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and landing cycles (Sriram et al. [11]). Moreover, the aircraft maintenance scheduling prob-
lem concerns more about assignment (Moudani et al. [9]), maintenance routing and crew
scheduling (Papadakos [10]), which is different from the TFMSP.

Goyal et al. [4] algorithm is based on two equations that are derived by setting the first
derivative of the objective function with respect to the decision variables. Later, Egmond
et al. [13] indicate that the function of the TFMSP is not convex as [4] assumed. They also
indicate that Goyal and Gunasekaran’s search procedure often stops after its first iteration
without obtaining an optimal solution. In fact, it is often stuck in a local optimal solution.
However, they only suggest trying different starting values to find an optimal solution, but
without proposing a new solution approach. Yao and Huang [18] show that the optimal
objective function value of the TFMSP is piece-wise convex with respect to T (some deci-
sion maker’s planning basic period). They also propose a search algorithm that solves the
optimal solution for the TFMSP. An extended version of the TFMSP is the Transport Fleet
Maintenance Scheduling Problem for a Logistic Service Provider with many sub-companies,
which was studied in [6]. They show that a Logistic Service Provider can enjoy signifi-
cant cost savings from coordinating the maintenance policy of the transport fleets among
sub-companies.

The above studies all assume that the maintenance system has unlimited capacity as
providing maintenance service for the transportation fleet. However, it is a common practice
that the capacity of a maintenance system is usually constrained due to limited manpower
and facilities. Therefore, we were motivated to investigate the optimal maintenance schedule
for a transport fleet in a capacity-constrained maintenance system so as to minimize the
average total costs in this paper. In order to distinguish this problem from the previous
studies, we name this problem the “Capacity Constrained Transport Fleet Maintenance
Scheduling Problem”, which is abbreviated as the CC-TFMSP.

This paper is organized as follows. We will present the mathematical model for the
CC-TFMSP in Section 2. Section 3 presents theoretical analysis on the optimal cost curve
of the unconstrained problem. Based on our theoretical background, we propose an ef-
fective heuristic for obtaining candidate solutions and a procedure to generate a feasible
maintenance schedule in Section 4. Next, Section 5 presents a numerical example and ran-
dom experiments for illustrating the implementation and verifying the effectiveness of the
proposed search algorithm, respectively. Finally, we addressed our concluding remarks.

2 The Mathematical Model

We first introduce the assumptions made and the notation used later. There are m groups
of vehicles, and the number of vehicles in group i is denoted as ni. In the CC-TFMSP, the
decision maker plans the maintenance schedules of the vehicle groups in some basic period,
denoted by T , (e.g., in days, weeks, or bi-weeks, etc.). The maintenance work on a group of
vehicles is carried out at a fixed, equal-time interval that is called the “maintenance cycle”
for that group of vehicles. The vehicles in the ith group are sent for maintenance once in
ki basic periods where ki is a positive integer. Therefore, the maintenance cycle for the
vehicles in the ith group is kiT . It should be noted that the model for the CC-TFMSP is
for planned maintenance, and the model does not consider unplanned fleet vehicle failure in
the scheduling of fleets. (The proposed model may accommodate unplanned vehicle failures
by reserving some portion of maintenance capacity. We will have further discussion later.)

We consider two categories of costs in the CC-TFMSP, namely, the operating cost and the
maintenance cost. The operating cost of a vehicle depends on the length of the maintenance
cycle, and it is assumed to increase linearly with respect to time since the last maintenance
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on the vehicle. Specifically, the operating cost per unit of time at time t after the last
maintenance for a vehicle in group i is given by fi(t) = ai + bit where ai is the fixed cost
and bi indicates the increase in the operating cost per unit of time. Also, for each vehicle in
group i, it takes Xi units of time for its maintenance work. And the utilization factor of a
vehicle in the ith group on the road is Yi, which is a known constant. Further discussions on
the utilization factor of a vehicle can be referred to [15]. Therefore, the actual time during
which a vehicle can operate is equal to Yi(kiT − Xi), and the total operating cost for a
vehicle in group i is given by∫ Yi(kiT−Xi)

0

fi(t)dt =

∫ Yi(kiT−Xi)

0

(ai + bit)dt

= Yi(ai − biXiYi)kiT + 0.5biY
2
i k

2
i T

2 −XiYi(ai − 0.5biXiYi)

(2.1)

When a vehicle of the ith group is sent to maintain, it takes τi and πi constant time units
for its setup and maintenance, respectively. Therefore, it holds that

Xi = τi + πi (2.2)

In this study, we assume that there is only one maintenance facility, and the maintenance
facility could maintain only one group of vehicle at one time. (We did not specify the number
of servers working in the maintenance facility in this study. Obviously, changing the number
of servers in the maintenance facility may affect the setup time and the maintenance time
required for each vehicle group. The decision maker should adjust the values of τi and πi

carefully accordingly as adding or reducing the number of servers.)
We define Pt as the number of vehicle groups maintained during the tth basic period.

Also, we use σt(i) to indicate the ith group of vehicle at basic period t. Here we take a small
example in which a maintenance schedule has a cycle of 8 basic periods. We assume the
vector of time multipliers (k1, k2, k3, k4) = (2, 2, 4, 8), the number of vehicle groups assigned
to the 8 basic periods (i.e., corresponding to P1 to P8) is (2, 2, 1, 1, 2, 1, 1, 1). Figure 1 shows
a maintenance schedule ⟨{1, 3}, {2, 4}, {1}, {2}, {1, 3}, {2}, {1}, {2}⟩. We denote τσt(i) and

πσt(i) as the setup time and the maintenance time of ith group in Pt, respectively. After its
set up, the first group of vehicle starts its maintenance. As soon as the first group is done,
the second group shall start its setup and maintenance tasks.

One may reserve maintenance capacity for taking care of unplanned vehicle failures. An
easy way is to include the maintenance of the “virtual” vehicle group by setting ki = 1
to reserve the required maintenance capacity (for unplanned vehicle failures) in each basic
period accordingly. Also, the decision maker may refer to the historical data to determine
the reserved maintenance capacity in each basic period.

The fixed cost of starting the maintenance for a vehicle group i (fixed cost term as the
sum of setup cost of vehicle group i over all stages) is given by si. On the other hand, as
maintenance work is carried out at intervals of T , a fixed cost, denoted by S, will be incurred
for all vehicle groups scheduled for maintenance in each basic period.

The objective function of the CC-TFMSP is to minimize the average total costs incurred
per unit of time. Therefore, we divide the cost terms of vehicle group by its cycle time
respectively to obtain their corresponding terms in the objective function. By the derivation
above, the mathematical model for the CC-TFMSP can be expressed as problem (P ).

