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and ⟨·, ·⟩ : Rm × Rm → R is an inner product over Rm and A∗ is the adjoint operator of A
having the following relationship

⟨Ax, y⟩ = ⟨x,A∗y⟩.

Typical examples of the proper cone K are the n-dimensional nonnegative orthant

Rn
+ := {x ∈ Rn | x ≥ 0}

in linear programming and the positive semidefinite cone

S+n := {X ∈ Sn | dTXd ≥ 0 for all x ∈ Rn},

with the set Sn of n× n symmetric matrices in semidefinite programming.
More recently, the following cones are attracting a lot of attention in a context of the

relationship between combinatorial optimization and conic optimization (see, for example,
[5, 14]).

- the nonnegative cone Nn := {X ∈ Sn | xij ≥ 0 for all i, j ∈ {1, 2, . . . , n}},

- the copositive cone COPn :=
{
X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn

+

}
,

- the Minkowski sum S+n +Nn of S+n and Nn,

- the doubly nonnegative cone S+n ∩Nn, i.e., the set of positive semidefinite and componen-
twise nonnegative matrices,

- the completely positive cone CPn := conv
({

xxT | x ∈ Rn
+

})
where conv (S) denotes the

convex hull of the set S.

All of the above cones are proper (see Section 1.6 of [2] where the proper cone is called
a full cone), and we can easily see from the definitions that the following inclusions hold:

COPn ⊇ S+n ⊇ S+n ∩Nn ⊇ CPn. (1.1)

It is known that the following proposition holds by defining an inner product between X
and Y as

⟨X,Y ⟩ := Tr (Y TX). (1.2)

Proposition 1.1 (Properties of the copositive cone).

(i) The dual cone of the copositive cone COPn with respect to the inner product (1.2) is the
completely positive cone CPn and vice versa (see p.57 of [1] and Theorem 2.3 of [2]).

(ii) If n ≤ 4 then COPn = S+n +Nn (see [11] and Proposition 1.23 of [2]).

(iii) The dual cone of the doubly nonnegative cone S+n ∩Nn with respect to the inner product
(1.2) is the Minkowski sum S+n + Nn of the positive semidefinite cone S+n and the
nonnegative cone Nn and vice versa (see Remark 1.2).

Remark 1.2. Proposition 1.1, (iii): The equality (S+n ∩Nn)
∗ = cl (S+n +Nn) follows from a

well-known result that (K1 ∩K2)
∗ = cl (K1 +K2) holds for any closed convex cones K1 and

K2 (see, e.g., p.11 of [15] or Corollary 2.2 of [1]). The closedness of the set S+n +Nn follows
from a result in [26]. See also Proposition 4.1 of [29] where the authors showed the property
in a little more general framework.
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The following inclusions follow from (1.1) and the above proposition

COPn ⊇ S+n +Nn ⊇ S+n ⊇ S+n ∩Nn ⊇ CPn (1.3)

and specially, if n ≤ 4 then we have

COPn = S+n +Nn ⊇ S+n ⊇ S+n ∩Nn = CPn. (1.4)

Note that the four cones, COPn, CPn, S
+
n ∩ Nn and S+n + Nn lack the self-duality and

hence are not symmetric. Since about 2000, there have been many studies conducted on the
above four cones as a new research direction in the field of conic optimization [3,4,7–10,20,
21,24,25,27–29], and they are called studies on copositive programming [3].

A growing research interest in the field is to provide efficient algorithms to determine
whether a given matrix belongs to COPn (or CPn, or S

+
n +Nn). It is known that the problem

of testing copositivity, i.e., deciding A ∈ COPn or not, is co-NP-complete [13, 23]. Bomze
and Eichfelder [6] have pointed out what are desirable algorithms for copositivity detection
as follows:

However, there are but a few implemented numerical algorithms which (a) apply
to general symmetric matrices without any structural assumptions or dimen-
sional restrictions; (b) are not merely recursive, i.e., do not rely on information
taken from all principal submatrices, but rather focus on generating subproblems
in a somehow data-driven way.

After citing the paper [7] as an example satisfying criteria (a) and (b), they have presented
their new tests based upon difference-of-convex (d.c.) decompositions, and have combined
them to a branch-and-bound algorithm of ω-subdivision type employing LP or convex QP
techniques.

In this paper, we propose a new branch and bound type algorithm based on Sponsel,
Bundfuss and Dür’s algorithm [27] which is a generalization of the algorithm in [7]. Two
features of our algorithm are

1. we introduce new classes of matrices Gs
n and Ĝs

n which are relatively large subsets of
the set of copositive matrices and work well to check copositivity of a given n × n
symmetric matrix, and

2. for incorporating the sets Gs
n or Ĝs

n in checking copositivity, we only have to solve a
linear optimization problem with n+1 variables and O(n2) constraints after computing
a singular value matrix decomposition, which implies that our algorithm is not so time-
consuming.

