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II functional response prey-predator fishery model with marine reserves and pointed out
that so long as the prey population in the reserved zone did not extinct, the both prey
always existed. By virtue of singular systems theory [17], a singular ecological-economic
model with harvesting and migration was proposed by [18], they utilized a variable struc-
ture method to eliminate the singular induced bifurcation (for further understanding, please
refer to [12,15,16,19,20] and the references therein) and design a stabilized controller.

As the exploitation of ecological resources are often companied by the economic interests.
The incentive driven by the profits may destroy the ecosystem, ultimately, may lead to a
crisis of humans. Consequently, there is widespread concern upon how to keep the ecological
balance and maximize the revenue from the harvesting of ecological resources. As pointed
out in [2], economists are extremely interested in taxation, partly owing to its flexibility and
partly attributing to the fact that a competitive economic system can be better maintained
under taxation than other regulatory measures. Recently, considerable attentions are paid
to the modeling of harvesting of ecological resources. In these models, the harvesting effort
is supposed to be a differential variable, several kinds of harvesting policies are utilized
to study the dynamical behavior of the model system. Moreover, the optimal taxation
policy problems are also discussed. A dynamic reaction model of a fishery consisting of
two competing species with nonselective harvesting were considered in [14], where taxation
was a regulatory policy to control exploitation. [7,8] dealt with the selective harvesting in a
ratio-dependent prey-predator fishery model and the optimal taxation policy problems were
considered. A prey-predator model with stage structure for prey and selective harvest effort
on predator was proposed in [10], in which taxation was a control instrument to protect
the population from overexploitation, and the impact of variation of gestation delay on the
stability switch of the model system was also analyzed. In [21], a prey-predator model
with gestation delay, stage structure for predator, and selective harvesting effort on mature
predator was considered, the effects of taxation on the existence, stability behavior and
trade-offs between profits and ecological balance were also discussed elaborately. The marine
reserves and taxation were jointly introduced in [6], the optimal taxation policy was provided.
[11] established an ecoepidemiological prey-predator model with selective harvesting effort
on predator population, in which the control variable were chosed to be vaccination and
taxation, Bendixson criterion was used to discuss the global stability behavior. By taking
the crowding effect into consideration, a dynamical model was proposed and analyzed in [3]
to discuss the effect of population on a resource biomass, and taxation was also taken as
a control variable. [5] dealt with a prey-predator model system in the presence of some
alternative food to predator and selective harvesting on prey species, where the maximum
sustainable yield level was not considered as a reasonable method to prevent the model
system from extinction, and taxation was utilized to overcome this defect, and was deemed
to be superior.

As we have seen from the above, the prey-predator fishery model with both reserves and
taxation have not been considered, which is the incentive of this paper. In this paper, we
establish a prey-predator fishery model system with prey population dispersal in two aquatic
environments, a free fishing area and a reserved area where predation and harvesting are
prohibited. The prey population obeys the logistic growth law and the migrations between
the free fishing area and the reserved area are considered to be stochastic. The predator con-
sumes the prey in the free fishing area in proportion to the predator population and grows
with logistic law and the capacity proportional to the prey population in the free fishing
area. By taking the harvesting effort as the dynamical variable and utilizing the taxation as
a control instrument, the dynamical behavior of the model system around the nonnegative
equilibria are analyzed elaborately, particularly, only the global stability of interior equi-
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librium is discussed. To keep the trade-offs between ecological protection and commercial
exploitation, the optimal taxation policy problem is formulated, then, by using Pontryagin’s
maximum principle, the optimal control problem is solved and the optimal taxation policy is
provided. Finally, the effect of marine reserve is also illustrated by analyzing the dynamical
response of our model system.

The organization of our paper is stated as follows: The next section is devoted to the
model formulation. The qualitative analysis of the nonnegative equilibria will be performed
in the third section, specially, just the global stability behavior of interior equilibrium is
studied. The optimal taxation policy problem is formulated and solved in the fourth section.
A simulation example is provided to support the analytical findings in this paper. Finally,
this paper ends with a conclusion.