(P )MinZ ((k1, k2, · · · , km) , T ) =
S

T
+

m∑
i=1

nizi(ki, T )

kiT
=

S

T
+

m∑
i=1

Φi(ki, T ) + u (2.3)
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Figure 1: An example of a maintenance schedule with 4 vehicle groups

Subject to
m∑
i=1

(τi + πi)wiφ(i,t) ≤ T, for t = 1, ...,K (2.4)

ki∑
t=1

wit = 1, for i = 1, ...,m (2.5)

φ(i, t) =

{
t mod ki, if t ̸= γki, γ ∈ N+

ki, if t = γki, γ ∈ N+ for i = 1, · · · ,m, t = 1, · · · ,K (2.6)

where

zi(ki, T ) = Yi(ai − biXiYi)kiT + 0.5biY
2
i k

2
i T

2 −XiYi(ai − 0.5biXiYi),
Xi = τi + πi,

Φi(ki, T ) =
niC1i

kiT
+ niC2ikiT,

C1i = si −XiYi(ai − 0.5biXiYi)

C2i = 0.5biY
2
i , u =

m∑
i=1

niYi(ai − biXiYi),

K = lcm(k1, ..., km)

wit =

{
1, if group i is maintenanced in ith basic period
0, Otherwise.

.

Recall that whenever group i appears in a basic period, it takes τi+πi for its maintenance
run. Inequalities in (2.4) mandate the time needed for the vehicle groups assigned to the
same basic period must not exceed T for each basic period t in the maintenance schedule.
Eq. (2.5) meet the assumption that the maintenance runs for group i must perform exactly
once during the horizon ki, and the first maintenance run is no later than the (ki)

th basic
period. Eq. (2.6) assure the maintenance of group i repeats after kiT .

Note that the decision variables of the proposed model are (k1, k2, . . . , km) and T . Each
ki is a positive integer. The number of constraints, i.e., K = lcm (k1, k2, . . . , km), in eq.
(2.4) and the number of endogenous variables wit are unknown a priori since both of them
depend on the values of ki, that are unknown to the decision maker. To the best of our
knowledge, any commercial software is NOT able to solve the proposed mathematical model.
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3 Theoretical Results on the Unconstrained Models

In the CC-TFMSP, the decision maker needs to determine T (i.e., the basic period) and
k1, k2, . . . , km (i.e., the frequency of maintenance for vehicles in each group) so as to minimize
the total costs incurred per unit of time.

In this study, we would solve the CC-TFMSP using two policies, namely, General Integer
(GI) policy and Power-of-two (PoT) policy. GI policy requires that all the ki’s must be
positive integers. On the other hand, PoT policy restricts all the ki’s to be the powers-
of-two integers (i.e., ki = 1, 2, 4, ..., 2p; p ∈ N). Note that PoT policy enjoys an interesting
and important property, viz., K = lcm(k1, ..., km) = max(k1, ..., km), which usually signif-
icantly reduces the number of constraints in (2.4), especially, comparing to those cases in
which several ki’s are prime numbers. Therefore, PoT policy simplifies the complexity and
computational loading for generating a feasible maintenance schedule. We will compare the
effectiveness of both policies in Section 5.

We will present our discussions on the (unconstrained) TFMSP under GI and PoT
policies in this section first. Theoretical properties on the (unconstrained) TFMSP not
only provide insights into the optimal cost function, but also facilitate the derivation of the
proposed search algorithm for solving the CC-TFMSP in Section 4.

3.1 The unconstrained TFMSP model under GI policy

We investigate an unconstrained version of the problem (P) by ignoring the constraints in
(2.4)-(2.6). Also, since u is a constant, we omit it in our theoretical analysis here. The
unconstrained TFMSP model under GI policy may be expressed as (P ’) as follows.

(P ′) Minimize
ki∈N+,∀i,T∈R+

Z
′
((k1, k2, . . . , km) , T ) = S/T +

m∑
i=1

Φi(ki, T ) (3.1)

We note that the authors had examined the theoretical properties of (P ’) in their previous
study, viz., Yao and Huang [18]. We review some key results in the following presentation.
Therefore, we are motivated to study the properties of Φi(ki, T ) since they shall establish

foundation for our further investigation on the function Z
′
((k1, k2, . . . , km) , T ).

Recall that Φi(ki, T ) = niC1i/kiT + niC2ikiT . By observing the right-side of (3.1), the
terms are separable. Obviously, for any given ki ∈ N+, the function Φi(ki, T ) is strictly
convex. (See also Yao and Huang [18], Proposition 3.1, pp. 36)

Define a new function gi(T ) by taking the optimal value of ki at any value T ′ > 0 for
the function Φi(ki, T ) as follows.

gi(T ) := inf
ki∈N+

{Φi(ki, T
′)|T = T ′ ∈ R+} (3.2)

Note that the curve of the gi(T ) function is actually the lower envelope of the Φi(ki, T )
functions.

Next, we define a “junction point” for gi(T ) as a particular value of T where two consecu-
tive convex curves Φi(ki, T ) and Φi(ki+1, T ) concatenate. The junction point corresponding
to ki = k locates at

δi(k) =

√
C1i

C2i(k + 1)k
=

√
2(si −XiYi(ai − 0.5biXiYi))

biY 2
i (k + 1)k

(3.3)

Importantly, two interesting observations on the gi(T ) function at a junction point w are
as follows: (See also Yao and Huang [18], pp. 37)
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(a) The function gi(T ) is piece-wise convex with respect to T .

(b) Suppose that k∗(w−) and k∗(w+), respectively, are the optimal multipliers of the
left-side and right-side convex curves with regard to a junction point w of the gi(T )
function. Then, k∗(w−) = k∗(w+) + 1, where w− = w − ε, w+ = w + ε and ε → 0+.

Following (3.3), it obviously holds that

δi(vi) < · · · < δi(k + 1) < δi(k) < · · · < δi(2) < δi(1) (3.4)

where vi is an (unknown) upper bound on the value of ki. Theorem 3.1 is an immediate
result from (3.3) and (3.4).

Theorem 3.1 (Yao and Huang [18], Theorem 3.1, pp. 37). Suppose that k∗(w−) and
k∗(w+) are the optimal multipliers of the left-side and right-side convex curves with regard
to a junction point w of the gi(T ) function, then k∗(w−) = k∗(w+) + 1.

The following corollary provides an easy way to obtain the optimal multiplier for the
gi(T ) function for any given T > 0.

Corollary 3.2 (Yao and Huang [18], Corollary 3.1, pp. 37). For any given T > 0, the
optimal multiplier k∗i (T ) ∈ N+ for the gi(T ) function is given by

k∗i (T ) =

⌈
−1

2
+

1

2

√
1 +

4C1i

C2iT 2

⌉
(3.5)

with ⌈.⌉ denoting the upper-entier function.

Denote the function TCU
GI(T ) as the best unconstrained objective function value of the

CC-TFMSP under GI policy. Then, TCU
GI(T ) is actually the sum of the minimum cost

function of the m groups of vehicles, which can be re-written as

(U −GI) TCU
GI(T ) = inf

T>0
{S/T +

m∑
i=1

gi(T )} (3.6)

Following the theoretical analyses on the Φi(ki, T ) and gi(T ) functions, one can gain
more insights into the TCU

GI(T ) as follows.

Proposition 3.3 (Yao and Huang [18], Proposition 3.2, pp. 38). The TCU
GI(T ) function is

piece-wise convex with respect to T .

