)

= π(w), (3.5)

where the last step is due to the lower semicontinuity of π as just shown above.
To obtain the reverse inequality, choose some u ∈ riFdomG(x̄) = riTdomG(x̄), where

the equality is due to [19, Theorem 6.3]. Consider the following two cases. Case 1. If
π(w) = +∞, then dG(x̄)(w) = π(w) = +∞ by (3.5). Case 2. If π(w) < +∞, using
the convexity of π and the fact that λu + (1 − λ)w ∈ riFdomG(x̄) for λ ∈ (0, 1) (since
u ∈ riFdomG(x̄) and w ∈ TdomG(x̄), see [19, Theorem 6.1]), we have

dG(x̄)(w) = lim inf
w′→w

w′∈FdomG(x̄)

π(w′)

≤ lim inf
λ↘0

π
(
λu+ (1− λ)w

)
≤ lim inf

λ↘0

[
λπ(u) + (1− λ)π(w)

]
= π(w).

The above inequality, together with (3.5), implies that dG(x̄)(w) = π(w). This completes
the proof.
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Remark 3.4. The condition (3.1) is satisfied if

i) sup{∥F (y)∥| y ∈ θ(x̄, δ)} < +∞ for some δ < G(x̄). In fact, this condition guarantees
the existence of δ0 ∈ R and M > 0 such that

sup{∥F (y)∥| y ∈ θ(x̄, δ)} < M, ∀δ ∈ (δ0, G(x̄)],

since the set θ(x̄, δ) is monotonically contractive as δ increases to G(x̄). In this case,
because

sup{⟨F (y), w − w′⟩| y ∈ θ(x̄, δ)} ≤ sup{∥F (y)∥| y ∈ θ(x̄, δ)} · ∥w − w′∥ ≤ M∥w − w′∥,

taking the limits on both sides of the above inequality yields

lim sup
w′→w

w′∈TdomG(x̄)

lim
δ↗G(x̄)

sup{⟨F (y), w − w′⟩| y ∈ θ(x̄, δ)} ≤ lim sup
w′→w

w′∈TdomG(x̄)

M∥w − w′∥ = 0.

Hence our result extends [27, Theorem 3.3], since as shown above our assumption is
weaker.

ii) X is compact. In this case, it naturally has

sup{∥F (y)∥| y ∈ θ(x̄, δ)} ≤ sup{∥F (y)∥| y ∈ X} < +∞,

where the first inequality follows from the fact that θ(x, δ) ⊂ X by definition and the
last step is due to the continuity of F and the compactness of X.

Corollary 3.5. If x̄ ∈ domG and θ(x̄, δ) is bounded for some δ < G(x̄), then

dG(x̄)(w) =

{
max{⟨F (y), w⟩| y ∈ Λ(x̄)}, w ∈ TdomG(x̄),
+∞, w /∈ TdomG(x̄).

Proof. According to [27, Theorem 3.5], we have

G′(x̄;w) = max{⟨F (y), w⟩| y ∈ Λ(x̄)}, ∀w ∈ FdomG(x̄).

The boundedness of θ(x̄, δ) and the continuity of F imply that Λ(x̄) is compact, which in
turn implies that the convex function π defined in (3.3) is finite everywhere on Rn. Thus,
π is continuous on TdomG(x̄) by [19, Corollary 10.1.1]. In view of Lemma 3.2, for each
w ∈ TdomG(x̄), we have

dG(x̄)(w) = lim inf
w′→w

G′(x̄;w′)

= lim inf
w′→w

w′∈FdomG(x̄)

G′(x̄;w′)

= lim inf
w′→w

w′∈FdomG(x̄)

π(w′)

= π(w).

This completes the proof.

The crucial distinction between the characterizations of directional derivative and sub-
derivative lies at the relative boundary points of the cone of feasible directions, i.e., G′(x̄; ·)
agrees with dG(x̄)(·) everywhere except at the points in TdomG(x̄)\FdomG(x̄). Since FdomG(x̄)
may be open, it prevents us from deriving the structural expression of subdifferentials di-
rectly. This is the reason why we make use of the subderivative, which is always a lower
semi-continuous function; see [20] for more properties of subderivative.
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3.2 Subdifferential

Now let us establish the characterization of the subdifferential of G at x ∈ domG. For a
closed convex set A, let A∞ represent its recession cone

A∞ := {y ∈ Rn| x+ λy ∈ A for some x ∈ A and all λ ≥ 0}.