It should be noted that our algorithm is close to the one in [6] in the sense that its key
elements are a decomposition of the quadratic term dTXd, simplicial partitions and LP
techniques, while the number of constraints of the LP in [6] is smaller and O(n). As we will
describe in Section 4, the maximum clique problem can be solved by checking the copositivity
of certain matrices. Our preliminary numerical experiments suggest that our algorithm and
its improved versions are promising for determining upper bounds of the maximum clique
problem while Bomze and Eichfelder reported effectiveness of their algorithm for determining
its lower bounds [6].

This paper is organized as follows. In Section 2, we introduce Sponsel, Bundfuss and
Dür’s algorithm [27] for checking copositivity of a given matrix and summarize its theoretical
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results. Based on their algorithm, we propose our algorithm by employing new classes of
matrices which are relatively large subsets of COPn. We also derive some properties of the
classes in Section 3 and derive an improvement of our algorithm using them. Numerical
results are shown in Section 4 and some refinement strategies are discussed in Section 5.
Section 6 gives concluding remarks.

2 Sponsel, Bundfuss and Dür’s Algorithm to Test Copositivity

Our algorithm is based on Sponsel, Bundfuss and Dür’s algorithm to test copositivity [27].
In what follows, we introduce their arguments.

Defining the standard simplex ∆S by ∆S = {x ∈ Rn
+ | ∥x∥1 = 1}, it can be seen that a

given n× n symmetric matrix A is copositive if and only if

xTAx ≥ 0 for all x ∈ ∆S

(see Lemma 1 of [7]). A family of simplices P = {∆1, . . . ,∆m} is called a simplicial partition
of ∆ if it satisfies

∆ =
m∪
i=1

∆i and int(∆i) ∩ int(∆j) ̸= ∅ for all i ̸= j.

Such a partition can be generated by successively bisecting simplices in the partition.
For a given simplex ∆ = conv{v1, . . . , vn}, consider the midpoint vn+1 = 1

2 (vi + vj) of
the edge [vi, vj ]. Then the subdivision ∆1 = {v1, . . . , vi−1, vn+1, vi+1, . . . , vn} and ∆2 =
{v1, . . . , vj−1, vn+1, vj+1, . . . , vn} of ∆ satisfies the above conditions for simplicial partitions.
See [18] for a more detailed description of simplicial partitions.

Denote the set of vertices of partition P by

V (P) = {v | v is a vertex of some ∆ ∈ P}.

Each simplex ∆ is determined by its vertices and can be represented by a matrix V∆ whose
columns are these vertices. Note that V∆ is nonsingular and unique up to a permutation
of its columns which is irrelevant in the arguments [27]. Define the set of all matrices
corresponding to simplices in partition P as

M(P) = {V∆ : ∆ ∈ P}.

The “fineness” of a partition P is quantified by the maximum diameter of a simplex in P

denoted by
δ(P) = max

∆∈P
max
u,v∈∆

||u− v||. (2.1)

Using the above notation, the following results on necessary and sufficient conditions
for copositivity have been shown in [27]. The first theorem gives a sufficient condition for
copositivity.

Theorem 2.1 (Theorem 2.1 of [27]). If A ∈ Sn satisfies

V TAV ∈ COPn for all V ∈M(P)

then A is copositive. Hence, for any Mn ⊆ COPn, if A ∈ Sn satisfies

V TAV ∈Mn for all V ∈M(P)

then A is also copositive.
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The above theorem implies that by choosing Mn = Nn (see (1.3)), if V T
∆AV∆ ∈ Nn holds

for any ∆ ∈ P then we find that A is copositive.
Before describing further conditions for copositivity, we introduce the definition of strict

copositivity. We say that A ∈ Sn is strictly copositive if it satisfies

xTAx > 0 for all x ∈ Rn
+ \ {0}.

It is well-known (and follows from Proposition 1.24 of [2]) that A ∈ Sn is strictly copositive
if and only if A ∈ int (COPn). Combining this with Theorem 2.2 of [27], we obtain the
following necessary condition for strict copositivity.

Theorem 2.2 (Theorem 2.2 of [27]). Let A ∈ Sn be strictly copositive, i.e., A ∈ int (COPn).
Then there exists ε > 0 such that for all partitions P of ∆S with δ(P) < ε we have

V TAV ∈ Nn for all V ∈M(P).

The above theorem ensures that if A is strictly copositive (i.e., A ∈ int (COPn)) then the
copositivity of A (i.e., A ∈ COPn) can be detected in finitely many steps by an algorithm
employing a subdivision rule with δ(P) → 0. A similar result can be obtained for the case
A ̸∈ COPn by the following lemma.

Lemma 2.3 (Lemma 2.3 of [27]). The following two statements are equivalent.

1. A /∈ COPn

2. There exists an ε > 0 such that for any partition P with δ(P) < ε there exists a vertex
v ∈ V (P) such that vTAv < 0．

Based on the above three results, the following algorithm has been provided by Sponsel,
Bundfuss and Dür [27].

Algorithm 1 Sponsel, Bundfuss and Dür’s algorithm to test copositivity

Input: A ∈ Sn,Mn ⊆ COPn

Output: “A is copositive” or “A is not copositive”
1: P← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: return “A is not copositive”;
6: end if
7: if V T

∆AV∆ ∈Mn then
8: P← P \ {∆};
9: else

10: partition ∆ into ∆ = ∆1 ∪∆2;
11: P← P \ {∆} ∪ {∆1,∆2};
12: end if
13: end while
14: return “A is copositive”;

As we have already observed, Theorem 2.2 and Lemma 2.3 imply the following corollary.