2 Model Formulation

Consider the model proposed by [9] which is shown as follows:

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)−mx(t)z(t)− qE(t)x(t)

dy(t)

dt
= sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t)

dz(t)

dt
= αz(t)

(
1− z(t)

γx(t)

) (2.1)

where x(t) and y(t) are the respective densities of prey population inside the free fishing
zone and reserved zone at time t. z(t) is the density of predator population at time t. Prey
population migrate from the free fishing zone to the reserved zone at a rate σ1 and the
reserved zone to the free fishing zone at a rate σ2, respectively. r(K) and s(L) are the
intrinsic growth rates (carrying capacities) of prey population inside the free fishing zone
and reserved zone, respectively. m is the predation rate, and γ is the equilibrium ratio of
prey-to-predator population. E(t) is the harvesting effort at time t.

As we know, a competitive system can be better maintained by taxation rather than other
regulatory methods. In order to protect the fishery resources from overexploitation, the regu-
latory agency often imposes a taxation τ > 0 per unit of the harvested prey population(τ < 0
implies the subsides paid to the fishermen). Herein, we take E(t) as a dynamic variable,
following [21], the following dynamic reaction model described by differential equations can
be obtained:

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)−mx(t)z(t)− qE(t)x(t)

dy(t)

dt
= sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t)

dz(t)

dt
= αz(t)

(
1− z(t)

γx(t)

)
dE(t)

dt
= α0E(t) ((p− τ) qx(t)− c)

(2.2)

with the initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, E(0) ≥ 0 (2.3)
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where some of the parameters share the same meanings with model (2.1), p is the fixed price
per unit of the harvested prey population, c is the fixed cost of harvesting per unit of effort,
and α0 is the stiffness parameter measuring the strength of reaction of harvesting effort.

For convenience of the subsequent analysis, it is assumed that

r − σ1 − qE > 0, s− σ2 > 0 (2.4)

Remark 2.1. It should be noted that the model in the absence of predator has been
studied in [6]. Compared with the model proposed by [6], the model (2.2) by incorporating
a predator into the ecosystems in this paper seems to be more realistic. Correspondingly, it
can also show the more complex biological phenomenon.

3 Qualitative Analysis of Model System

This section aims to analyze the existence of nonnegative equilibria, discuss their local
stability and global stability. Specially, interior equilibrium is the key focus of our discussion.

3.1 Existence of Equilibria

By equating the left-hand sides of differential equations to zero, after a little manipula-
tion, we find five equilibria: P0 (0, 0, 0, 0), P1 (x1, y1, 0, 0), P2 (x2, y2, z2, 0), P3 (x3, y3, 0, E3),
P ∗ (x∗, y∗, z∗, E∗).

It is obvious that P0 (0, 0, 0, 0) always exists. Thereby, we first verify the existence of
equilibrium P1 (x1, y1, 0, 0) where x1, y1 are the positive solutions of the equations below:

rx
(
1− x

K

)
− σ1x+ σ2y = 0

sy
(
1− y

L

)
+ σ1x− σ2y = 0

(3.1)

Expressing y with regard to x leads to

y1 =
1

σ2

(
rx2

1

K
− (r − σ1)x1

)
(3.2)

where x1 satisfies the following cubic equation

a1x
3 + b1x

2 + c1x+ d1 = 0 (3.3)

with

a1 =
sr2

Lσ2
2K

2

b1 = −2sr (r − σ1)

Lσ2
2K

c1 =
s (r − σ1)

2

Lσ2
2

− r (s− σ2)

Kσ2

d1 =
(s− σ2)

σ2
(r − σ1)− σ1

(3.4)
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The existence of a positive solution to equation (3.3) can be assured if the conditions below
are satisfied

s (r − σ1)
2

Lσ2
2

>
r (s− σ2)

Kσ2

(s− σ2) (r − σ1) < σ1σ2

(3.5)

In order to make the equilibrium biologically meaningful, component y1 should be posi-
tive, that is to say, an additional inequality

rx1

K
> (r − σ1) (3.6)

must holds.
Consequently, we have the following theorem.

Theorem 3.1. Provided that (3.5) and (3.6) hold, then dynamic system (2.2) has a non-
negative equilibrium P1 (x1, y1, 0, 0).