Theorem 3.6. If x̄ ∈ domG then

∂G(x̄) =
∩

δ<G(x̄)

cl
[
coF

(
θ(x̄, δ)

)
+NdomG(x̄)

]
.

Proof. According to [11, Proposition 3], we know

∂G(x̄) =
∩

δ<G(x̄)

cl

[
coF

(
θ(x̄, δ)

)
+

{
v|(v, vT x̄) ∈

(
cl

[
co
(
∪y∈X {(F (y), F (y)T y)}

)])
∞

}]
.

(3.6)
Note that

gphf∗
y = (F (y), F (y)T y),

where fy(x) := ⟨F (y), x− y⟩. In fact, by the definition of conjugate function, we obtain

f∗
y (x

∗) = sup
x∈Rn

{⟨x∗, x⟩−fy(x)} = sup
x∈Rn

{⟨x∗−F (y), x⟩+⟨F (y), y⟩} =

{
⟨F (y), y⟩, x∗ = F (y)

+∞, otherwise.

We know from [11, Proposition 4] that

NdomG(x̄) =

{
v ∈ Rn| (v, vT x̄) ∈

(
cl

[
co
(
∪y∈X gphf∗

y

)])
∞

}
. (3.7)

Putting (3.6)-(3.7) yields

∂G(x̄) =
∩

δ<G(x̄)

cl
[
coF (θ(x̄, δ)) +NdomG(x̄)

]
.

The above theorem can be regarded as an extension of Theorem 3.8 in [27] since the
point x̄ is not restricted to the relative interior of domG. The relation between subderivative
and subdifferential is given below, which will be used in our subsequent analysis.

Theorem 3.7. Let x ∈ domG. If Λ(x̄) is nonempty, then

dG(x̄)(w) = σ∗(w|∂G(x̄)
)
. (3.8)

Proof. According to Theorem 3.6, if Λ(x̄) is nonempty, then ∂G(x̄) is also nonempty, since
Λ(x̄) ⊂ θ(x̄, δ) for all δ < G(x̄). Hence the desired result follows from [20, Theorem 8.30].

In particular, when θ(x̄, δ) is bounded for some δ < G(x̄), then ∂G(x̄) can be simply
described in terms of Λ(x̄).

Corollary 3.8. If x̄ ∈ domG and θ(x̄, δ) is bounded for some δ < G(x̄), then

∂G(x̄) = coF
(
Λ(x̄)

)
+NdomG(x̄),

where F (Λ(x̄)) := {F (y)| y ∈ Λ(x̄)}.
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Proof. It follows from Corollary 3.5 that

dG(x̄)(w) = σ∗(w| F (Λ(x̄))
)
+ δ

(
w| TdomG(x̄)

)
= σ∗(w| F (Λ(x̄))

)
+ σ∗(w| NdomG(x̄))

= σ∗(w| F (Λ(x̄)) +NdomG(x̄)
)
, (3.9)

where in the second equality we use the fact that σ∗(w|K) = δ(w|K◦) for a closed convex
coneK, see [19] for the detailed discussion on the conjugate duality between support function
and indicator function.

Note that the boundedness of θ(x̄, δ) implies that Λ(x̄) is nonempty. Hence Theorem 3.7
is applicable. This together with (3.9) yields

σ∗(w|∂G(x̄)
)
= σ∗(w| F (Λ(x̄)) +NdomG(x̄)

)
.

Hence according to [19, Corollary 13.1.1] we have

∂G(x̄) = cl[coF (Λ(x̄)) +NdomG(x̄)].

The boundedness of θ(x̄, δ) implies that Λ(x̄) is compact, which further implies that the
compactness of F (Λ(x̄)) due to the continuity of F . Hence, according to [20, Exercise 3.12],
the closure operation can be dropped.