Corollary 2.4. 1. If A is strictly copositive, i.e., A ∈ int (COPn) then Algorithm 1 ter-
minates finitely returning “A is copositive.”
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2. If A is not copositive, i.e., A ̸∈ COPn then Algorithm 1 terminates finitely returning
“A is not copositive.”

At Line 8 of Algorithm 1, the algorithm removes the simplex which is determined at Line
7 to be in no need of further exploration by Theorem 2.1. The accuracy and speed of the
determination influence the total computational time and depend on the choice of the set
Mn ⊆ COPn. In the next section, we introduce three examples of Mn, the set used in [27],
our alternative suggestion and its generalization.

3 How to Choose Mn to Efficiently Remove Unnecessary Simplices

In view of Algorithm 1, a desirable setMn used at Line 7 would have the following properties.

P1 For any given n × n symmetric matrix A ∈ Sn, we can easily check whether A ∈ Mn,
and

P2 Mn is a subset of the copositive cone COPn as large as possible.

If we choose the nonnegative cone Nn as the set Mn, we can easily check whether A ∈Mn

or not, but the set Nn is too small a subset of COPn and it may take a long time to check
the copositivity by Algorithm 1. In fact, Mn = Nn was used in [7]. On the other hand,
the set S+n + Nn is a rather large subset of COPn, but it is not so easy to check whether
A ∈ Mn = S+n + Nn or not; a well-known way is to solve the following doubly nonnegative
program (which can be expressed as a semidefinite program)

Minimize ⟨A,X⟩
subject to ⟨I,X⟩ = 1, X ∈ S+n ∩Nn

but solving the problem takes an awful lot of time [27,29].
Observing these facts, a new alternate of Mn has been provided in [27]. Before stating

its definition, we need to introduce some additional notation. For any given matrix A ∈ Sn,
we denote

N(A)ij :=

{
Aij Aij > 0 and i ̸= j
0 otherwise

and S(A) := A−N(A). (3.1)

In [27], the authors defined the following set

Hn := {A ∈ Sn | S(A) ∈ S+n }. (3.2)

Note that A = S(A) +N(A) ∈ S+n +Nn if A ∈ Hn. Also, for any A ∈ Nn, S(A) becomes a
nonnegative diagonal matrix and hence Nn ⊆ Hn. The detection whether A ∈ Hn is easy
and can be done by checking positivity of Aij(i ̸= j) and by a Cholesky factorization of
S(A) (cf. Algorithm 4.2.4 in [17]). Thus, by the inclusion relation (1.3), we see that the set
Hn satisfies the desirable properties P1 and P2 of Mn. However, S(A) is not necessarily
positive semidefinite even if A ∈ S+n + Nn or A ∈ S+n . The following theorem summarizes
several properties of the set Hn.

Theorem 3.1 ( [16] and Theorem 4.2 of [27]). Hn is a convex cone and Nn ⊆ Hn ⊆ S+n+Nn.
If n ≥ 3, these inclusions are strict and S+n ̸⊆ Hn. For n = 2, we have Hn = S+n ∪ Nn =
S+n +Nn = COPn.
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The construction of the set Hn is based on the idea of “nonnegativity-checking first and
positive semidefiniteness-checking second.” Now, we provide an alternative choice of Mn

based on the idea of “positive semidefiniteness-checking first and nonnegativity-checking
second.”

For a given symmetric matrix A ∈ Sn, let P be an orthonormal matrix and Λ =
Diag (λ1, λ2, . . . , λn) be a diagonal matrix satisfying

A = PΛPT . (3.3)

We are interested in decomposing A into a semidefinite matrix and a nonnegative ma-
trix according to the form A = PΛPT . By introducing another diagonal matrix Ω =
Diag (ω1, ω2, . . . , ωn), consider the following decomposition:

A = P (Λ− Ω)PT + PΩPT (3.4)

If Λ − Ω ∈ Nn, i.e., λi ≥ ωi (i = 1, 2, . . . , n) hold, then the matrix P (Λ − Ω)PT is positive
semidefinite. Thus, if we can find a suitable diagonal matrix Ω satisfying

λi ≥ ωi (i = 1, 2, . . . , n), [PΩPT ]ij ≥ 0 (i, j = 1, 2, . . . , n, i ≤ j) (3.5)

then (3.4) and (1.3) imply

A = P (Λ− Ω)PT + PΩPT ∈ S+n +Nn ⊆ COPn. (3.6)

We can determine whether such a matrix exists or not by solving the following linear opti-
mization problem with variables ωi (i = 1, 2, . . . , n) and α:

(LP)P,Λ

Maximize α
subject to ωi ≤ λi (i = 1, 2, . . . , n)

[PΩPT ]i,j =
∑n

k=1 ωkpikpjk ≥ α (i, j = 1, 2, . . . , n, i ≤ j)
(3.7)