Proposition 3.4 (Yao and Huang [18], Proposition 3.3, pp. 38). All the junction points of
gi(T ) function of each group i will be inherited by the TCU

GI(T ) function. In other words, if
w is a junction point for a group i, w must also show as a junction point on the piece-wise
convex curve of the TCU

GI(T ) function.

To make our notation simpler, we define kU
GI(T ) as the vector of the unconstrained

optimal multipliers at T . Theorem 3.5 is an immediate result of Theorem 3.1 and Proposition
3.4.

Theorem 3.5 (Yao and Huang [18], Theorem 3.2, pp. 38). Suppose that kU
GI(w

−) and
kU
GI(w

+) , respectively, are the set of optimal multipliers for the left-side and right-side con-
vex curves with regard to a junction point w in the plot of the TCU

GI(T ) function. Then,
kU
GI(w

−) can be secured from kU
GI(w

+) by changing at least one of ki from k∗i (w
−) to

k∗i (w
+) = k∗i (w

−) + 1.
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3.2 The unconstrained TFMSP model under PoT policy

Next, we investigate the unconstrained TFMSP model under PoT policy. Its mathematical
model may be expressed as (P”) as follows.

(P ′′) Minimize
ki=2pi ,pi∈N,∀i,T∈R+

Z
′′
((k1, k2, . . . , km) , T ) = S/T +

m∑
i=1

Φi(ki, T ) (3.7)

To the best of the authors’ knowledge, the following theoretical results on the uncon-
strained TFMSP model under PoT policy were not investigated in the literature before this
study. We will employ different notation to distinguish.

It can be easily shown that for any power-of-two integer ki, the function Φi(ki, T ) is
strictly convex. Similar to the function gi(T ), we define another function hi(T ) by taking
the optimal power-of-two ki at any T ′ > 0 as follows.

hi(T ) := inf
ki=2pi ,pi∈N,∀i

{Φi(ki, T
′)|T = T ′ ∈ R+} (3.8)

We may also find a “junction point” for hi(T ) where two consecutive convex curves
Φi(ki, T ) and Φi(2ki, T ) concatenate. These junction points determine at “what value of
T” where one should change the value of ki so as to obtain the optimal value for the hi(T )
function. To derive a closed-form for the location of the junction points, we define the
difference function ∆i(k, T ) by

∆i(k, T ) = Φi(2k, T )− Φi(k, T )

=
niC1i

(2k)T
+ niC2i(2k)T − niC1i

kT
− niC2ikT = −niC1i

2kT
+ niC2ikT

where ki = 2j ; j ∈ ℵ. By letting ∆i(k, T ) = 0, the junction point corresponding to ki = 2j

locates at

δi(k) =
1

k

√
C1i

2C2i
=

1

k

√
si −XiYi(ai − 0.5biXiYi)

biY 2
i

(3.9)

Similarly, the hi(T ) function also has two interesting observations at any junction point
w.

(a) The function hi(T ) is piece-wise convex with respect to T .

(b) Suppose that k∗(w−) and k∗(w+) are the optimal power-of-two multipliers of hi(T )
at the left-side and right-side convex curves with regard to a junction point w, respec-
tively. Then, k∗(w−) = 2k∗(w+), where w− = w − ε, w+ = w + ε and ε → 0+.

Following (3.9), it obviously holds that

δi(2
vi) < · · · < δi(2k) < δi(k) < · · · < δi(2) < δi(1) (3.10)

where 2vi is an (unknown) upper bound on the value of ki. We have the following theorem
from (3.9) and (3.10).

Theorem 3.6. Suppose that k∗(w−) and k∗(w+) are the optimal power-of-two multipliers
of hi(T ) at the left-side and right-side convex curves with regard to a junction point w of
the hi(T ) function, then k∗(w−) = 2k∗(w+).
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The junction point δi(2
m) provides us the information that one should choose ki = 2m

for T > δi(2
m) and choose ki = 2m+1, vice versa, to secure a lower value for the hi(T )

function. In other words, provided that 2m is the optimal multiplier for T ≥ δi(2
m), one

should replace ki = 2m with ki = 2m+1 as the optimal multiplier for group i at the junction
point δi(2

m) if one searches from higher values to lower values of T . The following corollary
provides an easy way to obtain the optimal multiplier for the hi(T ) function for any given
T > 0.

Corollary 3.7. For any given T > 0, the optimal power-of-two multiplier k∗i (T ) for the
hi(T ) function is given by

k∗i (T ) =

{
1, T ∈ [δi(1),∞)
2m+1, T ∈

[
δi(2

m+1), δi(2
m)

)
,m = 0, 1, ..., vi.

(3.11)

Denote the function TCU
PoT (T ) as the best unconstrained objective function value of the

CC-TFMSP under PoT policy. Then, TCU
PoT (T ) can be written as

(U − PoT )TCU
PoT (T ) = inf

T>0
{S/T +

m∑
i=1

hi(T )} (3.12)

Similar to TCU
GI(T ), we have the following theoretical results for the TCU

PoT (T ) function.

Proposition 3.8. The TCU
PoT (T ) function is piece-wise convex with respect to T .

Proposition 3.9. All the junction points of hi(T ) function of each group i will be inherited
by the TCU

PoT (T ) function. In other words, if w is a junction point for a group i, w must
also show as a junction point on the piece-wise convex curve of the TCU

PoT (T ) function.

We define kU
PoT (T ) as the vector of the unconstrained optimal power-of-two multipliers

at T . Theorem 3.10 is an immediate result of Theorem 3.6 and Proposition 3.9.

Theorem 3.10. Suppose that kU
PoT (w

−) and kU
PoT (w

+) are the set of optimal power-of-two
multipliers for the left-side and right-side convex curves with regard to a junction point w
in the plot of the TCU

PoT (T ) function, respectively. Then, kU
PoT (w

−) can be secured from
kU
PoT (w

+) by changing at least one of ki from k∗i (w
−) to k∗i (w

+) = 2k∗i (w
−).

4 The Proposed Heuristics

In this section, we propose two efficient heuristics - one for the CC-TFMSP under GI
policy (or, the CC-TFMSP(GI) for abbreviation) and the other for the CC-TFMSP under
PoT policy (or, the CC-TFMSP(PoT)), respectively. Note that both proposed heuristics
share a common framework in setting the search range, following the junction points of
the unconstrained model as the “road map”, and testing the feasibility of the candidate
solutions. To simplify our discussion, we focus mainly on the proposed heuristic for the
CC-TFMSP(GI), but only highlight the difference in the other for the CC-TFMSP(PoT) in
the following presentation. Before discussing the proposed heuristics, we give an overview of
the discussions in this section as follows. Section 4.1 sets the search range for both proposed
heuristics. Then, we present our search within the search range (following the junction
points of the unconstrained model) in Section 4.2. As proceeding with our search to the
next junction point, we locate the local optimum between two consecutive junction points
and test if we are able to generate a feasible maintenance schedule for our candidate solution.
Section 4.3 presents a procedure for generating a feasible maintenance schedule. Finally, we
summarize the proposed search algorithms in Section 4.4.
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4.1 Set the search range

In order to set the search range, we need to set the initial point and the termination point
for the proposed heuristics. The first part of this subsection presents a procedure for finding
an initial point. Then, we locate the termination point in the second part.