Now, we discuss the existence of equilibrium P2 (x2, y2, z2, 0). x2, y2 and z2 are positive
and satisfy the following equation

rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)−mx(t)z(t) = 0

sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t) = 0

z(t) = γx(t)

(3.7)

Solving y2 and z2 from the first equation and the third equation of (3.7) respectively, we
can obtain

y2 =
1

σ2

[( r

K
+mγ

)
x2
2 − (r − σ1)x2

]
z2 = γx2

(3.8)

substituting y2 and z2 into the second equation of (3.7), we obtain a equation in regard to x

a2x
3 + b2x

2 + c2x+ d2 = 0 (3.9)

where

a2 =
s

Lσ2
2

( r

K
+mγ

)2

b2 = −2s (r − σ1)

Lσ2
2

( r

K
+mγ

)
c2 =

s (r − σ1)
2

Lσ2
2

− (s− σ2)

σ2

( r

K
+mγ

)
d2 =

(s− σ2)

σ2
(r − σ1)− σ1

(3.10)

After little manipulations, there exist a positive solution x2 to equation (3.9) if the
following inequalities hold

s (r − σ1)
2

Lσ2
< (s− σ2)

( r

K
+mγ

)
(s− σ2) (r − σ1) < σ1σ2

(3.11)
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To guarantee the positiveness of y2, the following condition must be met

x2 > (r − σ1) /
( r

K
+mγ

)
(3.12)

Therefore, we can come to a conclusion.

Theorem 3.2. Provided that (3.11) and (3.12) hold, then dynamic system (2.2) has a non-
negative equilibrium P2 (x2, y2, z2, 0).

Next, we are prepared to show that equilibrium P3 (x3, y3, 0, E3) is existent under certain
conditions. Since x3, y3 and E3 are the positive solution of the equations below

rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)− qE(t)x(t) = 0

sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t) = 0

α0E(t) ((p− τ) qx(t)− c) = 0

(3.13)

After solving the system of equations, the elements in equilibrium P3 are given as

x3 =
c

(p− τ) q
,

y3 =
(s− σ2) +

√
(s− σ2)

2
+ 4 (s/L)σ1x3

2s/L
, (3.14)

E3 =
1

qx3

((
r − rx3

K
− σ1

)
x3 + σ2y3

)
On account of the positiveness of x3, y3 and E3, the following inequality is supposed to be
satisfied

τ < p− Kc

(r − σ1) rq
(3.15)

Thus, according to the aforesaid discussion, the next theorem can be given.

Theorem 3.3. Provided that inequality (3.15) holds, then dynamic system (2.2) has a non-
negative equilibrium P3 (x2, y2, 0, E3).

Finally, let us end up this subsection with the analysis of the existence of the interior
equilibrium or positive equilibrium P ∗ (x∗, y∗, z∗, E∗). Actually, x∗, y∗, z∗ and E∗ are the
positive solution of

0 = rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)−mx(t)z(t)− qE(t)x(t)

0 = sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t)

0 = αz(t)

(
1− z(t)

γx(t)

)
0 = α0E(t) ((p− τ) qx(t)− c)

(3.16)
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from which we have

x∗ =
c

(p− τ) q
, z∗ =

γc

(p− τ) q
, y∗ =

(s− σ2) +
√
(s− σ2)

2
+ 4σ1sc

(p−τ)qL

2s/L
,

E∗ =
1

qx∗

[
(r − σ1)x

∗ + σ2y
∗ −

(
γm+

r

K

)
x∗2

] (3.17)

Since the biological meaning of interior equilibrium, the following condition needs to be
satisfied to guarantee the positivity of all the components of interior equilibrium.

0 < τ < p− c (γmK + r)

qK (r − σ1)
(3.18)

Theorem 3.4. Provided that inequality (3.18) holds, then dynamic system (2.2) has a non-
negative equilibrium P ∗ (x∗, y∗, z∗, E∗).

3.2 Local Stability

The local stability behavior can be analyzed by computing the variational matrix

J =


r − 2rx

K − σ1 −mz − qE σ2 −mx −qx

σ1 s− 2sy
L − σ2 0 0

αz2

γx2 0 α− 2αz
γx 0

α0qE (p− τ) 0 0 α0 {(p− τ) qx− c}

 (3.19)

As shown in [9], even if equilibrium P0 (0, 0, 0, 0) is defined for the dynamic system (2.2),
its corresponding linearized system do not exist, which implies that the local stability can
not be investigated.