Note that (LP)P,Λ has the feasible solution at which ωi = λi (i = 1, 2, . . . , n) and

α = minij
∑n

k=1 λkpikpjk and hence has an optimal solution with optimal value α∗(P,Λ).
If α∗(P,Λ) ≥ 0 then there exists a matrix Ω for which the decomposition (3.5) holds. Based
on these observations, we provide another alternate Gs

n of Mn as follows:

Gs
n := {A ∈ Sn | α∗(P,Λ) ≥ 0 for some orthonormal matrix P satisfying (3.3) }. (3.8)

As stated above, if α∗(P,Λ) ≥ 0 for a given decomposition A = PΛPT then we can
determine A ∈ Gs

n. In this case, we just need to compute a matrix decomposition and to
solve a linear optimization problem with n+1 variables and O(n2) constraints which implies
that it is rather practical to use the set Gs

n as an alternate of Mn Suppose that A ∈ Sn
has n different eigenvalues. Then the possible orthonormal matrices P = [p1, p2, · · · , pn]
are identifiable except for permutation and sign inversion of {p1, p2, · · · , pn} and by the
representation

A =
n∑

i=1

λipip
T
i

of (3.3), we see that the problem (LP)P,Λ is unique for any possible P . In this case,
α∗(P,Λ) < 0 with a specific P implies A ̸∈ Gs

n. However, otherwise (i.e., an eigenspace
of A has at least dimension 2), α∗(P,Λ) < 0 with a specific P does not necessarily guarantee
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that A ̸∈ Gs
n. So we cannot say that the set Gs

n satisfies the desirable property P1 of Mn.
However, as we see in Theorem 3.2 below, Gs

n may satisfy the other desirable property P2.

Let us introduce other new sets Ga
n and Ĝs

n which are closely related to the set Gs
n and

they might be useful to clarify some theoretical properties or to improve our algorithm:

Ga
n := {A ∈ Sn | α∗(P,Λ) ≥ 0 for any orthonormal matrix P satisfying (3.3) }, (3.9)

Ĝs
n := {A ∈ Sn | α∗(P,Λ) ≥ 0 for some arbitrary matrix P satisfying (3.3) }. (3.10)

Note that if (3.5) holds for any arbitrary (not necessarily orthonormal) matrix P then
(3.6) also holds, which implies the following inclusions:

Ga
n ⊆ Gs

n ⊆ Ĝs
n ⊆ S+n +Nn. (3.11)

More precisely, the sets Gs
n, G

a
n and Ĝs

n have the following properties.

Theorem 3.2. The sets Gs
n, G

a
n and Ĝs

n are cones and

S+n ∪Nn ⊆ Ga
n ⊆ Gs

n = com(S+n +Nn) ⊆ Ĝs
n ⊆ S+n +Nn ⊆ COPn

where the set com(S+n +Nn) is defined by

com(S+n +Nn) := {S +N | S ∈ S+n , N ∈ Nn, S and N commute}.

For n = 2, we have

S+n ∪Nn = Ga
n = Gs

n = com(S+n +Nn) = Ĝs
n = S+n +Nn = COPn.

Proof. We assume that A ∈ Sn is diagonalized as in (3.3) throughout the proof.
Suppose that the associated linear optimization problem (LP)P,Λ has an optimal solution

(ω∗, α∗) := (ω∗
1 , . . . , ω

∗
n, α

∗). Then for any β ≥ 0, βA is diagonalized as in βA = P (βΛ)PT

and (βω∗, βα∗) is an optimal solution of the associated linear optimization problem (LP)P,βΛ.

This implies that βA ∈ Gs
n (respectively βA ∈ Ga

n, respectively βA ∈ Ĝs
n) if A ∈ Gs

n

(respectively A ∈ Ga
n, respectively A ∈ Ĝs

n) and hence Gs
n, G

a
n and Ĝs

n are cones.
We have already seen that (3.11) holds. So it is sufficient to show that (i) S+n ∪Nn ⊆ Ga

n

and (ii) Gs
n = com(S+n +Nn).

(i) S+n ∪Nn ⊆ Ga
n: Let us show that Nn ⊆ Ga

n and S+n ⊆ Ga
n, respectively. Suppose that A ∈

Nn. Then for all P the problem (LP)P,Λ has a feasible solution where (ω, α) = (λ1, . . . , λn, 0)

which implies that A ∈ Ga
n. Suppose that A ∈ S+n , i.e., λi ≥ 0 (i = 1, 2, . . . , n). Then for

all P the problem (LP)P,Λ has a feasible solution where (ω, α) = (0, . . . , 0, 0) which implies

that A ∈ Ga
n. Thus we have shown S+n ∪Nn ⊆ Ga

n.
(ii) Gs

n = com(S+n + Nn): The inclusion Gs
n ⊆ com(S+n + Nn) follows from the construction

of the set Gs
n as in (3.8) and (3.7). The converse inclusion Gs

n ⊇ com(S+n +Nn) is also true
since if A ∈ com(S+n +Nn) then there exist an orthonormal matrix P and diagonal matrices
Θ = Diag (θ1, θ2, . . . , θn) and Ω = Diag (ω1, ω2, . . . , ωn) such that