4.1.1 Find an initial point

Note that for the proposed heuristics we would like to find an initial point (which is an
upper bound of the search range) in which we are able to generate a feasible maintenance
schedule. We denote Tub as the initial point for our proposed heuristics. To obtain Tub, we
start with a candidate obtained from the Common Cycle (CC ) approach in which it requires
that ki = 1 for all i, i.e., all the vehicle groups share a common maintenance cycle. If we are
not able to generate a feasible maintenance schedule at the candidate, we will keep finding
an unconstrained junction point with a larger value of T so that we may generate a feasible
maintenance schedule there. We denote TCC as the local minimum obtained from the CC
approach where

TCC = max

{√
(S +

∑
i
niC1i)/

∑
i
niC2i,

m∑
i=1

(τi + πi)

}
(4.1)

When solving both the CC-TFMSP(GI) and the CC-TFMSP(PoT), we take TCC as the
first candidate for the initial point. Lemma 4.1 supports such rationale.

Lemma 4.1. There exist no local minima for both the CC-TFMSP(GI) and CC-TFMSP(PoT)
functions.

Proof. One may prove this lemma easily from the first derivative of the objective functions
of the CC-TFMSP(GI) and CC-TFMSP(PoT).

We are ready to present an Initialization Procedure (Proc IP) for locating T0 as follows.
Proc IP

1. Obtain {wj}, i.e., the sorted sequence of all the junction points of TCU
GI(T ) (or

TCU
PoT (T ) for the CC-TFMSP(PoT)) using the following steps.

(a) Compute all the junction points δi(T ) by eq.(3.3) (or, by eq.(3.9) for TCU
PoT (T ))

for each group of vehicle.

(b) Generate a sequence {wj} by sorting all δi(T )’s in descending order.

2. Compute TCC by eq. (4.1) and check:

(a) If TCC > maxi {δi(1)}, set Tub = TCC . Let kU
GI(TCC) = {ki = 1 |∀i}(or

kU
PoT (TCC) = {ki = 1 |∀i}, for the CC-TFMSP(PoT)) and stop Proc IP.

(b) If TCC ≤ maxi {δi(1)}, go to Step 3.

3. Obtain kU
GI(TCC) by eq.(3.5) (or, kU

PoT (TCC) by eq.(3.11) for the CC-TFMSP(PoT))
and set Ts = TCC .

4. If
(
kU
GI(Ts), Ts

)
(or,

(
kU
PoT (Ts), Ts

)
) is able to obtain a feasible maintenance schedule

(using the Feasibility Testing Procedure in Section 4.3), then Tub = Ts and stop the
Proc IP. Otherwise go to Step 5.
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5. Find the smallest junction point of TCU
GI(T ) larger than Ts, namely, ws0 =

min {δi(T ) > Ts|∀i} and set Ts = ws0 . Go to Step 4.

Note that, in the worst case, Step 5 ends up with the point Tub = max {δi|∀i} with
kU
GI(T0) = {ki = 1 |∀i} (or, kU

PoT (T0) = {ki = 1 |∀i} for the CC-TFMSP(PoT)).

4.1.2 Locate a termination point

We denote Tlb as the termination point (which is also a lower bound of the search range)
for our proposed heuristics. Intuitively, we are able to locate a termination point Tlb if the
global optimum sits in the range [Tlb, Tub]. However, it is extremely hard to precisely find
Tlb, especially, because the complexity from the capacity constraints in (2.4) - (2.6) in the
CC-TFMSP(GI) (or, the CC-TFMSP(PoT)).

From the experience of our numerical experiments, we observe that it is generally more
difficult to generate a feasible maintenance schedule for those lower-value T (with kU

GI(T ) or
kU
PoT (T )). Note that the lower the value of T , the larger the value of kU

GI(T ) or k
U
PoT (T ) .

Therefore, usually, it is not easy to generate a feasible maintenance schedule for a low-value
T using the set of unconstrained optimal multipliers.

Following the above discussion, one has less chance to obtain the global optimum at
low values of T . For a low-value T , the best optimal objective function value of the CC-
TFMSP(GI) (or, the CC-TFMSP(PoT)) could be much more than its unconstrained ver-
sion, i.e., TCU

GI(T ) (or, TCU
PoT (T )). Also, the gap between the constrained version and

the unconstrained one tends to grow larger following our observations from the numerical
experiments (though we have no rigorous proof for this observation). Therefore, we employ
the lower bound for obtaining the global optimum for the TCU

GI(T ) (or, TC
U
PoT (T )) function

as a heuristic rule for locating a lower bound of the search range for the CC-TFMSP(GI)
(or, the CC-TFMSP(PoT)).

Lemma 4.2 provides a lower bound for the search of the TCU
GI(T ) function.

Lemma 4.2 (Yao and Huang [18], Lemma 4.2, pp. 39). Denote the optimal objective
function value and the optimal value of the basic period for the TCU

GI(T ) function as Ψ∗ and
T ∗, respectively. Then, the value of β serves as a lower bound for T ∗ where

β = 2S/ΨU (4.2)

and ΨU is an upper bound on the optimal objective function value of TCU
GI(T ).

One may easily obtain an estimate of ΨU by Z
′ (
kU
GI(TCC), TCC

)
where Z

′
(k, T ) is

expressed in (3.1) at the beginning of the search.

Suppose that during the search, we locate a new feasible local minimum at some
⌣

T and

its corresponding k(
⌣

T ) with the up-to-date, lowest objective function value Z
(
k(

⌣

T ),
⌣

T
)
.

Then, we may update the lower bound β by setting ΨU = Z
(
k(

⌣

T ),
⌣

T
)
since Z

(
k(

⌣

T ),
⌣

T
)

serves as a better and tighter upper bound.
On the other hand, we shall locate a termination point by locating a lower bound for

the search of the TCU
PoT (T ) function with the following theorem.

Theorem 4.3. The global optimum for the TCU
PoT (T ) function must exist in the range of(⌣

T 1/2 , TCC

]
where is the largest local minimum of the TCU

PoT (T ) function.
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The proof is presented in Appendix A.1.

Note that we may employ
⌣

T 1/2 as a lower bound of the search range since the TCU
PoT (T )

function finds no better objective function value for the (unconstrained) CC-TFMSP(PoT),
but the set of capacity constraints leads to only a possible larger objective function value

for T <
⌣

T 1/2 .

4.2 Proceed with the search in the search range

The proposed heuristics search from the initial point Tub to lower values of T until passing
the termination point Tlb.

Since any local minimum serves as a candidate of the optimal solution, one may obtain

its local minimum
⌣

T (k) by first taking the derivative of the objective function in (3.1) with
respect to T and then, equating it to zero for any given set of k obtained during the search

process. Therefore,
⌣

T (k) is given by eq. (4.3) as follows.