4 Solution Properties

Utilizing the characterizations of subderivatives and subdifferentials of the dual gap func-
tion G given in the previous section, we provide an estimate of the largest global error
bound constant and study the relationship among global error bound, weak sharpness, MPS
property, and linear regularity for the pseudo-monotone VIP. First, we review the concept
of the basic constraint qualification due to Rockafellar [19]. First, recall from [20] that

∂∞f(x) := lim sup
x′ f

→x
λ↘0

λ∂̂f(x′).

Definition 4.1. [8, Definition 2.5] Consider the problem of minimizing G over X. We say
that the basic constraint qualification (BCQ) is satisfied at x ∈ X if for every u ∈ ∂∞G(x)
and v ∈ NX(x) satisfying u + v = 0, it must be the case that u = v = 0. The BCQ is said
to be satisfied on X∗ if it is satisfied at every point of X∗.

Remark 4.2. According to [20, Proposition 8.12], we know ∂∞G(x) = NdomG(x). Hence if
the BCQ holds at x, then it follows from [20, Theorem 6.42] thatNΩ(x) = NdomG(x)+NX(x)
and TΩ(x

∗) = TX(x∗) ∩ TdomG(x
∗), where Ω := X ∩ domG.

Lemma 4.3. [8, Theorem 2.6] Consider the optimization problem of minimizing G over X
with zero optimal value. If the BCQ holds on X∗, then G has an global error bound on X
with modulus α > 0 if and only if the following inclusion holds with the same modulus,

αB ⊆ ∂G(x∗) +
[
TX(x∗) ∩NX∗(x∗)

]◦
, ∀x∗ ∈ X∗. (4.1)

Based on Lemma 4.3 and Theorem 3.3, an alternative equivalent description for the
concept of global error bound is given below, where TX(x∗) can be replaced by TΩ(x

∗).
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Theorem 4.4. If the BCQ holds on X∗, then G has an global error bound on X with
modulus α > 0 if and only if the following inclusion holds

α′B ⊆ ∂G(x∗) +
[
TΩ(x

∗) ∩NX∗(x∗)
]◦
, ∀x∗ ∈ X∗ and ∀α′ ∈ (0, α). (4.2)

Proof. We first note that the formula (3.8) holds at every x∗ ∈ X∗, since X∗ ⊂ Λ(x∗) for
all x∗ ∈ X∗ [27, Proposition 3.12] and X∗ is nonempty by hypothesis. According to Lemma
4.3, we only need to show the equivalence between (4.1) and (4.2). In view of [19, Corollary
13.1.1], (4.1) holds for some α > 0 if and only if for any x∗ ∈ X∗ and w ∈ Rn, we have

σ∗(w|αB) ≤ σ∗(w|∂G(x∗) + [TX(x∗) ∩NX∗(x∗)]◦
)

= σ∗(w|∂G(x∗)
)
+ σ∗(w|[TX(x∗) ∩NX∗(x∗)]◦

)
= dG(x∗)(w) + δ

(
w| TX(x∗) ∩NX∗(x∗)

)
. (4.3)

Note that σ∗(w|αB) = ασ∗(w|B) = α∥w∥. It follows from Theorem 3.3 that (4.3) is equiv-
alent to

α∥w∥ ≤ dG(x∗)(w), ∀ w ∈ TX(x∗) ∩NX∗(x∗) ∩ TdomG(x
∗). (4.4)

Taking into account of Remark 4.2, (4.4) can be equivalently written as follows:

dG(x∗)(w) ≥ α∥w∥, ∀w ∈ TΩ(x
∗) ∩NX∗(x∗), (4.5)