To determine the local stability of P1 (x1, y1, 0, 0), the Jaccobian of dynamic system (2.2)
around P1 (x1, y1, 0, 0) is

J (P1) =


− rx1

K − σ2y1

x1
σ2 −mx1 −qx1

σ1 − sy1

L − σ1x1

y1
0 0

0 0 α 0
0 0 0 α0 {(p− τ) qx1 − c}

 (3.20)

which gives the characteristic equation at P1

det


−
(

rx1

K + σ2y1

x1

)
− λ σ2 −mx −qx

σ1 −
(

sy1

L + σ1x1

y1

)
− λ 0 0

0 0 α− λ 0
0 0 0 α0 {(p− τ) qx− c} − λ

 = 0

(3.21)
From (3.21), it is easily observed that there exists a positive eigenvalue λ = α, accordingly,
it is obvious that P1 is unstable.

At P2 (x2, y2, z2, 0), the Jaccobian of dynamic system (2.2) reduces to

J (P2) =


− rx2

K − σ2y2

x2
σ2 −mx2 −qx2

σ1 − sy2

L − σ1x2

y2
0 0

αγx2 0 −α 0
0 0 0 α0 {(p− τ) qx2 − c}

 (3.22)
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thus, we can acquire the following characteristic equation about P2

(λ− α0 ((p− τ) qx2 − c))
(
λ3 + n1λ

2 + n2λ+ n3

)
= 0 (3.23)

where

n1 = α+
rx2

K
+

σ2y2
x2

+
sy2
L

+
σ1x2

y2

n2 = α

(
rx2

K
+

σ2y2
x2

+
sy2
L

+
σ1x2

y2

)
+

(
rx2

K
+

σ2y2
x2

)(
sy2
L

+
σ1x2

y2

)
− σ1σ2 +mαγx2

2

n3 = α

((
rx2

K
+

σ2y2
x2

)(
sy2
L

+
σ1x2

y2

)
− σ1σ2

)
+mαγx2

2

(
sy2
L

+
σ1x2

y2

)
(3.24)

It is straightforward to check that

n1 > 0, n2 > 0, n3 > 0,

n1n2 − n3 = α

(
α+

rx2

K
+

σ2y2
x2

+
sy2
L

+
σ1x2

y2

)(
rx2

K
+

σ2y2
x2

+
sy2
L

+
σ1x2

y2

)
+

(
rx2

K
+

σ2y2
x2

+
sy2
L

+
σ1x2

y2

)((
rx2

K
+

σ2y2
x2

)(
sy2
L

+
σ1x2

y2

)
− σ1σ2

)
+mαγx2

2

(
α+

rx2

K
+

σ2y2
x2

)
> 0

(3.25)

In the light of Routh-Hurwitz criterion, it can be found that the local stability of P2 lies
in the sign of (p− τ) qx2− c, that is, if (p− τ) qx2− c > 0, equilibrium P2 is unstable, while
(p− τ) qx2 − c < 0, equilibrium P2 is locally asymptotically stable.

Around P3 (x3, y3, 0, E3), the Jaccobian of dynamic system (2.2) becomes

J (P3) =


− rx3

K − σ2y3

x3
σ2 −mx3 −qx3

σ1 − sy3

L − σ1x3

y3
0 0

0 0 α 0
α0qE3 (p− τ) 0 0 0

 (3.26)

and its corresponding characteristic equation is

det


−
(

rx3

K + σ2y3

x3

)
− λ σ2 −mx3 −qx3

σ1 −
(

sy3

L − σ1x3

y3

)
− λ 0 0

0 0 α− λ 0
α0qE3 (p− τ) 0 0 −λ

 = 0 (3.27)

from which we find that a positive solution λ = α appears, thus, P3 is unstable.
At P ∗ (x∗, y∗, z∗, E∗), the Jaccobian of dynamic system (2.2) can be further reduced to

be

J =


− rx∗

K − σ2y
∗

x∗ σ2 −mx∗ −qx∗

σ1 − sy∗

L − σ1x
∗

y∗ 0 0

αγ 0 −α 0
α0qE

∗ (p− τ) 0 0 0

 (3.28)

