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to SDO. Vandenberghe and Boyd [18] proved that IPMs seem to be the best algorithms for
solving SDO from both theoretical and practical viewpoints.

Peng et al. [16] proposed a class of primal-dual IPMs based on self-regular functions
for solving LO. The authors extended it to the case of SDO and obtained the best known
complexity bounds. Subsequently, Bai et al. [4] introduced a family of kernel functions
called eligible kernel functions and presented primal-dual IPMs based on the proposed kernel
functions. Up to now, there are plentiful results in this field because IPMs provide a powerful
approach for solving SDO. A comprehensive list of publications on SDO can be found on the
SDO homepage maintained by Alizadeh [2]. For an overview of these and related results,
we refer to [8], [10], [11], [19], [20].

The concept of SC exponential kernel function was first introduced by Bai et al. in [6].
They proved it is SC function and proposed IPMs for LO based on it. They derived the com-
plexity bounds for large-update methods, which coincide with that of logarithmic function.
Motivated by the fact that SC exponential kernel function performs well in the framework
of IPMs for LO, we extended the kernel function-based IPM from LO to SDO. Specifically,
Boyd and Vandenberghe [7] applied Newton’s methods to minimize a self-concordant func-
tion. They obtained complexity bounds without the assumption of strong convexity and the
Lipschitz condition on the Hessian of the objective function. In this paper, we use Newton’s
method to minimize a self-concordant function in estimating the decrease of barrier function
in the process of inner iteration.

The paper is organized as follows. In section 2, we briefly recall the preliminaries and
investigate properties of SC exponential kernel function and some other existing kernel
functions. In section 3, we present a primal-dual IPM based on SC exponential kernel
function. We analyze the algorithm and obtain the complexity bounds for large-update
methods. In Section 4, we show the results of numerical examples. Finally, Section 5
contains some concluding remarks.

We use the following notational conventions throughout the paper. The superscript T
denotes transpose. Rn, Rn

+ and Rn
++ denote the set of vectors with n components, the

set of nonnegative vector and the set of positive vectors, respectively. Rm×n is the space
of all m × n matrices. Sn, Sn

+ and Sn
++ denote the cone of symmetric, symmetric positive

semidefinite and symmetric positive definite n × n matrices, respectively. The symbol E
denotes n× n identity matrix. Use the notation intC and ri(C) denote the interior and the
relative interior of a convex set C. We use the classical Löwner partial order ≽ for symmetric
matrices. So A ≽ B (A ≻ B) means that A− B is positive semidefinite (positive definite).
The sign ∼ denotes similarity of two matrices. The matrix inner product is defined by
A • B = Tr(ATB). For any Q ∈ Sn

++, the expression Q
1
2 denotes the symmetric square

root of Q. For any symmetric matrix G, λmin(G)(λmax(G)) denotes the minimal (maximal)
eigenvalue of G. When λ is vector we denote the diagonal matrix diag(λ) with entries λi
by Λ. For any V ∈ Sn

++, we denote by λ(V ) the vector of eigenvalues of V arranged in
non-increasing order, i.e.,

λmax(V ) = λ1(V ) ≥ λ2(V ) ≥ · · · ≥ λn(V ) = λmin(V ).

For any V , we denote by

ηmax(V ) = η1(V ) ≥ η2(V ) ≥ · · · ≥ ηn(V ) = ηmin(V )

the singular values of V ; If V is symmetric, one has ηi(V ) = |λi(V )|, i = 1, 2, ..., n. The
Frobenius matrix norm is given by

∥U∥2 :=
m∑
i=1

n∑
j=1

Uij = Tr(UTU).
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We use P and D to denote the feasible sets of primal and dual problems, respectively. The
notation F∗ denotes the set of optimal solutions with zero duality gap, i. e.,

F∗ := {(X, y, S) ∈ P×D : Tr(XS) = 0}.