⌣

T (k) =

√√√√(S +

m∑
i=1

niC1i

ki
)/

m∑
i=1

niC2iki (4.3)

As starting from initial point Tub, the search first finds kU
GI(Tub) (or k

U
PoT (Tub)) and its

corresponding local minimum
⌣

T
(
kU
GI(Tub)

)
(or,

⌣

T
(
kU
PoT (Tub)

)
). If the candidate solution(

kU
GI(Tub),

⌣

T
(
kU
GI(Tub)

))
(or,

(
kU
PoT (Tub),

⌣

T
(
kU
PoT (Tub)

))
) obtains a feasible maintenance

schedule, we save it as the best-on-hand solution and move to the next junction point
(which is the largest one less than Tub). If it obtains no feasible maintenance schedule,
we use a binary search heuristic to search for a value of T , denoted by T̃ , so that enables(
kU
GI(Tub), T̃

)
(or,

(
kU
PoT (Tub), T̃

)
) to secure a feasible maintenance schedule with the

minimal cost. When employing a binary search, we should search for larger values of T
to attempt for a feasible maintenance schedule. Due to the fact that ki ≥ 1,∀i, there
should exist no local optimum for T > TCC following Lemma 4.1. Therefore, we may
use TCC in (4.1) as the upper bound of the search range. We locate the first candidate

at T =
(⌣

T (k) + TCC

)
/2 , and test its feasibility by Proc FT. We repeat such a binary

search scheme to iteratively look for the minimum basic period T̃ that could generate a
feasible maintenance schedule and, this iterative step stops when the difference between two
successive T is less than a specified tolerance; for example, 1% in this study.

Recall that the proposed heuristics take the sequence of sorted junction points {wj} as the
“roadmap” to proceed with the search and move from the upper bound of the search range to
smaller values of T (where wj+1 < wj , for all j). We denote the currently-visited junction
point as wp and the corresponding set of the on-hand multipliers as k(wp), respectively.
For the (unconstrained) CC-TFMSP(GI), if we ignore the capacity constraints, we should
replace kξ with kξ + 1 to seek for optimality at the next junction point following Theorem
3.5 where ξ = argmaxi{δi(ki) < wp}. In other words, we should try to take k(wp+1) in
(4.4) to obtain the lowest objective function value where

k(wp+1) , (k(wp)\{kξ}
∪

{kξ + 1}) (4.4)

Similarly, the (unconstrained) CC-TFMSP(PoT), we should use k(wp+1) in (4.5) where

k(wp+1) , (k(wp)\{kξ}
∪

{2kξ}) (4.5)
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Beside of pursuing the lowest objective function value, we should take into account
the issue of feasibility as the search algorithm proceeds. We divide it into three possible
situations as the proposed heuristic proceeds with the searching. Suppose that the current
junction point is wp and the corresponding set of multipliers is k(wp). Also, we should
replace kξ with (kξ + 1) for the CC-TFMSP(GI) (or, with 2kξ for the CC-TFMSP(PoT))
at the next junction point is wp+1.

There are three possible cases as we take into accounts the capacity constraints in (2.4)-
(2.6) in the search process.

Case 1: As (k(wp+1), wp+1) is able to obtain a feasible maintenance schedule, we move to
wp+1 and proceed with the search by p = p+ 1.

Case 2: If (k(wp), wp+1) is able to obtain a feasible maintenance schedule, but

(k(wp+1), wp+1) is not, we proceed with the search by p = p+1 and k(wp+1) = k(wp).

Case 3: As both (k(wp+1), wp+1) and (k(wp), wp+1) are not able to obtain a feasible
maintenance schedule, we stop the search at wp+1 since the search algorithm is not
able to obtain a feasible maintenance schedule for T < wp+1.

4.3 The feasibility testing procedure

This section presents a procedure that assists us in generating a feasible maintenance sched-
ule for the candidate solutions obtained during the search.

Note that this procedure was originally developed for generating a feasible production
schedule for the Economic Lot Scheduling Problem. (One may refer to Yao [16], and Yao
et al. [17] for the details.) Let W denote a candidate assignment, and let L(W ) be the
maintenance load in W . Assume we are given a set of multipliers k and T . Use Initial
Schedule Procedure (Proc IS ) (presented in Appendix A.2) to obtain an initial schedule of
maintenance W , and calculate L(W ). Determine L∗ as the minimal maximum load secured
to date, and W ∗ its corresponding maintenance schedule. (If W is the first maintenance
schedule then set L∗ = L(W ) and W ∗ = W ). Obviously, when L∗ ≤ T , i.e., the peak
maintenance load among all the K = lcm(k1, ..., km) basic periods is no larger than the
length of the basic period, we have a feasible maintenance schedule. We define an indicator
ϕ in Proc FT. If a feasible maintenance schedule is obtained in Proc FT, ϕ is equal to 1;
otherwise, ϕ = 0. After Proc IS, if one obtains no feasible maintenance schedule, i.e., ϕ = 0.
Use Proc SS (presented in Appendix A.2) to improve L∗ until ϕ = 1 or L∗ can no longer be
improved. If L∗ has not been improved for Υ consecutive iterations, Stop.

Before presenting Proc FT, we need to define some new parameters. Let the number of
iterations of the re-optimization be indexed by γ. The value of χ denotes the number of
consecutive times that the heuristic is not able to improve L∗(W ∗). Let Wm be the minimal
peak load schedule in a particular run of a local search (or, re-optimization), and L(Wm)
be the minimal peak load using the maintenance schedule Wm. We are ready to summarize
Proc FT as follows.
Summary of Proc FT

(a) Initialization: let γ = 0 and χ = 0.

(b) Start a local search with an initial schedule W obtained by Proc IS and Proc GS
(presented in Appendix A.2). Let Wm = W and L(Wm) = L(W ). If γ = 0, then let
W ∗ = W and L∗(W ∗) = L(W ).
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(c) Employ Proc SS to improve the peak load L(Wm) in Wm.

(d) Check the improvement in L∗(W ∗): If L(Wm) < L∗(W ∗), then let L∗(W ∗) = L(Wm)
and W ∗ = Wm. Let χ = 0. Go to Step 5. If L(Wm) ≥ L∗(W ∗), χ = χ+1, go to Step
5.

(e) Check the termination condition: If χ ≤ γ, go to Step 2 for re-optimiation. If χ > γ,
stop the heuristic and output the L∗(W ∗) and W ∗.

4.4 Summary of the proposed search algorithm

In this section, we summarize the proposed search algorithm in a step-by-step fashion as
follows.

Step 1. Employ Proc IP to locate the initial point Tub and {wj} , i.e., the sorted sequence
of all the junction points of TCU

GI(T ) (or TCU
PoT (T ) for the CC-TFMSP(PoT)). Do

the followings:

(a) Find k∗ = kU
GI(Tub) (or, k∗ = kU

PoT (Tub) for the CC-TFMSP(PoT)), and its

corresponding local minimum
⌣

T
(
kU
GI(Tub)

)
(or,

⌣

T
(
kU
PoT (Tub)

)
) by eq. (4.3).