It follows that the characteristic equation of P ∗ (x∗, y∗, z∗, E∗) is

λ4 +m1λ
3 +m2λ

2 +m3λ+m4 = 0 (3.29)
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where

m1 =α+
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

m2 =

(
rx∗

K
+

σ2y
∗

x∗

)(
sy∗

L
+

σ1x
∗

y∗

)
− σ1σ2 + α

(
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)
+ α0q

2E∗x∗ (p− τ) + αγmx∗

m3 =α

(
rx∗

K
+

σ2y
∗

x∗

)(
sy∗

L
+

σ1x
∗

y∗

)
− ασ1σ2 + α0q

2E∗x∗ (p− τ)

(
α+

sy∗

L
+

σ1x
∗

y∗

)
+ αγmx∗

(
sy∗

L
+

σ1x
∗

y∗

)
m4 =αα0q

2E∗x∗ (p− τ)

(
sy∗

L
+

σ1x
∗

y∗

)
(3.30)

It can be checked that

m1 > 0, m2 > 0, m3 > 0, m4 > 0,

m1m2 −m3 =

((
rx∗

K
+

σ2y
∗

x∗

)(
sy∗

L
+

σ1x
∗

y∗

)
− σ1σ2

)(
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)
+ α

(
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)(
α+

rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)
+ α0q

2E∗x∗ (p− τ)

(
rx∗

K
+

σ2y
∗

x∗

)
+ αγmx∗

(
α+

rx∗

K
+

σ2y
∗

x∗

)
> 0,

(3.31)

m1m2m3 −m2
1m4 −m2

3

=

{((
rx∗

K
+

σ2y
∗

x∗

)(
sy∗

L
+

σ1x
∗

y∗

)
− σ1σ2

)(
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)
+α0q

2E∗x∗ (p− τ)

(
rx∗

K
+

σ2y
∗

x∗

)
+ αγmx∗

(
α+

rx∗

K
+

σ2y
∗

x∗

)}
m3

+ α2

{(
rx∗

K
+

σ2y
∗

x∗

)(
sy∗

L
+

σ1x
∗

y∗

)
− σ1σ2 + γmx∗

(
sy∗

L
+

σ1x
∗

y∗

)}
(
rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)(
α+

rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)
+ α2α0q

2E∗x∗ (p− τ)

(
rx∗

K
+

σ2y
∗

x∗

)(
α+

rx∗

K
+

σ2y
∗

x∗ +
sy∗

L
+

σ1x
∗

y∗

)

(3.32)

From the aforesaid computation, along with Routh-Hurwitz criteria, we can know that the
roots of (3.29) lie in the left-hand side of the complex plane. Accordingly, we prove the
locally asymptotic stability of the interior equilibrium P ∗.

From above all, we summarize these discussions as the following theorem.

Theorem 3.5. The local stability of nonnegative equilibria are shown as follows:

1. Although P0(0, 0, 0, 0) is defined for dynamic system (2.2), it can not be linearized,
which leads to the fact that we have no ability to determine whether P0 is stable.
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2. As long as P1(x1, y1, 0, 0) exits, it is unstable.

3. If (p− τ) qx2 − c < 0, P2(x2, y2, z2, 0) is locally asymptotically stable, whereas, when
(p− τ) qx2 − c > 0, P2 is unstable.

4. P3(x3, y3, 0, E3) is always unstable provided that it satisfies (3.15), that is, its existent
condition.

5. P ∗(x∗, y∗, z∗, E∗) is locally asymptotically stable, as long as its existence can be guar-
anteed.

3.3 Global Stability

Since interior equilibrium is biologically meaningful, this subsection mainly studies the glob-
ally asymptotic stability of interior equilibrium.

Theorem 3.6. If µ1 < x < µ2, then P ∗(x∗, y∗, z∗, E∗) is globally asymptotically stable,

where µ1 = 1 + 2r
Kγm −

√
4r

Kγm + 4r2

K2γ2m2 and µ2 = 1 + 2r
Kγm +

√
4r

Kγm + 4r2

K2γ2m2 .