⇔ σ∗(w|∂G(x∗)
)
+ δ

(
w| TΩ(x

∗) ∩NX∗(x∗)
)
≥ σ∗(w|αB), ∀w ∈ Rn,

⇔ σ∗(w|∂G(x∗)
)
+ σ∗(w|[TΩ(x

∗) ∩NX∗(w)]◦
)
≥ σ∗(w|αB), ∀w ∈ Rn,

⇔ σ∗(w|∂G(x∗) +
[
TΩ(x

∗) ∩NX∗(w)
]◦) ≥ σ∗(w|αB), ∀w ∈ Rn,

⇔ αB ⊆ cl{∂G(x∗) +
[
TΩ(x

∗) ∩NX∗(x∗)
]◦}, (4.6)

the last equivalence following from [19, Corollary 13.1.1]. Noticing that the sets involved in
(4.6) are convex, then according to the basic topological properties of convex sets, (4.6) is
equivalent to

int(αB) ⊆ int
(
cl{∂G(x∗) +

[
TΩ(x

∗) ∩NX∗(x∗)
]◦}) = int

(
∂G(x∗) +

[
TΩ(x

∗) ∩NX∗(x∗)
]◦)

,

which shows the validity of (4.2). Conversely, we readily get (4.6) by (4.2), since αB =
cl{∪α′<αα

′B}. This completes the proof.

Corollary 4.5. If X∗ ⊆ int(domG) and θ(x∗, δ) is bounded for some δ < G(x∗), then G
has an global error bound on X with modulus α > 0 if and only if the following inclusion
holds

αB ⊆ coF
(
Λ(x∗)

)
+
[
TΩ(x

∗) ∩NX∗(x∗)
]◦
, ∀x∗ ∈ X∗.

Proof. Since X∗ ⊆ int(domG), then NdomG(x
∗) = {0} for all x∗ ∈ X∗. Hence it follows

from Corollary 3.8 that ∂G(x∗) = coF (Λ(x∗)). This, together with Lemma 4.3, yields the
desired result.

Define the largest global error bound constant as

αmax := sup{α ≥ 0| G(x) ≥ α dist(x,X∗), ∀x ∈ X}

= inf

{
G(x)

dist(x,X∗)

∣∣∣x ∈ X/X∗
}
.
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This is slightly different from that given in [16], where α is restricted to be positive. Clearly,
the case of αmax > 0 (or αmax = 0) corresponds to the existence (or the failure) of global error
bound. Using the characterizations of subderivatives and subdifferentials of G developed in
Section 3, we provide an estimate of the largest global error bound constant, which answers
the question mentioned in [27, Page 148] in the affirmative.

Theorem 4.6. If the BCQ holds on X∗, then

αmax = inf{dG(x∗)(w)|w ∈ S(x∗), x∗ ∈ X∗}, (4.7)

where S(x∗) := {w ∈ Rn| w ∈ TΩ(x
∗) ∩NX∗(x∗), ∥w∥ = 1}.

Proof. We first consider the case when αmax > 0; i.e., G has an error bound on X. As
evident from the proof of Lemma 4.4, (2.2) is equivalent to the validity of (4.5), from which
and the positive homogeneity of dG(x∗) [20], the formulas claimed for αmax follows. We now
show that αmax = 0 is equivalent to

inf{dG(x∗)(w)| w ∈ S(x∗), x∗ ∈ X∗} = 0.

First, we have
inf{dG(x∗)(w)|w ∈ S(x∗), x∗ ∈ X∗} ≤ 0. (4.8)

Indeed, if
inf{dG(x∗)(w)|w ∈ S(x∗), x∗ ∈ X∗} > 0,

then (4.5) holds, which ensures the validity of (4.6) (and hence (4.2)) by the argument given
in Theorem 4.4. Hence G has a global error bound, i.e., αmax > 0.

To obtain the reverse inequality, consider an arbitrary x∗ ∈ X∗. Note that problem of
minimizing G(x) over X is equivalent to the problem of minimizing G(x)+ δ(x|X) over Rn.
The optimality of x∗ implies 0 ∈ ∂

(
G + δ(·|X)

)
(x∗). Since the BCQ holds at x∗, we get

0 ∈ ∂G(x∗) +NX(x∗) by [19, Theorem 23.8]. This further implies that

0 ≤ σ∗(w|∂G(x∗) +NX(x∗)) = σ∗(w|∂G(x∗)) + δ(w|TX(x∗)) = dG(x∗)(w), ∀w ∈ TX(x∗).