Furthermore, if v ∈ Rn
+ and f : R → R, then f(v) denotes the vector in Rn

+ whose i-th
component is f(vi), with 1 ≤ i ≤ n. We write f(x) = O(g(x)) if f(x) ≤ cg(x) for some
positive constant c and f(x) = Θ(g(x)) if c1g(x) ≤ f(x) ≤ c2g(x) for positive constants c1
and c2.

2 Preliminaries

In this section, we briefly recall some preliminaries used in the subsequent analysis of the
method.

2.1 The central path for SDO

Consider the following standard SDO problem:

min C •X,
(SDO) s.t. Ai •X = bi, i = 1, 2, ...,m, (2.1)

X ≽ 0,

and its dual problem

max bT y,

(SDD) s.t.
m∑
i=1

yiAi + S = C, (2.2)

S ≽ 0,

where C and Ai are symmetric n × n matrices, b, y ∈ Rm, and X ≽ 0 means that X is
symmetric positive semidefinite. Without loss of generality, the matrices Ai are further
assumed to be linearly independent.

We assume that (SDO) and (SDD) satisfy the interior-point condition (IPC), i.e., there
exists X ∈ P, S ∈ D with X ≻ 0, S ≻ 0, respectively. Under the assumption of IPC, the
optimality conditions for (SDO) and (SDD) can be written as follows.

Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,
m∑
i=1

yiAi + S = C, S ≽ 0, (2.3)

XS = 0.

The basic idea of primal-dual IPMs is to replace the above complementarity condition XS =
0 by the parameterized equation XS = µE, µ > 0. So the above system is transformed to

Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,
m∑
i=1

yiAi + S = C, S ≽ 0, (2.4)

XS = µE.
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This system has a unique solution for each µ > 0 under the assumption of IPC, see [10].
Let (x(µ), y(µ), s(µ)) denote the solution of (2.4) for each µ > 0, where x(µ) is called the
µ-center of (SDO) and (y(µ), s(µ)) the µ-center of (SDD). The set of µ-centers (with µ
running through all positive real numbers) is called the central path of (SDO) and (SDD).
If µ → 0 then the limit of the central path exists and since the limit points satisfy the
complementarity condition, it yields optimal solutions for (SDO) and (SDD). Traditionally
Newton’s method is used to find the search direction ∆X, ∆y and ∆S by solving a Newton’s
system below.

Ai •∆X = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiAi +∆S = 0, (2.5)

X∆S +∆XS = µE −XS.

The above system has a unique solution (∆X,∆y,∆S) (which can be found in [19]). Note
that ∆S is symmetric, due to the second equation in (2.5). However, a crucial point is that
∆X may be not symmetric. Many researchers have proposed various ways of ‘symmetrizing’
the third equation in the Newton system so that the new system has a unique symmetric
solution. All these proposals can be described by using a symmetric nonsingular scaling
matrix P and by replacing (2.5) by the following system

Ai •∆X = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiAi +∆S = 0, (2.6)

∆X + P∆SPT = µS−1 −X.

Now ∆X is automatically a symmetric matrix. However, obtaining valid search directions is
much more difficult in the SDO than in the LO case. Some popular choices for the matrix P
are listed in Table 1. In the sequel, we describe how the usual search directions are obtained
for primal-dual methods for solving SDO problems.

Table 1: Choices for the scaling matrix P .

P References

E Alizadeh, Haeberley and Overton [2];

X−1 Monteiro [12], Kojima et al. [11];

S Monteiro [12], Kojima et al. [11];

X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 Nesterov and Todd [14]

In the Nesterov-Todd (NT)-scheme, we use

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2 (S
1
2XS

1
2 )

1
2S− 1

2

Let D = P
1
2 . Then matrix D can be used to scale X and S to the same matrix V , defined

by

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD. (2.7)
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Therefore we have

V 2 :=
1

µ
D−1XSD. (2.8)

Obviously the matrices D and V are symmetric and positive definite. Let

Āi :=
1
√
µ
DAiD, i = 1, 2, ...,m,

DX :=
1
√
µ
D−1∆XD−1, (2.9)

DS :=
1
√
µ
D∆SD.