Proof. Construct the Lyapunov functional candidate as

V (x, y, z, E) =
(
x− x∗ − x∗ln

( x

x∗

))
+ ρ1

(
y − y∗ − y∗ln

(
y

y∗

))
+ ρ2

(
z − z∗ − z∗ln

( z

z∗

))
+ ρ3

(
E − E∗ − E∗ln

(
E

E∗

)) (3.33)

where ρ1, ρ2 and ρ3 are unknown positive parameter to be determined.
Differentiating V (x, y, z, E) with respect to t along with the trajectory of dynamic system

(2.2), it can be shown as

dV

dt
=

x− x∗

x

dx

dt
+ ρ1

y − y∗

y

dy

dt
+ ρ2

z − z∗

z

dz

dt
+ ρ3

E − E∗

E

dE

dt
(3.34)

Let ρ1 = σ2y
∗

σ1x∗ , ρ2 = 1
α and ρ3 = 1

α0(p−τ) , substituting (3.16) in to (3.34), after a little skillful

computation, the equation (3.34) can be further expressed as

dV

dt
=− sσ2y

∗

Lσ1x∗ (y − y∗)
2 − σ2

x∗xy
(x∗y − xy∗)

2

−
{

r

K
(x− x∗)

2 −
(
1

x
−m

)
(x− x∗) (z − z∗) +

1

γx
(z − z∗)

2

} (3.35)

It can be easily observed that provided
(
1
x −m

)
< 4r

Kγx , that is, µ1 < x < µ2,
dV
dt ≤ 0 holds,

and the equality does not always hold for any (x, y, z, E) ̸= (x∗, y∗, z∗, E∗).
In light of Lyapunov stability theory, we can draw a conclusion that P ∗ (x∗, y∗, z∗, E∗)

is globally asymptotically stable.

4 Optimal Control of Model System

In what follows, we will determine the optimal taxation policy to achieve the maximum net
revenues from the harvested population.
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With the purpose of planning harvesting and keeping the sustainable development of
ecosystem, we design an optimal harvesting policy to maximize the total discounted net
revenue from the harvesting by regarding taxation as a control instrument.

As we know, Net economic revenue to the society π (x(t), y(t), z(t), E(t)) = Net
economic revenue from harvesting + Net economic revenue to the regulatory agency =
(p− τ) qx(t)E(t)− cE(t) + τqx(t)E(t) = (pqx(t)− c)E(t). Thus, the optimal performance
index can be formulated as:

J =

∫ +∞

0

e−δt (pqx(t)− c)E(t) (4.1)

where δ is the instantaneous annual rate of discount.
For the given model system (2.2) with initial condition (2.3), the optimal control problem

is to seek an admissible taxation policy taking value in [τmin, τmax] to maximize the perfor-
mance index (4.1). τmin and τmax are the feasible upper and lower limit of the taxation for
harvested effort, respectively. Specifically, τmin < 0 means that subsidies have an effect on
the evolution of the model system.

By virtue of Pontryagin’s Maximum Principle [2], the Hamiltonian function of this control
problem can be constructed as:

H (x(t), y(t), E(t), σ(t), t)

= e−δt [pqx(t)− c]E(t)

+ λ1(t)

[
rx(t)

(
1− x(t)

K

)
− σ1x(t) + σ2y(t)−mx(t)z(t)− qE(t)x(t)

]
+ λ2(t)

[
sy(t)

(
1− y(t)

L

)
+ σ1x(t)− σ2y(t)

]
+ λ3(t)

[
αz(t)

(
1− z(t)

γx(t)

)]
+ λ4(t) [α0E(t) ((p− τ) qx(t)− c)]

(4.2)

where λ1(t), λ2(t), λ3(t) and λ4(t) are adjoint variables.
Assume that the optimal solution does not occur at the extreme point, then the necessary

condition for singular control τ∗ to be optimal is given by

∂H

∂τ
= −λ4α0Eqx = 0, which implies λ4 = 0 (4.3)

and the adjoint equations are

dλ1

dt
= −∂H

∂x
= −

[
e−δtpqE + λ1

(
r − 2rx

K
− σ1 −mz − qE

)
+ λ2σ1 + λ3

αz2

γx2

]
(4.4)

dλ2

dt
= −∂H

∂y
= −

[
λ1σ2 + λ2

(
s− 2sy

L
− σ2

)]
(4.5)

dλ3

dt
= −∂H

∂z
= −

[
−λ1mx+ λ3

(
α− 2αz

γx

)]
(4.6)

dλ4

dt
= −∂H

∂E
= −

[
e−δt (pqx− c)− λ1qx

]
(4.7)