Since TΩ(x
∗)

∩
NX∗(x∗) ⊆ TΩ(x

∗) ⊆ TX(x∗), the above inequality implies that

inf{dG(x∗)(w)|w ∈ S(x∗), x∗ ∈ X∗} ≥ 0.

This, together with (4.8), establishes the equation as claimed.

Corollary 4.7. Let x∗ be the unique solution of VIP, i.e., X∗ = {x∗}. If BCQ holds at x∗

and θ(x∗, δ) is bounded for some δ < G(x∗), then

αmax = min{σ∗(w|F (Λ(x∗))
)
| w ∈ TΩ(x

∗), ∥w∥ = 1},

where F (Λ(x∗)) := {F (x)| x ∈ Λ(x∗)}.

Proof. Since X∗ = {x∗}, then NX∗(x∗) = Rn. Hence S(x∗) given in (4.7) coincides
with {w ∈ TΩ(x

∗)|∥w∥ = 1}. Since Ω = X ∩ domG, then TΩ(x
∗) ⊂ TdomG(x

∗). Hence
dG(x∗)(w) = σ∗(w|F (Λ(x∗))

)
for all w ∈ TΩ(x

∗) by Corollary 3.5. Plugging these facts in
(4.7) yields

αmax = inf{σ∗(w|F (Λ(x∗))
)
| w ∈ TΩ(x

∗), ∥w∥ = 1}.
Finally, note that the “infimum” can be replaced by “min”, due to the compactness of
{w ∈ TΩ(x

∗)|∥w∥ = 1} and the lower semicontinuity of the support function [19]. This
completes the proof.
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Lemma 4.8. Let A,B be two subsets in Rn. If A ⊆ B ⊆ {λA|λ > 0}, then A◦ = B◦.

Proof. It is clear that
A◦ ⊇ B◦ ⊇ {λA|λ > 0}◦. (4.9)

If v ∈ A◦, then ⟨v, a⟩ ≤ 0 for all a ∈ A. For any z ∈ {λA|λ > 0}, i.e., z = λ0a0 for some
λ0 > 0 and a0 ∈ A, we have ⟨v, z⟩ = ⟨v, λ0a0⟩ = λ0⟨v, a0⟩ ≤ 0, i.e., v ∈ {λA|λ > 0}◦. Hence
A◦ ⊆ {λA|λ > 0}◦. Combining this with (4.9) yields the desired result.

We now show the equivalence among global error bound, weak sharpness, MPS property
regularity, and linear regularity, provided that G is differentiable. The relationship among
global error bound, weak sharpness, and MPS property regularity has been studied by many
authors under various assumptions; for example, in [15, Theorems 4.1 and 4.2], F is pseudo-
monotone+ and X is compact polyhedral; in [23, Theorem 5.3] F is pseudo-monotone+ and
X is polyhedral. These results were extended in [27, Theorems 4.4 and 4.7], where the
pseudo-monotonicity+ was replaced by pseudo-monotonicity. Here we further show that,
under the Slater condition, these properties are equivalent to linear regularity as well. First,
we note that because G is convex, then the concept of Gâteaux differentiability coincides
with Fréchet differentiability in finite dimensional spaces. Indeed, by definition the Gâteaux
differentiability means that the directional derivative G′(x, ·) is linear. This implies that G
is Fréchet differentiable at x by [19, Theorem 25.2].

Lemma 4.9. Let F be continuous and pseudo-monotone on X. If G is differentiable on X∗,
then F is constant on X∗, i.e., there exists F ∗ ∈ Rn such that F (x) = F ∗ for all x ∈ X∗,
and ∇G(x) = F ∗ for all x ∈ X∗.

Proof. See [24, Theorem 2.3] and [27, Proposition 3.13].

Theorem 4.10. Let F be pseudo-monotone and continuous on the polyhedral set X. Sup-
pose that G is differentiable on X∗. Then the following statements are equivalent:

(a) X∗ is weakly sharp;

(b) VIP possesses the MPS property;

(c) G has a global error bound on X.