Then it follows from (2.6)

Āi •DX = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiĀi +DS = 0, (2.10)

DX +DS = V −1 − V.

Note that the right-hand side of the third equation in (2.10) is the negative gradient of the
logarithmic barrier function defined by kernel function

ψlog(t) :=
t2 − 1

2
− log t, t > 0.

The introduction of kernel functions and associated barrier functions different than loga-
rithmic kernel and barrier function give rise to the flexibility in calculating different search
directions which may lead to the improved complexity of IPMs. The definition and the prop-
erties of the general kernel function and the associated barrier function will be discussed in
the next subsection. Using the concept of general kernel function and the barrier function,
Bai [5] obtained the following system

Āi •DX = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiĀi +DS = 0,

DX +DS = −ψ′(V ).

Since DX and DS are orthogonal, i.e.,

Tr(DXDS) = Tr(DSDX) = 0.

So we have

DX = DS = 0n×n ⇔ ψ′(V ) = 0n×n ⇔ V = E ⇔ Ψ(V ) = 0,

i.e., if and only if XS = µE, which is equivalent to X = X(µ) and S = S(µ). So if the
iterate is on the central path, then the search directions at that point are zero. Otherwise we
have Ψ(V ) > 0, which means (∆X,∆y,∆S) is nonzero. By taking a step along the search
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direction (∆X,∆y,∆S), with the step size α which will be calculated in later analysis, the
new iteration is obtained by

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (2.11)

Analogous to the case of LO, the kernel-function-based approach to SDO is obtained by
modifying Nesterov-Todd direction. Thus we use the following system to define the (scaled)
search directions.

Āi •DX = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiĀi +DS = 0, (2.12)

DX +DS = DV ,

where DV = −V −1ψ′′(V )−
1
2ψ′(V )V . We obtain DX and DS from (2.12) and then ∆X and

∆S can be calculated from (2.9). Due to the orthogonality of ∆X and ∆S, it is trivial to
see that DX ⊥ DS , and so

Tr(DXDS) = Tr(DSDX) = 0, (2.13)

which is an important fact in the design of the algorithm.

2.2 Special matrix functions

Definition 2.1 (Kernel function defined in [4]). A univariate function ψ(t) : R++ → R+ is
called a kernel function if ψ(t) is twice differentiable and is satisfied the following conditions.

1. lim
t→0

ψ(t) = lim
t→∞

ψ(t) = +∞.

2. ψ(1) = ψ′(1) = 0.

3. ψ′′(t) > 0.

Having a kernel function ψ(t), we can define an n-dimensional barrier function Ψ(v) as
follows.

Definition 2.2. Define Ψ(v) : Rn → R by

Ψ(v) =
n∑
i=1

ψ(vi), vi > 0. (2.14)

Let us focus on one-dimension case since kernel function is defined on R. As a special
case, the definition of SC function (distinguished to SC barrier function) for a function on
R is given in [7].

Definition 2.3 (SC function on R defined in [7]). A univariate convex function ψ(t) : R →
R is called SC if ψ(t) is three times differentiable and there exists a positive k, the following
condition is satisfied

|ψ′′′(t)| ≤ 2kψ′′(t)
3
2 . (2.15)
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Definition 2.4 (SC barrier function on R). A univariate convex function ψ(t) : R → R
is called SC barrier if it is SC and and there exists a positive ρ, the following condition is
satisfied

ψ′(t)2 ≤ ρψ′′(t). (2.16)

Note that the definition of SC function differs from the definition of SC barrier function.
Based on the above definitions, we investigate whether the kernel functions proposed

in [3], [5], [6] are SC functions. It suffices to verify that ψ′′′(t)2

ψ′′(t)3 has an upper bound, which

is equivalent to (2.15). However, these kernel functions are not SC barrier functions because
their first and second derivatives do not satisfy condition (2.16). These five kernel functions
and their first to three derivatives are listed in Table 2. We also show the upper bound of
ψ′′′(t)2

ψ′′(t)3 of these functions and the limits of ψ′(t)2

ψ′′(t) when t approaches to the boundary. We

illustrate the SC property of these functions in Figure 1.