By considering the interior equilibrium P ∗, the above differential equations can be simplified
to be

dλ1

dt
= −

[
e−δtpqE∗ − λ1

(
rx∗

K
+

σ2y
∗

x∗

)
+ σ1λ2 + αγλ3

]
(4.8)
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dλ2

dt
= −λ1σ2 + λ2

(
sy∗

L
+

σ1x
∗

y∗

)
(4.9)

dλ3

dt
= mx∗λ1 + αλ3 (4.10)

λ1 =

(
p− c

qx∗

)
e−δt (4.11)

Combined (4.11) with (4.10), we have

λ3(t) = − A1

α+ δ
e−δt (4.12)

where A1 =
(
p− c

qx∗

)
mx∗.

Likewise, we can obtain

λ2(t) = − A3

A2 + δ
e−δt (4.13)

where A2 = sy∗

L + σ1x
∗

y∗ and A3 = σ2

(
p− c

qx∗

)
.

λ1(t) = − B2

B1 + δ
e−δt (4.14)

where B1 = rx∗

K + σ2y
∗

x∗ and B2 = σ1A3

A2+δ + αγA1

α+δ − pqE∗.
It follows from (4.11) and (4.14) that(

p− c

qx∗

)
= − B2

B1 + δ
(4.15)

which provides a way to solve optimal control τ . Consequently, the optimal path can be
given by x∗ = xδ, y

∗ = yδ, z
∗ = zδ, E

∗ = Eδ.

Remark 4.1. It can be observed from (4.12), (4.13) and (4.14) that shadow prices
λi(t)e

δt (i = 1, 2, 3, 4) remain constant over time in an optimum equilibrium which implies
that they strictly satisfy the transversality condition at ∞, thus, they remain bounded
as t → ∞. Taking the interior equilibrium P ∗ (x∗, y∗, z∗, E∗) into account, (4.11) can be
rewritten as

λ1qx
∗ = e−δt (pqx∗ − c) = e−δt ∂π

∂E
(4.16)

which means that the user’s total cost of harvesting per unit effort is equal to the discounted
values of the future price at the steady state effort level.

5 Simulation Example

With the aid of MATLAB 2010a, a simulation example is provided to show the effectiveness
of our theoretical result.

For testifying the validity of our result, we take the Zhoushan fishery which is located in
Zhejiang province and is the biggest fishery in China. As given by [18], the total size of sea
area is approximately more than 10800km2. The size of the inshore area is about 3700km2,
and the size of the offshore area is about 7100km2. One kind of fish in Zhoushan fishery
is the coiliaspp and the total population is 1099 million in the whole sea area. To prevent
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Figure 1: Dynamical responses of model system (2.2) with the optimal taxation.

over exploitation, only the coiliaspp in the inshore area is permitted to be harvested, while
that in the offshore area is prohibited. On the other hand, the eel is thrown in the inshore
area so as to promoting the growing of the coiliaspp in the inshore area. According to the
data in [18] and [22], the carrying capacity of the inshore area is about 423 million and
that of the offshore area is about 676 million, the equilibrium ratio γ is approximately 0.3.
The intrinsic growth rates in inshore area and offshore area are respectively assumed to be
r = 0.6 and s = 0.2. The coiliaspp migrates between the inshore area and the offshore area
at a same rate σ1 = σ2 = 0.3. The eel captures the coiliaspp at a rate m = 0.02, and the
intrinsic rate of the ell is α = 0.5. The stiffness parameter is α0 = 0.24. It is also supposed
that the capture coefficient q is 1 and the coiliaspp is sold at the average unit price p = 11
and its unit cost c = 6. All the parameters are set in appropriate units.

For model system (2.2), we can evaluate the range of the taxation for which the interior
equilibrium is existent and asymptotically stable. As we have analyzed in the foregoing
section, theoretically, the desirable range of the taxation is (0, τmax), numerically, we can
find that the model system (2.2) is asymptotically stable for any τ ∈ (0, 10.8516). Thus,
in the following, we are to find out the optimal control τ in the interval (0, 10.8516) with
instantaneously annual rate of discount δ = 0.03. Solving the equation (4.15), the optimal
taxation τδ which takes value in the interval (0, 10.8516) is about 4.7160. Consequently, the
optimal equilibrium levels of biological population and harvesting effort can be also shown
as (xδ, yδ, zδ, Eδ) = (0.9548, 2.8406, 0.4774, 1.1881).