Moreover, if the Slater condition holds, i.e., there exists x0 ∈ Rn such that G(x0) < 0, the
above statements are further equivalent to

(d) the pair {X, lev≤0G} is linearly regular over X.

Proof. The equivalence among (a), (b), and (c) can be found in [27, Theorems 4.4 and
4.7]. Now let us show that (c) is equivalent to (d) under the Slater condition. Since G is
(Fréchet) differentiable at x∗ ∈ X∗, then x∗ ∈ int(domG). So the BCQ holds at x∗, due to
∂∞G(x∗) = NdomG(x

∗) = {0}.
Note that for a closed set A we always have ∂dist(x,A) = NA(x) ∩ B by [20, Example

8.53]. The global error bound of G over X implies the existence of a positive scalar α1 such
that

α1dist(x,X
∗) ≤ G(x), ∀x ∈ X,

⇔ α1dist(x,X
∗) ≤ G(x) + δX(x), ∀x ∈ Rn,

⇔ α1B ∩NX∗(x) ⊆ ∂(G(x) + δX(x)), ∀x ∈ X∗,

⇔ α1B ∩NX∗(x) ⊆ ∂G(x) +NX(x), ∀x ∈ X∗,

⇔ α1B ∩NX∗(x) ⊆ F (x) +NX(x), ∀x ∈ X∗

⇔ α1B ∩NX∗(x) ⊆ F ∗ +NX(x), ∀x ∈ X∗, (4.10)
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where the second equivalence follows from [6, Theorem 2.3], the third equivalence from the
subdifferential calculus rules given in [20, Corollary 10.9] (since BCQ holds on X∗ as shown
above), the forth equivalence from the fact ∂G(x) = {F (x)} for all x ∈ X∗ (since G is
differential on X∗), and the last equivalence from the fact that F is constant over X∗ by
Lemma 4.9.

The linear regularity of the pair {X, lev≤0G} over X implies the existence of a positive
scalar α2 such that

α2dist(x,X
∗) ≤ dist(x, lev≤0G), ∀x ∈ X,

⇔ α2dist(x,X
∗) ≤ dist(x, lev≤0G) + δX(x), ∀x ∈ Rn,

⇔ α2B ∩NX∗(x) ⊆ ∂
(
dist(x, lev≤0G) + δX(x)

)
, ∀x ∈ X∗,

⇔ α2B ∩NX∗(x) ⊆ B ∩Nlev≤0G(x) +NX(x), ∀x ∈ X∗, (4.11)

where the second equivalence comes from [6, Theorem 2.3], the last equivalence follows
from [20, Corollary 10.9] (since dom

(
dist(·, lev≤0G)

)
= Rn).

Under the Slater condition, we now claim that

Nlev≤0G(x) = coneF ∗ := {λF ∗|λ ≥ 0}, ∀x ∈ X∗.

Let
Γ := {v|⟨v, z − x⟩ ≤ 0, ∀z with G(z) < 0}.

First, note that

Nlev≤0G(x) = {v|⟨v, z − x⟩ ≤ 0, ∀z with G(z) ≤ 0} = Γ,

where the first equality is due to the definition of normal cone. It is clear that Nlev≤0G(x) ⊆
Γ. Conversely, choose v ∈ Γ. If z satisfies G(z) ≤ 0, then G(λz+ (1− λ)x0) ≤ λG(z) + (1−
λ)G(x0) < 0 for λ ∈ (0, 1), since G(x0) < 0 by hypothesis. Hence ⟨v, λz+(1−λ)x0−x⟩ ≤ 0.
Taking the limits as λ → 1− yields ⟨v, z − x⟩ ≤ 0. Hence v ∈ Nlev≤0G(x).

Second, note that

{z − x| z with G(z) < 0} ⊆ {w| G′(x;w) < 0} ⊆
∪
λ>0

λ{z − x| z with G(z) < 0}.