Table 2: Kernel functions and derivatives and SC properties

i 1 2 3

ψi(t), t > 0 t2−1
2 − log t et + e

1
t − 2e t2−1

2 + e
1
t −e
e

ψ′
i(t), t > 0 t− 1

t et − 1
t2 e

1
t t− e

1
t
−1

t2

ψ′′
i (t), t > 0 1 + 1

t2 et + (2t+1)
t4 e

1
t 1 + 1+2t

t4 e
1
t−1

ψ′′′
i (t), t > 0 − 2

t3 et − 6t2+6t+1
t6 e

1
t −1+6t+6t2

t6 e
1
t−1

ψ′′′
i (t)2

ψ′′
i (t)3 , t > 0 ≤ 3.9988 ≤ 1.1014 ≤ 2.9551

ψ′
i(t)

2

ψ′′
i (t) , t→ 0 1 → +∞ → +∞

ψ′
i(t)

2

ψ′′
i (t) , t→ +∞ → +∞ → +∞ → +∞

i 4 5

ψi(t), t > 0 t2−1
2 + (e−1)2

e
1

et−1 − e−1
e

t2−1
2 + ( 1t − 1)e

1
t−1

ψ′
i(t), t > 0 t− (e−1)2

e
et

(et−1)2 t− 1
t3 e

1
t−1

ψ′′
i (t), t > 0 1 + (e−1)2

e
et(1+et)
(et−1)3 1 + ( 1

t5 + 3
t4 )e

1
t−1

ψ′′′
i (t), t > 0 − (e−1)2

e
et(1+4et+e2t)

(et−1)4 −( 1
t7 + 8

t6 + 12
t5 )e

1
t−1

ψ′′′
i (t)2

ψ′′
i (t)3 , t > 0 ≤ 1.8887 ≤ 3.5445

ψ′
i(t)

2

ψ′′
i (t) , t→ 0 → +∞ → +∞

ψ′
i(t)

2

ψ′′
i (t) , t→ +∞ → +∞ → +∞

Table 3: Verification of the SC barrier property of ψb(t)

i ψbi(t), t > 0 ψ′
bi(t), t > 0 ψ′′

bi(t), t > 0
ψ′

bi(t)
2

ψ′′
bi(t)

, t→ 0
ψ′

bi(t)
2

ψ′′
bi(t)

, t→ +∞
1 − log t − 1

t
1
t2 1 1

2 e
1
t − 2e − 1

t2 e
1
t

(2t+1)
t4 e

1
t → +∞ → 0

3 e
1
t −e
e − e

1
t
−1

t2
1+2t
t4 e

1
t−1 → +∞ → 0

4 (e−1)2

e
1

et−1 − e−1
e − (e−1)2

e
et

(et−1)2
(e−1)2

e
et(1+et)
(et−1)3 → +∞ → 0

5 ( 1t − 1)e
1
t−1 − 1

t3 e
1
t−1 ( 1

t5 + 3
t4 )e

1
t−1 → +∞ → 0
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Figure 1: The SC property of kernel functions

Note that kernel functions above except ψ2(t) consist of two terms:

ψ(t) =
t2 − 1

2
+ ψb(t), ∀ t > 0, (2.17)

where t2−1
2 is called growth term and ψb(t) called the barrier term. The growth term

dominates the behavior of ψ(t) when t approaches infinity, whereas the barrier term is
monotonically decreasing in t and dominates its behavior when t approaches zero. We
further investigate the SC barrier property of ψb(t) and provide the results in Table 3. We
observe that only ψb1(t) is SC barrier function, while the others are not. Thus we can not
use these functions to construct IPMs introduced by Nesterov in [15]. Although the IPM
based on SC barriers cannot be constructed, a different type of IPM similar to the ones
designed in [4] can be constructed. For the SC function ψ2(t), the IPM for LO was designed
and analyzed in [6] and complexity bounds for large-update methods was obtained. In this
paper the results of [6] are extended to SDO.