A = PΘPT + PΩPT , PΘPT ∈ S+n , PΩPT ∈ Nn

(see Theorem 1.3.12 of [19]) which implies that θi ≥ 0 (i = 1, 2, . . . , n) and that the problem
(LP)P,Λ with Λ = Θ + Ω has a nonnegative objective value at a solution (ω, α) where

α = mini,j{[PΩPT ]ij} ≥ 0.
The results for n = 2 follow from Theorem 3.1.
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As we have seen in Theorem 3.1, Nn ⊆ Hn but S+n ̸⊆ Hn for n ≥ 3. Theorem 3.2 suggests
that the set Gs

n might be better than the set Hn in the sense of the desirable property (P2)
of Mn. The following examples show some contrasts between Hn, G

s
n and Ga

n.

Example 3.3. Consider

A =

 1 1 1
1 2 −1
1 −1 2

 .

Then, by the definition (3.1),

S(A) = A−N(A) =

 1 1 1
1 2 −1
1 −1 2

−
 0 1 1

1 0 0
1 0 0

 =

 1 0 0
0 2 −1
0 −1 2

 ∈ S+3

which implies that A ∈ H3. Moreover,

N(A)S(A) = S(A)N(A) =

 0 1 1
1 0 0
1 0 0


which implies that A = S(A) +N(A) ∈ com(S+3 +N3), and by Theorem 3.2, A ∈ Gs

3 holds.
Thus H3 ∩ Gs

3 ̸= ∅.

Example 3.4 (cf. Proof of Theorem 4.2 in [27]). Consider

A =

 1 −1 1
−1 1 −1
1 −1 1

 .

Then A ∈ S+3 and by Theorem 3.2, we see that A ∈ Gs
3. However,

S(A) = A−N(A) =

 1 −1 1
−1 1 −1
1 −1 1

−
 0 0 1

0 0 0
1 0 0

 =

 1 −1 0
−1 1 −1
0 −1 1

 ̸∈ S+3

which implies that A ̸∈ H3. Thus G
s
3 \H3 ̸= ∅.

Example 3.5. Consider

A =

 1 −1 1
−1 1 1
1 1 1


and let

S =

 1 −1 0
−1 1 0
0 0 0

 and N = A− S =

 0 0 1
0 0 1
1 1 1

 .

Then S ∈ S+3 , N ∈ N3 and

SN = NS =

 0 0 0
0 0 0
0 0 0

 .

holds which implies that A ∈ com(S+3 +N3) ⊆ Gs
3. Moreover, if we set

P :=


1√
3

1√
14

5√
42

1√
3
− 3√

14
− 1√

42

− 1√
3
− 2√

14
4√
42

 ,Λ :=

 −1 0 0
0 2 0
0 0 2


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then P and Λ satisfy (3.3) and the corresponding problem (LP)P,Λ is given as follows:

Maximize α
subject to ω1 ≤ −1, ω2 ≤ 2, ω3 ≤ 2

ω1

 1
3

1
3 −1

3
1
3

1
3 −1

3
−1

3 − 1
3

1
3

+ ω2

 1
14 − 3

14 − 1
7

− 3
14

9
14

3
7

− 1
7

3
7

2
7

+ ω3

 25
42 − 5

42
10
21

− 5
42

1
42 − 2

21
10
21 − 2

21
8
21


≥ αE.

By solving this problem, we know that α∗(P,Λ) < 0. Thus the matrix A lies on Gs
3 but not

on Ga
3 . Thus G

s
3 \ Ga

3 ̸= ∅.

In the next section, we will show numerical results of the following three algorithms:

Algorithm 1.1: The set Hn is used for Mn at Line 7 of Algorithm 1, i.e., the original
algorithm proposed in [27].

Algorithm 1.2: The set Gs
n is used for Mn at Line 7 of Algorithm 1.

Algorithm 2: An improved version of Algorithm 1.2. The set Gs
n is used for Mn at Line 7

of Algorithm 1. Moreover, based on the fact that Ĝs
n ⊆ COPn, some additional tests

to remove simplices have been incorporated at Lines 7 and 10 of Algorithm 1.

Algorithm 2 An improved version of Algorithm 1.2

Input: A ∈ Sn,Mn ⊆ COPn

Output: “A is copositive” or “A is not copositive”
1: P← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: return “A is not copositive”;
6: end if
7: if V T

∆AV∆ ∈ Ĝs
n then

8: P← P \ {∆};
9: else

10: if V T
∆AV∆ ∈ Gs

n then
11: P← P \ {∆};
12: else
13: partition ∆ into ∆ = ∆1 ∪∆2 and set ∆̂← {∆1,∆2};
14: for p = 1, 2 do

15: if V T
∆pAV∆p ∈ Ĝs

n then

16: ∆̂← ∆̂ \ {∆p};
17: end if
18: end for
19: P← P \ {∆} ∪ ∆̂;
20: end if
21: end if
22: end while
23: return “A is copositive”;
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The details of the added steps in Algorithm 2 are as follows. Suppose that we have a
diagonalization of the form (3.3) in advance.