In fact, if z satisfies G(z) < 0, then

G′(x; z − x) = inf
t>0

G(x+ t(z − x))−G(x)

t
≤ G(x+ z − x)−G(x) = G(z) < 0,

where the first equality is due to [19, Theorem 23.1], the first inequality holds by taking
t = 1, and the second equality follows from the fact G(x) = 0 since x ∈ X∗ as required
above. Similarly, if w satisfies G′(x;w) < 0, i.e.,

0 > G′(x;w) = inf
t>0

G(x+ tw)−G(x)

t
= inf

t>0

G(x+ tw)

t
,

then there exists t0 > 0 such that 0 > G(x+ t0w)/t0, which further implies 0 > G(x+ t0w).
Let z = x+ t0w. Then w = (z − x)/t0 ∈ ∪λ>0λ{z − x| G(z) < 0}.

Hence according to Lemma 4.8 that

{z − x| z with G(z) < 0}◦ = {w| G′(x;w) < 0}◦.
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Therefore, similar to [7] we have

Nlev≤0G(x) = {v|⟨v, z − x⟩ ≤ 0, ∀z with G(z) < 0}
= {z − x| z with G(z) < 0}◦

= {w| G′(x;w) < 0}◦

= (cl{w|G′(x;w) < 0})◦

= {w|dG(x)w ≤ 0}◦

= {w|⟨F ∗, w⟩ ≤ 0}◦

= ((F ∗)◦)◦

= cone(F ∗),

where the fourth equality is due to the fact (clK)◦ = K◦ for any convex set K (see
[19, Page 121], the fifth equality comes from Lemma 3.2 and the fact cl{x|f(x) ≤ α} =
{x|(clf)(x) ≤ α} when α > inf f (see [19, Theorem 7.6]), the sixth equality follows from
the fact dG(x)(w) = ∇G(x)Tw = F (x)Tw = (F ∗)Tw by Lemma 4.9, and the last step
from [20, Corollary 6.21].

Combining this and (4.11) yields

α2B ∩NX∗(x) ⊆ B ∩ cone(F ∗) +NX(x), ∀x ∈ X∗. (4.12)

To complete the proof, we need to show the equivalence between (4.10) and (4.12). Note
that the Slater condition means that for the unconstrained problem of minimizing G over
Rn, the optimal value is negative and is not achieved at any point in X∗. Thus, 0 /∈
∂G(x) for each x ∈ X∗, which in turn implies that F ∗ ̸= 0. Therefore, all that we need to
show is the implication (4.12) ⇒ (4.10), since the converse part holds trivially by taking
α2 = α1

∥F∗∥ . Now choosing z ∈ α2B ∩ NX∗(x), (4.12) implies the existence of z1 = λF ∗ for

some λ ∈ [0, 1/∥F ∗∥] and z2 ∈ NX(x) such that z = z1 + z2. According to the optimality
of x ∈ X∗ for the convex programming problem of minimizing G(x) over X implies that
0 ∈ ∂G(x) + NX(x) = ∇G(x) + NX(x) = F ∗ + NX(x), i.e., −F ∗ ∈ NX(x). Therefore,
z = λF ∗ + z2 = F ∗ + (1− λ)(−F ∗) + z2, which further implies that z ∈ F ∗ +NX(x), since
NX(x) +NX(x) = NX(x) by [19, Theorem 2.6]. This completes the proof.

Refined results can be obtained for the affine variational inequalities (AVI), which cor-
responds to the VIP with F being affine and X being polyhedral. More precisely, the affine
variational inequalities is to find x∗ ∈ X such that

⟨Mx∗ + q, x− x∗⟩ ≥ 0, ∀x ∈ X,

where q ∈ Rn, M ∈ Rn×n, and X is a polyhedral set.

Theorem 4.11. If M is a positive definite matrix, VIP has a unique solution, say x∗, then
the following statements are equivalent:

(a) X∗ is weakly sharp;

(b) VIP possesses the MPS property;

(c) G has a global error bound on X;

(d) x∗ is a nondegenerate solution, i.e., −(Mx∗ + q) ∈ intNX(x∗);
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(e) there is a positive scalar γ such that

g(x) ≥ γ dist(x,X∗) = γ ∥x− x∗∥, x ∈ X,

where g(x) := ⟨Mx+ q, x⟩ − inf{⟨Mx+ q, y⟩| y ∈ X} is the primal gap function.