In this paper, we consider the following SC exponential kernel function defined by

ψ(t) = et + e
1
t − 2e, t > 0. (2.18)

Based on it, we define an n-dimensional separable barrier function by

Ψ(v) =
n∑
i=1

(evi + e
1
vi − 2e), vi > 0. (2.19)

The Newton decrement is defined by

ν(v) = (∇Ψ(v)T∇2Ψ(v)−1∇Ψ(v))
1
2 . (2.20)

By spectral theorem for symmetric matrices in [19], we show how a matrix function can
be obtained from a kernel function ψ(t).
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Definition 2.5 (Definition 5.2 in [5]). Let V ∈ Sn
++ and

V = QTdiag(λ(V ))Q,

where Q is any orthogonal matrix that diagonalize V and λ(V ) denote the eigenvalues of
V . Let ψ(t) be a kernel function. The (matrix valued) matrix function ψ(V ) : Sn

++ → Sn is
defined by

ψ(V ) = QTdiag(ψ(λ1(V )), ψ(λ2(V )), · · ·, ψ(λn(V )))Q. (2.21)

The real valued matrix function Ψ(V ) is defined as follows.

Definition 2.6 (Definition 5.3 in [5]). Define Ψ(V ) : Sn
++ → R by

Ψ(V ) = Tr(ψ(V )) =

n∑
i=1

ψ(λi(V )), (2.22)

where ψ(V ) is given by (2.21).

Note that ψ(V ) depends only on the restriction of ψ(t) to the set of eigenvalues of V .
Since ψ(t) is triple differentiable, the derivatives ψ′(t), ψ′′(t) and ψ′′′(t) are well-defined
for t > 0. Hence, replacing ψ(λi(V )) in (2.21) by ψ′(λi(V )), ψ′′(λi(V )) and ψ′′′(λi(V )),
respectively, we obtain that the matrix functions ψ′(V ), ψ′′(V ) and ψ′′′(V ) are defined as
well.

Remark 2.7. The notation ψ(·) and its derivatives ψ′(·) and ψ′′(·) denote matrix functions
if the argument is a matrix, vector functions if the argument is a vector, and a univariate
function if the argument is in R.

3 Algorithm and Analysis

In this section, we first describe the primal-dual IPM based on ψ(t). Then the computation
of the step size and the decrease of Ψ(V ) (in one inner iteration) is analyzed. We also
analyze the growth behavior of Ψ(V ) and obtain the complexity bounds for large-update
methods. The generic form of the algorithm is shown in Figure 2.

3.1 Growth behavior of SC function

Recall that ψ(t) is e-convex (The proof can be found in [6]). We also need some results
from [9], [16] that we state here without proof.

Lemma 3.1 (Lemma 3.3.14(c) in [9]). Let M, N ∈ Sn be two nonsingular matrices and
ψ(t) a real-valued function such that ψ(et) is a convex function. Then,

n∑
i=1

ψ(ηi(MN)) ≤
n∑
i=1

ψ(ηi(M)ηi(N)), (3.1)

where ηi(M), i = 1, 2, ..., n, denote the singular values of M .

Lemma 3.2 (Proposition 5.2.6 in [16]). Suppose V1, V2 ∈ Sn are symmetric positive definite
matrices, then,

Ψ([V
1
2
1 V2V

1
2
1 ]

1
2 ) ≤ 1

2
(Ψ(V1) + Ψ(V2)). (3.2)
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Generic Primal-Dual Algorithm for SDO.

Input:
A threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible pair (X0, S0) and µ0 = 1 such that Ψ(X0, S0, µ0) ≤ τ ;

begin
X := X0; S := S0; µ := µ0;
while nµ ≥ ϵ do
begin

µ := (1− θ)µ;
while Ψ(V ) > τ do
begin

Solve system (2.12) and (2.9) for ∆X,∆y,∆S;
Determine a step size α;
X := X + α∆X;
S := S + α∆S ;
y := y + α∆y ;

V :=
1
√
µ
(D−1XSD)

1
2 ;

end
end

end

Figure 2: Generic Primal-Dual Algorithm for SDO.