At Line 7, we will solve an additional LP but need not diagonalize V T
∆AV∆. Let P and

Λ be matrices satisfying (3.3). Then the matrix V T
∆ P gives the diagonalization of V T

∆AV∆,
i.e.,

V T
∆AV∆ = V T

∆ (PΛPT )V T
∆ = (V T

∆ P )Λ(V T
∆ P )T

while V T
∆ P is not necessarily orthonormal. Thus we can test V T

∆AV∆ ∈ Ĝs
n by solving

(LP)V T
∆ P,Λ.

If V T
∆AV∆ ∈ Ĝs

n does not detected at Line 7, we will check whether V T
∆AV∆ ∈ Gs

n at
Line 10. Similarly to Algorithm 1.2 (where the set Gs

n is used for Mn at Line 7 of Algorithm
1), we will diagonalize V T

∆AV∆ as V T
∆AV∆ = PΛPT with an orthonomal matrix P and a

diagonal matrix Λ, and solve (LP)P,Λ.

At Line 15, we neither need diagonalize V T
∆pAV∆p nor to solve any further LPs. Let ω∗ ∈

Rn be an optimal solution of (LP)V T
∆ P,Λ obtained at Line 7 and let Ω∗ := Diag (ω∗). Then

the feasibility of ω∗ implies the positive semidefiniteness of the matrix V T
∆pP (Λ−Ω∗)PTV∆p .

Thus, if V T
∆pPΩ∗PTV∆p ∈ Nn then we see that

V T
∆pAV∆p = V T

∆pP (Λ− Ω∗)PTV∆p + V T
∆pPΩ∗PTV∆p ∈ S+n +Nn

and that V T
∆pAV∆p ∈ Ĝs

n.

4 Numerical Results

We implemented Algorithms 1.1, 1.2 and 2 in MATLAB to compare the performance of
those algorithms.

As the test-instances, we used the following matrix

Bγ := γ(E −AG)− E (4.1)

where γ ≥ 1, E ∈ Sn is the matrix whose elements are all one and the matrix AG ∈ Sn is the
adjacency matrix of a given undirected graph G with n nodes. The matrix Bγ comes from
the maximum clique problem. The maximum clique problem is to find a clique (complete
subgraph) of maximum cardinality in G. It has been shown in [10] that the maximum
cardinality, the so-called clique number ω(G), is equal to the optimal value of

ω(G) = min{γ ∈ N | Bγ ∈ COPn}.

Thus, the clique number can be found by checking the copositivity of Bγ at most for γ =
n, n− 1, . . . , 1.

Note that in [27], the authors showed that Bγ ̸∈ COPn if γ < ω(G), Bγ ∈ COPn \
int (COPn) if γ = ω(G) and Bγ ∈ int (COPn) if γ > ω(G) (see Proposition 3.2 of [27]).
The results and Corollary 2.4 imply that the algorithms may fail to terminate if γ = ω(G).
In [27], the authors have provided a modified copositive program to avoid such difficulties
as the following theorem.

Theorem 4.1 (Theorem 3.3 in [27]). The clique number ω(G) of a given graph G can be
obtained from the following modified copositive program:

ω(G) = min{γ ∈ N | Bγ + ρE ∈ COPn}

if 0 ≤ ρ < 1/ω(G). Moreover, Bγ + ρE is strictly copositive for any γ ≥ ω(G) and ρ > 0.
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An aim of the implementation is to explore the difference of behaviors between the
choices Mn = Hn and Mn = Gs

n rather than to compute the clique number efficiently. So we
conducted our experiment to examine Bγ for various values of γ at intervals of 0.1 around
the value ω(G) (Tables 1 and 2 on page 117). We also solved the modified problem in
Theorem 4.1 to confirm the efficacy of the modification (Table 5 on page 119).

Figure 1 on page 117 shows our instances for G that have been used in [27]. We know
the clique numbers of G8 and G12 are ω(G8) = 3 and ω(G12) = 4, respectively.

For a given A ∈ Sn, we used the MATLAB command “[P,Λ] = eig(A)” to obtain the
diagonalized form (3.3). As already mentioned above, α∗(P,Λ) < 0 with a specific P does

not necessarily guarantee that A ̸∈ Gs
n (A ̸∈ Ĝs

n). Thus, it not strictly accurate to say that

we have used Gs
n (Ĝs

n) for Mn and the algorithms may miss some removable ∆’s. Note
that this may have some effect on speed but not on termination of the algorithm since the
termination is guaranteed by the subdivision rule satisfying δ(P)→ 0 where δ(P) is defined
by (2.1).

The performance of algorithms is also influenced by strategies to refine the simplex ∆
used at Line 10 of Algorithm 1 or Line 13 of Algorithm 2. We employed the most classical
longest-edge bisection rule as a common strategy among the experiments, i.e., we choose the
longest edge of a given simplex ∆ and bisect the edge with the fixed bisection ratio 1 : 1.
It is well known that this type of longest-edge bisection rule generates a sequence such that
δ(P)→ 0 ( [18], see also [12]).