Moreover, if there exists some x0 ∈ Rn such that

M⊤x0 − q ∈ X◦ and ⟨x0, q⟩ < 0, (4.13)

then the above statements are further equivalent to

(f) the pair {X, lev≤0G} is linearly regular over X.

Proof. We first show that G is (Fréchet) differentiable and X∗ is a single-point set. For any
given x ∈ Rn, let us consider the following problem:

min
y∈X

⟨My + q, y − x⟩. (4.14)

SinceM is positive definite, this is a convex quadratic programming whose objective function
is strongly convex in y. Thus, the problem (4.14) has a unique solution, i.e., the set Λ(x) is
a single-point set for each x ∈ Rn. The nonemptiness of Λ(x) for each x ∈ Rn implies that
domG = Rn, whereas the uniqueness of Λ(x) implies the boundedness of the set θ(x, δ) for
any x ∈ Rn and δ ∈ R by [19, Corollary 8.7.1]. According to Corollary 3.8, we get that ∂G is
single-point set, which in turn implies that G is differentiable (see [19, Theorem 25.1]). The
uniqueness of X∗ follows from the fact X∗ ⊆ Λ(x∗) for each x∗ ∈ X∗ by [23, Proposition
2.3], since Λ(x∗) is a single-point set as shown above. Because M is positive definite,
then F (x) = Mx + q is pseudo-monotone (in fact is monotone). This together with the
differentiability of G, allows us to establish the equivalence between the statements (a),
(b), and (c) by applying Theorem 4.10. Due to X∗ consisting of a single point, we have
NX∗(x∗) = Rn by definition. Thus, the formula (2.1) of weak sharpness takes the form
−Mx∗ − q ∈ int

(
TX(x∗)

)◦
= intNX(x∗). This establishes the equivalence between (a) and

(d). The equivalent between (d) and (e) can be found in [9, Theorem 6.4.6].
To complete the proof, according to Theorem 4.10, it suffices to show the validity of the

Slater condition. Since M⊤x0 − q ∈ X◦, we have ⟨M⊤x0 − q, y⟩ ≤ 0 for all y ∈ X. This,
together with the positive definiteness of M and the fact ⟨x0, q⟩ < 0 in (4.13), implies that
for any y ∈ X we have

⟨My + q, x0 − y⟩ = ⟨y,MTx0 − q⟩ − ⟨My, y⟩+ ⟨q, x0⟩ < 0. (4.15)

Hence G(x0) = sup{⟨My+ q, x0− y⟩|y ∈ X} = ⟨My0+ q, x0− y0⟩ < 0, where the maximum
can be attained at some y0 due to positive definiteness of M (see the argument following
(4.14)), and the inequality follows from (4.15). This means that the Slater condition holds.
Applying Theorem 4.10 yields the desired result.

At the end of this paper, we need to point out that Theorem 4.10 can be regarded as
a complement to [15, 23, 24, 27], where they do not reveal the close relationship between
weak sharpness and linear regularity. For AVI, a special case of VIP, we get a series of
equivalences under the condition of positive definiteness in Theorem 4.11. In [27, Theorem
4.8], the authors establish the relation (b) =⇒ (a), (c), (d), and (e), when M is positive
semi-definite. It would be interesting to know whether these equivalent relations remain
true when the positive definiteness is replaced by positive semidefiniteness.
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5 Conclusion

The novelty of this paper is twofold. First, we develop some new characterizations of sub-
derivatives and subdifferentials of the dual gap function. An outstanding advantage of our
result over the ones proposed in [27] is that the characterization of subdifferentials is pre-
sented at any point x in domG, rather than at the point x restricted to ri(domG). Second,
we further establish the equivalences of weak sharpness of X∗, minimum principle sufficiency
property, global error bound, to linear regularity in the presence of the Slater condition. In
addition, an estimate of the largest global error bound constant is provided.

Acknowledgements

We are gratefully indebted to anonymous referees for their valuable suggestions that helped
us to essentially improve the original presentation of the paper.

References

[1] G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal.
Optim. 10 (1989) 863–874.
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