Ψ(V ) is used to measure the closeness of (X, y, S) to (X(µ), y(µ), S(µ)), with τ as a
threshold value: if Ψ(V ) ≤ τ , then we start a new outer iteration by preforming a µ-update,
otherwise we enter an inner iteration by computing the search directions at the current
iterates with respect to the current value of µ and apply (2.11) to get new iterates. Hence,
we need to derive an upper bound for the increase of Ψ(V ) after the µ-update. We have the
following result.

Theorem 3.3. Let ϱ : [0,∞) → (0, 1] be the inverse function of ψ(t) for 0 < t ≤ 1. Then
for any positive definite matrix V and any γ ≥ 1 the following inequality holds

Ψ(γV ) ≤ nψ(
1

γ
ϱ(

Ψ(V )

n
)). (3.3)

Proof. When γ = 1 or when V = E, we observe that the inequality is obvious. Thus we just
need to consider the case where γ > 1 and V ̸= E. Let vi := λi(V ), 1 ≤ i ≤ n. Then v > 0
and

Ψ(γV ) =

n∑
i=1

ψ(γλi(v)) =

n∑
i=1

ψ(γvi) = Ψ(γv).

In order to derive the upper bound of Ψ(γV ), which equals to Ψ(γv), we consider solving
the following maximization problem

max
v

{Ψ(γv) : Ψ(v) = z},
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where z is any nonnegative number. We can use the similar method as in [6] to get the
solution of this maximization problem and finally obtain the upper bound for Ψ(γv). By
Theorem 4.2 in [6], we have

Ψ(γV ) = Ψ(γv) ≤nψ( 1
γ
ϱ(

Ψ(v)

n
))

=nψ(
1

γ
ϱ(

∑n
i=1 ψ(vi)

n
))

=nψ(
1

γ
ϱ(

∑n
i=1 ψ(λi(v))

n
))

=nψ(
1

γ
ϱ(

Ψ(v)

n
))

=nψ(
1

γ
ϱ(

Ψ(V )

n
)).

The proof is completed.

As a result of (3.3) we have that if Ψ(V ) ≤ τ and γ =
1√
1− θ

, then

Ψ0 := nψ(
√
1− θϱ(

τ

n
))

is an upper bound for Ψ(γV ), which is the value of Ψ(V ) after the µ−update. Moreover,

we get an upper bound for ψ(
√
1− θϱ(

τ

n
)) as follow.

ψ(
√
1− θϱ(

τ

n
)) =e

√
1−θϱ( τ

n ) + e
1√

1−θϱ( τ
n

) − 2e

=(eϱ(
τ
n ))

√
1−θ + (e

1
ϱ( τ

n
) )

1√
1−θ − 2e

≤(elog(
τ
n+e))

√
1−θ + (elog(

τ
n+2e−1))

1√
1−θ − 2e

=(
τ

n
+ e)

√
1−θ + (

τ

n
+ 2e− 1)

1√
1−θ − 2e.

Hence we obtain

Ψ0 ≤ n((
τ

n
+ e)

√
1−θ + (

τ

n
+ 2e− 1)

1√
1−θ − 2e), (3.4)

which is an important inequality that will be used to derive the iteration bound in the sequel.

3.2 Computation of the step size

After a damped step we have

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S,

where the search directions (∆X,∆y,∆S) are computed by (2.9) and (2.12). Furthermore,
due to (2.9), we may write

X+ = X + α∆X = X + α
√
µDDXD =

√
µD(V + αDX)D,

S+ = S + α∆S = S + α
√
µD−1DSD

−1 =
√
µD−1(V + αDS)D

−1.
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According to (2.7) we obtain

V+ =
1
√
µ
(D−1X+S+D)

1
2 .