For the optimal taxation, the time trajectories of prey population x(t) in free fishing
zone, prey population y(t) inside protected zone, predator population z(t) and harvesting
effort E(t) is depicted in Figure 1, from which we can observe that the model system (2.2)
is globally asymptotically stable around the interior equilibrium. Actually, with the optimal
taxation, the net economic revenue to the society can be achieved, what is important is
that there is a balance between commercial exploitation and sustainable development of
ecosystem.

As depicted in Figure 2, Figure 3, Figure 4 and Figure 5, the coiliaspp inside the inshore
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Figure 2: Dynamical responses of the coiliaspp in the inshore area with different tax.
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Figure 3: Dynamical responses of the coiliaspp in the offshore area with different tax.
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Figure 4: Dynamical responses of the eel with different tax.
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Figure 5: Dynamical responses of the harvesting effort with different tax.
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Figure 6: Dynamical responses of model system (2.2) without reserves and the optimal
taxation τ = 4.7160.

area and offshore area and the eel are increasingly growing, and the harvesting effort is
progressively decreasing with the increase of the tax. It reflects the fact that the tax can
regulate the exploitation on the coiliaspp, when little tax is needed to pay for the coiliaspp,
the exploitation is profitable, in this case, the fishermen will make a large number of effort
to harvest the coiliaspp, while, by raising the tax, the profit is reduced, then the fishermen
will not pay too much effort on the harvesting of the coiliaspp, which leads to the increase
of the coiliaspp and eel. Furthermore, the maximum economic benefits are achieved when
the tax takes its optimal value.

From the Figure 6, it is shown that the dynamical response of the model system (2.2)
without reserves reveals that if there is no refuge for the prey, the oscillation of the ecologi-
cal system is extraordinarily noteworthy, which may results in the difficulty of convergence,
eventually, lead to unbalance of the ecological system. Whereas, the rapidity and conver-
gence of our model system illustrate the ability of marine reserves to protect abundance and
diversities. Consequently, the marine reserves have a direct implications for the potential
benefits to prey population adjacent to the reserves.

6 Conclusion

In this paper, a bioeconomic model system is established. The prey grows with the logistic
law and lives in a two-patch zone, a free fishing zone and a reserved zone where all the
exploitations and predation are permitted, the migrations between the free fishing zone and
the reserved zone are supposed to be stochastic. The predator consumes the prey in the free
fishing zone and obeys the logistic growing law with capacity proportional to the population
of the prey in the free fishing zone. In this biological system, only the prey in the free fishing
zone is available to be harvested. It is well known that biological resources have a strongly
economic benefits, thus, most of people have an imperious desire to exploit the profitable
resources, instead of receiving the maximum of the economic profits, unplanned exploitation
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has led to a terrible impact on ecosystems and the people driven by the interests which are
reflected by the dwindling biological resources and the difficulty to harvest the enough food
supply. Consequently, to overcome this dilemma, a control instrument, taxation, is proposed.
By regarding the harvesting effort as the differential variable, a differential equation in
relation to economic respect is introduced.

For the aforementioned bioeconomic model system, the existence of the nonnegative
equilibria are firstly discussed, then the local stabilities of all the nonnegative equilibria are
analyzed in detail and conditions to guarantee the locally asymptotic stability or instability
are proposed. Particularly, in view of the biological meanings of interior equilibrium, the
globally asymptotic stability of interior equilibrium are studied. To prevent the ecosystem
from overexploitation and achieve the maximum economic benefits simultaneously, the opti-
mal control problem is formulated by taking the net economic revenue to the society. Using
the Pontryagin’s Maximum Principle, the optimal control is solved, and the optimal equi-
librium levels are shown. From the discussion in this paper, we obtain the optimal control
which can ensure the economic benefits be maximum and all the biotic population always ex-
ist. Biologically, this result implies that the optimal taxation can guarantee the sustainable
development of ecosystem and the maximization of economic interests. The effect of marine
reserve on the ecosystem is also highlighted, as have been expected, marine reserve plays an
indispensable role in maintaining the enrichment and diversities of species. Consequently,
the method proposed in this paper can be regarded as a consultancy for management agency
to govern the ecosystem reasonably.
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