There have been different strategies on refinement of simplices [7, 8, 27]. Among others,
an efficient strategy for the set Mn = Hn has been provided in [27]. We will discuss our
improvement on refinement for the set Mn = Gs

n in the next section.
We tested our implementation on a 3.07GHz Core i7 machine with 12 GB of RAM.

Tables 1 and 2 represent the numerical results for the graphs G8 and G12, respectively. In
both tables, the symbol “−” means that the algorithm did not terminate within 6 hours.
These results may come from the fact that for each graph G, the matrix Bγ lies on the
boundary of the copositive cone COPn when γ = ω(G) (ω(G8) = 3 and ω(G12) = 4).

We observe similar trends in Tables 1 and 2, and explain the implications of our results
using Table 2 on page 118 for the larger graph G12. The results in Table 2 imply that

- at any γ ≥ 5.2, Algorithm 1.2 terminates in one iteration and its execution time is
faster than the one of Algorithm 1.1. The reason may be that, as shown in Theorem
3.2, the set Gs

n is a relatively large subset of COPn and useful to check copositivity of
the matrix A if A is (strictly) copositive.

- at any γ ∈ {5.1, 5.0, . . . , 4.7}, Algorithm 1.1 terminates within 4.2 hours while Algo-
rithm 1.2 does not terminate within 6 hours. The results imply that the execution
time of Algorithm 1.2 is slower than the one of Algorithm 1.1 since Algorithm 1.2
requires additional computation for solving an n + 1 variables and O(n2) constraints
linear optimization problem at each iteration. The execution time of the improved
version, Algorithm 2, is substantially better than the one of Algorithm 1.2, but is not
better than one of Algorithm 1.1.

- at each γ < 4, Algorithms 1.1, 1.2 and 2 have no significant differences in terms of
the number of iterations since both of algorithms work to find a v ∈ V ({∆}) such
that vT (γ(E −AG)− E)v < 0 while its computational time depends on our choice of
simplex refinement strategy but not on the choice of Mn.

In view of the above observations, we conclude that Algorithm 1.2 with the choice Mn =
Gs
n might be a promising way to check copositivity of a given matrix A when A is strictly
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copositive. In addition, the improved technique used in Algorithm 2 has a pronounced effect
on the number of iterations and hence the execution time of Algorithm 1.2. This can be
seen in Tables 3 and 4 where the columns “Line 8,” “Line 11” and “Line 19” show the
number of simplices removed at each line of Algorithm 2. The elimination of these simplices
contributes to improve Algorithm 1.2.

Next we implemented the three algorithms to solve the modified programs provided in
Theorem 4.1. The obtained results are shown in Table 5 on page 119. Note that Theorem
4.1 involves only integer values of γ. So we tested the matrices B4+0.199E (0.199 < 1

5 ) and
B3 + 0.249E (0.249 < 1

4 ) of the graph G8 with ω(G8) = 3, and the matrices B5 + 0.166E
(0.166 < 1

6 ) and B4 + 0.199E (0.199 < 1
5 ) of the graph G12 with ω(G12) = 4. These results

may be compared to the results for γ = 3.9 in Table 1 for the graph G8 and the ones for
γ = 4.9 in Table 2 for the graph G12 since the copositivity of B3.9 implies ω(G8) ≤ 3 for G8

and the copositivity of B4.9 implies ω(G12) ≤ 4 for G12, respectively. These comparisons
suggest that for all algorithms, Algorithms 1.1, 1.2 and 2, the modified programs have
positive effects especially for detecting ω(G12).

5 Improved Strategies for Refinement of Simplices

In this section, we discuss our strategies for refinement of simplices for the improved version,
Algorithm 2.

We first introduce the strategy for Algorithm 1.1 provided in [27]. Suppose that we
choose Mn = Nn at Line 10 of Algorithm 1. If V T

∆AV∆ ̸∈Mn then there exist i and j such
that vTi Avj < 0. If i = j then since vi ∈ ∆, we find that A ̸∈ COPn and the algorithm
terminates and otherwise it would be natural to partition an edge {vi, vj} which attains the
optimal value of mini,j∈{1,2,...,n},i̸=j v

T
i Avj < 0.

Adopting the idea for the case Mn = Hn defined in (3.2), Sponsel, Bundfuss and Dür [27]
suggested a strategy to partition an edge {vi, vj} which gives the optimal value of

min
i,j∈{1,2,...,n},i ̸=j

S(V T
∆AV∆)ijxixj

and have shown the numerical results using the strategy.

We adopt the same idea for the cases Mn = Gs
n and Mn = Ĝs

n where the definitions

are given in (3.8) and (3.10), respectively. If V T
∆AV∆ ̸∈ Gs

n ( V T
∆AV∆ ̸∈ Ĝs

n) then for any
orthonormal matrix (for any arbitrary) P which gives a diagonalization V T

∆AV∆ = PΛPT ,
the feasible linear optimization (LP)P,Λ has the negative optimal value α∗(P,Λ) < 0.