(b) If
(
kU
GI(Tub),

⌣

T
(
kU
GI(Tub)

))
(or,

(
kU
PoT (Tub),

⌣

T
(
kU
PoT (Tub)

))
) obtains a feasible

maintenance schedule, set T ∗ =
⌣

T
(
kU
GI(Tub)

)
(or, T ∗ =

⌣

T
(
kU
PoT (Tub)

)
); other-

wise, use a binary search heuristic to search for a value of T , denoted by T̃ , so

that enables
(
kU
GI(Tub), T̃

)
(or,

(
kU
PoT (Tub), T̃

)
) to secure a feasible maintenance

schedule with the minimal cost, and set T ∗ = T̃ .

(c) Set TC∗ = Z (k∗, T ∗), ΨU = TC∗, and obtain Tlb = β by eq. (4.2). Let p = 0
and r = 0.

Step 2. If p = 0, w1 = max{wj |wj < Tub}; otherwise, directly locate wp+1. If wp+1 < Tlb,

then go to Step 5; otherwise, obtain k(wp+1) , (k(wp)\{kξ}
∪
{kξ+1}) using eq. (4.4)

(or, k(wp+1) , (k(wp)\{kξ}
∪
{2kξ}) using eq. (4.5) for the CC-TFMSP(PoT)) where

ε = argmaxi{δi(ki) < wp}, and test the feasibility of (k(wp+1), wp+1) using Proc FT.
If (k(wp+1), wp+1) is able to obtain a feasible maintenance schedule, go to Step 3;
otherwise, go to Step 4.

Step 3. Obtain
⌣

T (k(wp)) by (4.3) and compute Z(k(wp),
⌣

T (k(wp))). If Z(k(wp),
⌣

T (k(wp)))

< TC∗, set k∗ = k(wp), T ∗ =
⌣

T (k(wp)), and TC∗ = Z (k∗, T ∗). Obtain ΨU =
Z (k∗, T ∗) and update Tlb = β if β = 2S/ΨU > Tlb. (For the CC-TFMSP(PoT),

we do the following step additionally: if r = 0, we set
⌣

T 1 =
⌣

T (k(wp)) and r = 1 if
⌣

T (k(wp)) ∈ [wp+1, wp]. Also, update Tlb =
⌣

T 1/2 if
⌣

T 1/2 > Tlb.) Proceed with the
search by p = p+ 1(i.e., moving to wp+1) and go to Step 2.

Step 4. If (k(wp), wp+1) is not able to obtain a feasible maintenance schedule, go to Step
5; otherwise, set k(wp+1) = k(wp). (For the CC-TFMSP(PoT), we do the following

step additionally: if r = 0, we set
⌣

T 1 =
⌣

T (k(wp)) and r = 1 if
⌣

T (k(wp)) ∈ [wp+1, wp].

Also, update Tlb =
⌣

T 1/2 if
⌣

T 1/2 > Tlb.) Proceed with the search by p = p + 1 (i.e.,
moving to wp+1) and go to Step 2.



822 M.-J. YAO AND J.-Y. HUANG

Table 1: The data set of the five-group example
Group ni Yi ai bi si setup time τi maintenance time πi

i ($/day) ($/day) ($) (in days) (in days)
1 10 0.90 23 35 88 0.09 0.81
2 34 0.95 8 18 192 0.08 1.62
3 30 0.85 21 5 193 0.03 0.87
4 36 0.95 69 60 205 0.09 1.43
5 12 0.94 13 4 204 0.04 0.76

Step 5. Output the optimal solution (k∗, T ∗) with its corresponding objective function
value TC∗

GI for the CC-TFMSP(GI) (or TC∗
PoT for the CC-TFMSP(PoT)).

5 Numerical Experiments

The first part of this section demonstrates the implementation of the proposed search algo-
rithm via an example. Then, using randomly generated instances, we compare the solution
obtained from the proposed search algorithm with a trivial solution from the common cycle
approach in the second part of this section.

5.1 A demonstrative example

In this section, we present a five-group example with a fixed cost S = 50. The data set of
this example is shown in Table 1.

Under GI policy, we present the implementation details of the proposed search algorithm
as follows.

We start with the procedure Proc IP. Then, we obtain all the junction points δi(ki)
by eq. (3.3) (or, eq.(3.9)) for each vehicle group and generate a sequence {wj} by sorting
all the junction points of the TCU

GI(T ) function with unconstraint capacity in descending
order. In this example, we locate TCC = 5.80 by eq. (4.1) between the 2nd and the 3rd

junction points. Since TCC is less than maxi {δi(1)} = 10.51, since ((1, ..., 1) , TCC) is able
to obtain a feasible maintenance schedule, we have Tub = TCC and stop the Proc IP. We

obtain kU
GI(Tub) = (1,1,2,1,2) by eq. (3.5) and

⌣

T
(
kU
GI(Tub)

)
= 3.379 by eq. (4.3). Since(

kU
GI(Tub),

⌣

T
(
kU
GI(Tub)

))
obtains a feasible maintenance schedule, set k∗ = (1,1,2,1,2) and

T ∗ = 3.379. We also obtain TC∗ = Z (k∗, T ∗) = $9, 689.4, set ΨU = TC∗, and obtain
Tlb = β = 0.01032 by eq. (4.2). Now, we have p = 0 and r = 0.

Since p = 0, we locate the next junction point at w1 = max{wj |wj < Tub} = 5.257.
We next obtain ε = argmaxi{δi(ki) < TCC} = 5 with k(w1) = (1, 1, 2, 1, 3), and com-

pute
⌣

T (k(w1)) = 3.319. Since
(
k(w1),

⌣

T (k(w1))
)
is able to secure a feasible maintenance

schedule, we compute Z
(
k(w1),

⌣

T (k(w1))
)

= $9, 643.8 (< TC∗). Therefore, we update

ΨU = TC∗ = $9,643.8, T ∗ = 3.319, k∗ = (1,1,2,1,3) and Tlb = β = 0.01036.
The search algorithm proceeds with its search until it meets the lower bound β(=

0.01036). The optimal solution is obtained T ∗ = 3.319 and k∗ = (1,1,2,1,3) with TC∗ =
$9, 643.8.

On the other hand, we summarize the details of search process under PoT policy as
follows.
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Before obtaining w1, all the steps are the same as those details under GI policy. We
also obtain ε = argmaxi{δi(ki) < TCC} = 5, but with k(w1) = (1, 1, 2, 1, 4) since we update

k(w1) , (k(Tub)\{kξ}
∪
{2kξ}) and obtain

⌣

T (k(w1)) = 3.28. Since
(
k(w1),

⌣

T (k(w1))
)
is

able to secure a feasible maintenance schedule, we compute Z
(
k(w1),

⌣

T (k(w1))
)
= $9, 654.5

(< TC∗ = $9, 689.4). Therefore, we update ΨU = TC∗ = $9, 654.5, T ∗ = 3.28, k∗ =
(1, 1, 2, 1, 4) and Tlb = β = 0.010358. In fact, it is also the optimal solution under PoT
policy, which is 0.1% higher than the solution obtained under GI policy.