Note that V 2
+ is unitarily similar to the matrix X

1
2
+S+X

1
2
+ and thus to (V + αDX)

1
2 (V +

αDS)(V + αDX)
1
2 . This implies that the eigenvalues of V+ are precisely the same as those

of the matrix

V̄+ := ((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2 . (3.5)

By the definition of Ψ(V ), we have Ψ(V+) = Ψ(V̄+). Hence, by Lemma 3.2, we obtain that

Ψ(V+) = Ψ(V̄+) ≤
1

2
(Ψ(V + αDX) + Ψ(V + αDS)).

In order to estimate the upper bound of Ψ(V+) − Ψ(V ), we introduce the convex function
f1(α) which is easier to deal with than Ψ(V+)−Ψ(V ). Let

f1(α) :=
1

2
(Ψ(V + αDX) + Ψ(V + αDS))−Ψ(V ).

We thus have

Ψ(V+)−Ψ(V ) = Ψ(V̄+)−Ψ(V ) ≤ f1(α).

Let

v
(X)
i = λi(V + αDX), v

(S)
i = λi(V + αDS), vi = λi(V ),

dXi = λi(DX), dSi = λi(DS), i = 1, 2, ..., n.

From the system (2.9), we have that matrices V , DX and DS are symmetric positive definite
matrices. By using the eigenvalue theorem 4.1.6 in [9], we have{

λi(V + αDX) = λi(V ) + αλi(DX) = vi + αdXi,
λi(V + αDS) = λi(V ) + αλi(DS) = vi + αdSi,

(3.6)

That is

v(X) = v + αdX , v(S) = v + αdS . (3.7)

Using Lemma 4.1 in [6], let α ≤ 1
4+

√
2ν(v)

. Then we have

2f1(α) = Ψ(V + αDX)−Ψ(V ) + Ψ(V + αDS)−Ψ(V )

=
n∑
i=1

ψ(λi(V + αDX))−
n∑
i=1

ψ(λi(V )) +
n∑
i=1

ψ(λi(V + αDS))−
n∑
i=1

ψ(λi(V ))

=
n∑
i=1

ψ(v
(X)
i )−

n∑
i=1

ψ(vi) +
n∑
i=1

ψ(v
(S)
i )−

n∑
i=1

ψ(vi)

= Ψ(v(X))−Ψ(v) + Ψ(v(S))−Ψ(v)

≤ −1

2
αν2(v). (3.8)
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The last inequality of (3.8) is obtained by the SC property of kernel function. Next to prove
the feasibility of the new iterates, we need to analyze the requirement for α. From (2.12),
we have ∥(dX , dS)∥ = ν(v). Hence, ∥dX∥ ≤ ν(v) and ∥dS∥ ≤ ν(v). Let vmin denote the
smallest eigenvalue of the matrix V . From (3.6) and (3.7), we have{

v
(X)
i = vi + αdXi ≥ vmin − αν(v),

v
(S)
i = vi + αdSi ≥ vmin − αν(v),

1 ≤ i ≤ n.

To ensure the feasibility of the new iterates, it is required that α <
vmin

ν(v)
.

Let α0 = min{ 1

4 +
√
2ν(v)

,
vmin

ν(v)
} and α = βα0 for β ∈ (0, 1). For a constant 0 < η ≤ 1

4 ,

if ∥dX + dS∥ ≤ η, then ∥dX∥ and ∥dS∥ are small enough to ensure that the iterates remain
in the τ -neighborhood of central path. If ∥dX + dS∥ > η, then we obtain the decrease of
Ψ(V ):

Ψ(V+)−Ψ(V ) ≤ −1

4
βα0ν

2(v) ≤ −1

4
βα0η

2. (3.9)

3.3 Complexity bounds

In the inner iterate, we decrease the value of Ψ(V ) until it satisfies Ψ(V ) ≤ τ . This means
the iterate goes back to the τ -neighborhood of the central path. Once the inner iteration
stops, we actually get a relatively ‘accurate’ value of Ψ(V ), i.e. whose value is small and
relatively close to 0 (This ensures Ψ(V ) ≤ τ holds for a given threshold τ). In addition, the
decrease of Ψ(V ) is derived from (3.9), the upper bound of Ψ(V ) after µ-update is derived
from (3.4). Let the symbol Iterinner denotes the number of inner iterations. Hence, we get
an upper bound of the number of inner iterations