Our strategy, we call it the “negative-edge bisection rule,” is to partition an edge {vi, vj}
which attains the optimal value

n∑
k=1

ω∗
kpikpjk = α∗(P,Λ) < 0

at the optimal solution (ω∗, α∗). Unfortunately, our negative-edge bisection rule does not
guarantee that δ(P) → 0, and we found that Algorithm 2 with the rule fails to terminate
for some instances. To improve the termination behavior, we insert the longest-edge bisec-
tion steps periodically during performing the negative-edge bisection refinement. Note that
recently Dickinson [12] showed that this strategy is not sufficient to ensure δ(P)→ 0.

We implemented Algorithm 2 with the negative-edge bisection steps and tested it for
checking copositivity of the matrix B3.4 of the graph G8 and the matrix B5.1 of the graph
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G12 for each of which the number of iteration of Algorithm 2 has a pronounced jump (see
Tables 1 and 2).

Table 6 shows the performance of adding the negative-edge bisection steps for these two
instances. The first row of the table represents the number of inserted longest-edge bisection
steps (LEB steps) per twelve negative-edge bisection steps (NEB steps) where∞ means that
only longest-edge bisection steps and no negative-edge bisection step have been taken.

Note that at each iteration of Algorithm 2, we may have two optimal solutions of (LP)P,Λ,

i.e., the one obtained at Line 7 by detecting V T
∆AV∆ ∈ Ĝs

n and the one obtained at Line 10
by detecting V T

∆AV∆ ∈ Gs
n. The third column of Table 6 shows which optimal solution is

used for the negative-edge bisection steps.

For each case, the number of iterations shows the average number of iterations required
after three-times execution since we have randomly chosen the negative-edge {vi, vj} to be
partitioned if there are multiple candidates.

We observe from Table 6 that the negative-edge bisection strategy using the solution
obtained at Line 10 (by detecting V T

∆AV∆ ∈ Gs
n) has a positive effect to reduce the number

of iterations for checking B5.1 of G12 and that the effect is monotonically increasing with
NEB frequency.

6 Concluding Remarks

In this paper, we proposed a new branch and bound type algorithm for testing copositivity
of a given symmetric matrix based on the algorithm proposed in [27]. Two features of our
algorithm are

1. we have introduced new classes of matrices Gs
n and Ĝs

n which are relatively large subsets
of COPn and work well to check copositivity of a given matrix A ∈ Sn (see Theorem
3.2) , and

2. for incorporating the sets Gs
n or Ĝs

n in checking copositivity, we only have to solve a
linear optimization problem with n+1 variables and O(n2) constraints after computing
a singular value matrix decomposition, which implies that our algorithm is not so time-
consuming.

Our algorithm determined the copositivity of some instances within a small number of iter-
ations if they are strictly copositive. We also provided the negative-edge bisection strategy
which aims to improve refinement of simplices for checking copositivity of the matrix.

Further research will include

- further improvement in checking A ∈ Gs
n: We only solve the problem (LP)P,Λ for a

specific P to check A ∈ Gs
n. This is sufficient if A has n different eigenvalues. However,

otherwise (i.e., an eigenspace of A has at least dimension 2), we may miss the fact
A ∈ Gs

n. Solving the problem (LP)P,Λ with other possible P s might be effective for
further improvement in checking A ∈ Gs

n, or more specifically the results at around
γ = 5 in Table 2.

- more observations on the sets Gs
n, G

a
n and Ĝs

n. Theorem 3.2 and Examples 3.3, 3.4 and
3.5 show the relationships among these sets and S+n ∪Nn, com(S+n +Nn), S

+
n +Nn and

COPn. To observe how those sets are different and what properties they have will be
of research interest in the future.
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Note that Table 1 shows an interesting result concerning the second point. Let us see
the result at γ = 4.0 of Algorithm 1.2. The multiple number of iterations at γ = 4.0 implies
that we could not find B4.0 ∈ Gs

n at the first iteration for a certain orthonormal matrix
P satisfying (3.3). Recall that the matrix Bγ is given by (4.1). It follows from the fact
E −AG ∈ Nn ⊆ Gs

n and from the result at γ = 3.5 in Table 1 that

0.5(E −AG) ∈ Gs
n and B3,5 = 3.5(E −AG)− E ∈ Gs

n.

Thus the fact that we could not find whether the matrix

B4.0 = 4.0(E −AG)− E = 0.5(E −AG) +B3.5

lies on the set Gs
n might suggest that the set Gs

n = com(Sn +Nn) is not convex.
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Figure 1: The graphs G8 with ω(G8) = 3 (left) and G12 with ω(G12) = 4 (right).

Table 1: Results for the graph G8
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Table 2: Results for G12

Table 3: The number of simplices removed at each line of Algorithm 2 for G8

γ Line 8 Line 11 Line 19

2.8 169 175 5
2.9 179 220 3
3.0 - - -
3.1 2150 1000 27
3.2 1003 586 96
3.3 515 235 86
3.4 359 325 124
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Table 4: The number of simplices removed at each line of Algorithm 2 for G12

γ Line 8 Line 11 Line 19

3.8 0 19 0
3.9 0 21 0
4.0 - - -
4.8 - - -
4.9 89561 18546 2943
5.0 56157 12744 4106
5.1 24983 4549 0

Table 5: Results for modified programs provided in Theorem 4.1

Table 6: Results of Algorithm 2 with improved strategies for refinement of simplices
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