One may be interested in the impact of the capacity constraints on the optimal average
total cost of the whole transport fleet. In this example, the optimal solution for the uncon-
strained version is T ∗ = 2.49, k∗ = (1, 2, 4, 1, 4), with its TC∗ = $9, 087.27. Note that this
solution is 6.0% less than the optimal solution of the constrained problem (under GI policy).
However, one may easily versify that this solution is actually infeasible. (The sum of X1

and X4 is 2.42 where Xi = τi + πi. Obviously, it leads to infeasibility in the maintenance
schedule as adding the maintenance duration of any other group.)

On the other hand, we would like to compare the obtained solution with an easy solution
from the Common Cycle (CC ) approach in which it requires that ki = 1 for all i, i.e., all
the vehicle groups share a common maintenance cycle, TCC , which is expressed in eq. (4.1).
Note that the solution from the CC approach is always a feasible solution so that it may
serve as an upper bound on the optimal objective function value of the CC-TFMSP. In
this example, we have Z ((1, ..., 1) , TCC) = $10, 487, which is 8.7% larger than the optimal
solution obtained from our proposed algorithm under GI policy. Evidently, thought the
CC approach is easy for implementation, the managers has to sacrifice the quality of the
maintenance scheduling comparing with the solutions obtained from the proposed search
algorithms in this study.

5.2 Random experiments

To verify the effectiveness of the proposed search algorithms, we would present a summary
of our random experiments. In our experiments, we test for five numbers of vehicle groups
(m = 3, 5, 7, 10, 20), and five values of the fixed cost (S = 25, 50, 100, 200, 250). This yielded
25 combinations of parameter settings. For each combination, we randomly generate 1, 000
instances by picking the (random) values of Yi, ai, bi, τi, πi and si using uniform distribution
functions with their ranges indicated in Table 2. Therefore, we have a total of 25, 000
instances in our experiments.

We define CR, namely, the percentage of cost reduction, as a performance measure of
the obtained solution from our proposed search algorithms as (5.1).

CR = [(Z ((1, ..., 1) , TCC)− TC∗) /Z ((1, ..., 1) , TCC)] · 100% (5.1)

We take the optimal solution from the CC approach as the benchmark in our experi-
ments. For each instance, we solve it using the CC approach, our proposed search algorithm
under GI policy, and that under PoT policy. Table 3 summarizes our experimental results
of those 25 settings. For each instance, the value of CR under GI policy is greater than
(or equal to) that under PoT policy, thought the difference is insignificant. One may also
observe that PoT policy is more efficient than GI policy by comparing the run time of both
proposed search algorithm.

One may have some more interesting observations on Table 3. For those instances with
a small number of vehicle groups, the maximum value of CR is more significant. Obviously,
the managers have to pay much more attention to these cases since they should take into
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Table 2: The parameter settings of our random experiments.
m 3, 5, 7, 10, 20
S 25, 50, 100, 200, 250
ni U[10-35]
τi U[0.03-0.09]
πi U[0.8-1.0]
Yi U[0.9-0.95]
ai U[5-70]
bi U[5-70]
si U[80-210]

accounts the capacity constraints for generating a feasible maintenance schedule. As the
number of vehicle groups increases, it becomes more difficult to secure a feasible maintenance
schedule. It often happened that only the CC approach is able to obtain a feasible solution,
and the proposed search algorithm resulted in no CR for the generated instance in such
cases.

On the other hand, we would like to test if the optimal solution obtained from the
unconstrained model in Yao and Huang [18] is able to obtain a feasible maintenance schedule.
(It surely solves an optimal solution if it obtains one.) After obtaining the optimal solution
from Yao and Huang [18], we test its feasibility by the equations in (2.4) to (2.6) and record
those being able to obtain a feasible maintenance schedule. Table 4 summarizes the results
of our numerical experiments.

The unconstrained model in Yao and Huang [18] solves an optimal solution with a feasible
maintenance schedule for those small-size (e.g., 3 and 5) and large-setup cost (e.g., larger
than 100) instances. We may observe that the capacity constraints have minor impacts on
these instances. However, as the problem-size (m) increases, it is more difficult to generate a
feasible maintenance schedule. Therefore, for most of the larger-size instances, the optimal
solutions from Yao and Huang [18] are not able to obtain a feasible maintenance schedule.

6 Concluding Remark

This paper deals with the problem of determining maintenance frequency for the vehicle
groups in a transport fleet with limited maintenance capacity. We formulate the mathemat-
ical model for the interested problem. Also, we conduct theoretical analysis on this problem
under both GI and PoT policies. By utilizing the theoretical results on the junction points,
we proposed two search algorithms for solving the problem. Our numerical experiments
demonstrate that the proposed search algorithms are efficient and may serve as a useful
decision-support tool for planning the maintenance scheduling for the vehicle groups in a
transport fleet.

In this study, we assume that all the maintenance activities are done in a single facil-
ity. The authors are currently working on an extension in which the vehicles have to go
through a series of facilities for conducting the required maintenance activities. Obviously,
the capacity scheduling in this problem will be even more complicated since the managers
have to deal with the challenge from the constraint that the activity for a vehicle group
in one maintenance facility must be finished before the vehicle group enters the posterior
maintenance facility.
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Table 3: Computational results for the random experiments.

m S
GI policy PoT policy

Avg Max Run-time Avg Max Run-time
CR(%) CR(%) (sec) CR(%) CR(%) (sec)

3

25 2.405 20.330 0.741 2.399 19.140 0.231
50 2.533 16.620 0.661 2.533 16.620 0.170
100 2.741 19.410 0.661 2.735 19.150 0.150
200 2.497 21.530 0.661 2.497 21.530 0.160
250 2.252 16.910 0.670 2.252 16.710 0.161

5

25 2.509 15.780 1.563 2.506 14.320 0.200
50 2.453 15.500 1.572 2.452 14.420 0.210
100 2.447 17.060 1.582 2.439 17.890 0.200
200 2.143 18.070 1.593 2.141 17.730 0.211
250 2.275 16.790 1.562 2.275 16.160 0.220

7

25 1.576 11.090 2.924 1.567 10.570 0.280
50 1.533 11.540 2.914 1.530 11.540 0.271
100 1.487 10.470 2.914 1.481 9.180 0.280
200 1.476 13.130 2.915 1.469 13.130 0.291
250 1.613 14.460 2.914 1.613 15.070 0.270

10

25 0.656 7.660 5.758 0.656 7.660 0.391
50 0.713 7.410 5.748 0.713 7.700 0.400
100 0.609 5.940 5.739 0.609 6.060 0.391
200 0.714 8.770 5.758 0.711 6.560 0.390
250 0.608 5.640 5.758 0.606 5.640 0.401

20

25 0.007 2.050 23.203 0.007 2.050 0.941
50 0.009 2.160 22.563 0.009 2.160 1.002
100 0.002 1.150 22.372 0.002 1.150 0.951
200 0.005 1.280 23.374 0.005 1.280 0.971
250 0.007 2.330 22.332 0.007 2.330 0.942

Table 4: The portion of the instances where the unconstrained model obtains a feasible
maintenance schedule.