Iterinner ≤
Ψ0

1
4βα0η2

=
n(( τn + e)

√
1−θ + ( τn + 2e− 1)

1√
1−θ − 2e)

1
4βα0η2

. (3.10)

Multiplying the upper bound number of (3.10) by
1

θ
log

n

ϵ
, which is the upper bound number

of barrier parameter updates, (refer to [17]. Lemma II.17, page 116), we get an upper bound
for the total number of iterations

n(( τn + e)
√
1−θ + ( τn + 2e− 1)

1√
1−θ − 2e))

1
4θβα0η2

log
n

ϵ
.

Set τ = O(n) and θ = Θ(1), we finally obtain the complexity bounds O(n log
n

ϵ
) for large-

update methods.

4 Numerical Examples

In this section we describe the numerical results of our algorithm for SDO problems. All our
numerical examples are carried out on a workstation with Intel Core 2 Duo CPU at 3GHz
and 4GB of physical memory. The workstation runs MATLAB version 7.11.0 (R2010a) on
Windows 7 Professional operating system.

The theoretical complexity bounds for large-update methods for SDO is given in Table 4.
For our experiment, the SDO problems are randomly generated as follows. First, we generate
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a series of matrices Ai(i = 1, 2, ...,m) which are linearly independent. Since our algorithm
needs a starting point that satisfies IPC, we generate a starting point (X0, y0, S0) ∈ Sn

+ ×
Rm × Sn

+ randomly. Then, we set bi = Ai • X0 for i = 1, 2, ...,m to obtain the vector b,

and let C =

m∑
i=1

yiAi + S0. Clearly, the resulting SDO problems have primal-dual optimal

solutions. We show the numerical results in Table 5 and 6. Let n denotes the dimension of
SDO problems and we use the boldtype to represent the number of iterations of IPM based
on SC exponential kernel function.

Table 4: Complexity bounds.

i ψi(t) Large-update methods References

1 t2−1
2 − log t O(n log n

ϵ ) [4]

2 et + e
1
t − 2e O(n log n

ϵ ) new

3 t2−1
2 + e

1
t −e
e O(

√
n log2 n log n

ϵ ) [5]

4 t2−1
2 + (e−1)2

e
1

et−1 − e−1
e O(n

3
4 log n

ϵ ) [5]

5 t2−1
2 + ( 1t − 1)e

1
t−1 O(

√
n log2 n log n

ϵ ) [3]

Table 5: Number of iterations based on different functions with θ = 0.5

Problems ψ1(t) ψ2(t) ψ3(t) ψ4(t) ψ5(t)

n=10 28 27 27 29 28

n=20 45 46 46 49 47

n=30 56 56 57 58 53

n=40 79 81 78 85 79

n=50 91 91 93 95 90

Table 6: Number of iterations based on different functions with θ = 0.9

Problems ψ1(t) ψ2(t) ψ3(t) ψ4(t) ψ5(t)

n=10 30 32 30 33 31

n=20 49 51 53 55 50

n=30 62 62 64 66 62

n=40 83 87 84 87 83

n=50 96 98 95 98 97

From Table 5 and Table 6, we notice that the performance of our algorithm based on
ψ2(t) is comparable with IPMs based on different kernel functions, most notable with IPM
based on logarithmic kernel function. Moreover, the total number of iterations are related
with θ for large-update methods. When θ = 0.5, the number of iterations are less than that
of θ = 0.9.
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5 Concluding Remarks

In this paper, we have extended IPM based on an SC exponential kernel function for LO
to SDO. Under this framework, we analyzed the algorithm and obtained the complexity
bounds for large-update methods, which were analogous to the results in [6]. Finally, the
numerical examples showed the algorithm was comparable with IPMs based on different
kernel functions, most notable with IPM based on logarithmic kernel function.
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