S
25 50 100 200 250

m

3 3.6% 4.0% 6.2% 6.3% 7.2%
5 1.0% 0.4% 1.4% 2.2% 2.6%
7 0.0% 0.0% 0.2% 0.4% 0.6%
10 0.0% 0.0% 0.0% 0.0% 0.0%
20 0.0% 0.0% 0.0% 0.0% 0.0%



826 M.-J. YAO AND J.-Y. HUANG

A.1 Proof of Theorem 4.3

Recall that
⌣

T 1 is the largest local minimum for the TCU
PoT (T ) function. Let T ∗ and k∗ be

the optimal value of T and the set of optimal multipliers secured in the range of
(⌣

T 1/2 ,
⌣

T 1

]
,

respectively, and TCU
PoT (T

∗) be the optimal objective function value.
We prove Theorem 4.3 by showing that the TCU

PoT (T ) function secures no local minimum

below
⌣

T 1/2 such that its objective function value is lower than TCU
PoT (T

∗). We define a
function ΓU

PoT (T ) by

ΓU
PoT (T ) =

m∑
i=1

hi(T ) =
m∑
i=1

{
inf

ki=2pi ,pi∈N,∀i
Φi(ki, T )

}
(A.1)

Let T̃1 be the largest local minimum for the ΓU
PoT (T ) function. Suppose that T̃ ∗ and

k̃∗ obtains the minimum value for the ΓU
PoT (T ) function in

(
T̃1/2 , T̃1

]
. Then, one must

secure another optimal solution at T̃ ∗/2 for the ΓU
PoT (T ) function with the set of optimal

multipliers being 2k̃∗ (otherwise, it contradicts with the assumption that 2k̃∗ and k̃∗ are

optimal in
(
T̃1/2 , T̃1

]
. Also, if we would like to locate the global optimum of the ΓU

PoT (T )

function, we may skip the range of
(
0, T̃1/2

]
since the ΓU

PoT (T ) function repeats the shape

of its curve in
(
0, T̃1/2

]
(so that there will be no better solution in

(
0, T̃1/2

]
).

Clearly, TCU
PoT (T ) = S/T + ΓU

PoT (T ). Since S/T is a monotone function of T , the
term S/T increases as the values of T decrease. We may assert that no better solution than

(k∗, T ∗) in
(
0, T̃1/2

]
owing to the characteristics of the ΓU

PoT (T ) function. It is easy to

show that
⌣

T 1 < T̃1. Therefore, T ∗ must be obtained in the range of
(⌣

T 1/2 ,
⌣

T 1

]
. On the

other hand, Lemma 4.1 asserts that there exists no local minimum T > TCC . Therefore, the

global optimum for the TCU
PoT (T ) function resides in the range of

(⌣

T 1/2 , TCC

]
. Q.E.D.

A.2 The procedures in the feasibility testing procedure

We present the three major procedures in the Feasibility Testing Procedure (Proc FT ).

A.2.1 The Initial Schedule Procedure (Proc IS)

The detail of rocedure Proc IS is as follows. Denote by N as the set of all m groups. Let
ϑ be a subset of the groups of vehicle, |ϑ| ≤ m, and let W (ϑ) be a partial maintenance
schedule containing only the subset ϑ of groups. When Proc IS is applied for the first
time, one starts with an empty set of group ϑ = ϕ and the empty maintenance schedule,
W (ϑ) = ϕ. Then, one assigns the maintenance durations of groups to W (ϑ) following Proc
GS (described next), and update ϑ accordingly, until all m groups are assigned, securing an
initial schedule W = W (N).

Next, consider the case when Proc IS has been used at least once. Suppose that W0

is the maintenance schedule selected for re-improvement from the last iteration. To start
a new iteration of improvement, one randomly selects a subset of groups which frequencies
and durations are fixed. Let it be denoted by F . The maintenance schedule in the new
W ’ for the groups in the set of F are fixed at their previous values. Let F̄ = (N − F ) be
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the set of groups which are yet-to-be-scheduled in W ’. Proc IS is now used to generate an
initial schedule for the next run of re-improvement in the following manner: Let ϑ = F ,
and W ′(ϑ) = W0(F ), and subtract the maintenance durations of the groups in the set F
from N . W ′(F ) is a new partial schedule. For the groups in the set F̄ , Proc IS calls upon
Proc GS which iteratively assign group i with the longest maintenance duration (including
the setup time and the maintenance time) to the least loaded basic period from among the
unassigned groups in F̄ .

The rationale behind this heuristic rule is as follow. If a group i with a long maintenance
duration is scheduled after most of the groups have been assigned, it may create a relative
large peak load since one may be forced to assign that long maintenance duration to an
already heavily loaded basic period.

A.2.2 The Group Scheduling Procedure (Proc GS)

The Group Scheduling Procedure (Proc GS ) constructs the schedule W incrementally. Let ϑ
be subset of the groups, |ϑ| ≤ m, and let W (ϑ) be a partial maintenance schedule containing
only the subset ϑ of groups. Determine the least common multiplier for all the ki’s in the
set ϑ, κ (ϑ) = lcm {ki|i ∈ ϑ}.

Suppose that group î is the next group to be added to the set ϑ. To assign the occu-

pancy time Xi to the maintenance schedule W (ϑ), one first updates κ (ϑ) by κ
(
ϑ ∪ {̂i}

)
=

lcm {κ (ϑ) , kî}. If κ
(
ϑ ∪ {̂i}

)
> κ (ϑ), one should make κ

(
ϑ ∪ {̂i}

)
/κ (ϑ) copies of

W (ϑ) in the entire planning horizon of κ
(
ϑ ∪ {̂i}

)
basic periods to construct a ’layout’

for W
(
ϑ ∪ {̂i}

)
. If κ

(
ϑ ∪ {̂i}

)
= κ (ϑ), then one employs W (ϑ) directly as a layout for

W
(
ϑ ∪ {̂i}

)
. Then, one obtains the minimal peak load by choosing among the kî ways of

assigning Xi to the layout of W
(
ϑ ∪ {̂i}

)
.

A.2.3 The Schedule Smoothing Procedure (Proc SS)

The Schedule Smoothing Procedure (Proc SS ) is used after an initial schedule W has been
obtained by Proc IS. Its aim, as the name suggests, is to ’smooth’ the load, i.e., minimize
the maximal load, on the basic periods in the planning horizon. Such ’smoothing’ is ac-
complished via three subroutines which we label the Removal Routine, the Pair-Exchange
Routine and the Two-to-One Exchange Routine. The Removal Routine attempts to ac-
complish the objective by removing some Xi from the maximally loaded basic period and
assigning it to some other basic period. The Pair-Exchange Routine tries to achieve the
same result by exchange a group maintained in the maximally loaded basic period with an-
other group which has a shorter maintenance duration and is not produced in the maximally
loaded basic period. Finally, the Two-to-One Exchange Routine exchanges the occupancy
times of two groups with another group which has a longer maintenance duration, and which
is maintained in the maximally occupied basic period (It is evident that the Two-to-One
exchange procedure can be expanded (or even optimized) for more combinations of groups
exchanged. One may refer to Yao et al. (2003) for the pseudo-codes of the Removal Routine,
the Pair-Exchange Routine and the Two-to-One Exchange Routine.
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