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1.1 Background

There are many variations on product pricing models depending on the setting. For exam-
ple, there is the single-product, multi-customer setting, which is primarily concerned with
what price to offer to different customer segments. Airline revenue management is one of
the most popular examples in this context, where business travelers, leisure travelers and
budget travelers are offered different prices for the same flight, depending on the lead time
of purchase and additional options (e.g., partially refundable tickets). An alternative frame-
work is the multi-product, multi-customer setting where every customer is offered the same
price for a given product, but different customer segments have varying preferences. This
is more of a combinatorial problem where given the customer preference information, the
prices need to be set to maximize total revenue. We will focus on the second type of problem
in this paper.

In general, suppose a company has m different products and market analysis tells them
that there are n distinct customer segments, where customers of the same segment behave
the “same”. A key revenue management problem is to determine optimal prices for each
product to maximize total revenue, given the customer choice behavior. There are multitudes
of models for customer choice behavior [27], but this paper focuses solely on those based on
reservation prices.

Let Rij denote the reservation price of segment i for product j, i = 1, . . . , n, j = 1, . . . ,m,
which reflects how much customers of segment i are willing and able to spend on product
j. Rij is not only the dollar amount that product j is worth to customers in segment
i, but it also reflects how much they are able to pay for it. For example, if a customer
segment believes that a 7 day vacation to St. Lucia is worth $2,000, but they can only
afford $1,000 for a vacation, then their reservation price for St. Lucia is $1,000. We assume
that reservation prices are the same for every customer in a given segment and each segment
pays the same price for each product. (Note however that our definition of “product” in this
paper is abstract enough that our mathematical models are ale to handle any differential
pricing strategy by introducing new “products,” see [26].) Customer choice models based
on reservation prices assume that customer purchasing behavior can be fully determined by
their reservation price and the price of products. Without loss of generality, we make the
following assumption:

Assumption 1.1. Rij is a nonnegative integer for all i = 1, . . . , n and j = 1, . . . ,m.

If the price of product j is set to $πj , πj ≥ 0, then the surplus of segment i for product
j is the difference between the reservation price and the price, i.e., Rij − πj . It is often
assumed that a segment will only consider purchasing a product with nonnegative utility,
i.e.,

Assumption 1.2. If segment i buys product j, thenRij−πj ≥ 0, i = 1, . . . ,m, j = 1, . . . ,m.

Even in a reservation price framework, there are several different models for customer
choice behavior in the literature (see [20] and the references therein). In [6, 7], the authors
proposed a pricing model that maximizes profits with the assumption that each customer
segment only buys the product with the maximum surplus if the surplus is nonnegative.
This model is often referred to as the maximum utility or envy-free pricing model. In this
model, each segment buys at most one product. The authors modeled the problem as a
non-convex, nonlinear mixed-integer programming problem and solved the problem using a
variety of heuristic approaches.

In [15], the authors examined a Share-of-Surplus Choice Model in which the probability
that a segment will choose a product is the ratio of its surplus versus the total surplus
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for the segment across all products with nonnegative surplus. They proposed a heuristic
which involves decomposing the problem into hypercubes and used a simulated annealing
algorithm to find the best hypercube. Solutions found by the heuristic for problems with
sizes up to 5 products and 10 segments were shown to be near-optimal.

Another approach of pricing multiple products is to consider the problem of bundle
pricing [11]. It is the problem of determining whether it is more profitable to offer some of
the products together as a package or individually, and what prices should be assigned to the
bundles or individual products to maximize profit. The bundle pricing problem in [11] was
formulated as a mixed integer linear programming problem using a disjunctive programming
technique [3].

Some research has been done on partitioning customers into segments by the probability
that they would buy each product. In [12], the authors proposed a segmentation approach
that groups the customers according to their reservation prices and price sensitivity. The
probability of a segment choosing a product j is modeled as a multinomial logit model
with the segment’s reservation price, price sensitivity, and the price of the product j as
parameters. Unlike their model, we do not consider variances in price sensitivity in this
paper as a criterion when we partition customers into segments and we assume that all
segments react to price changes in the same way.

In our approach, the company sets the prices but it does not manipulate the offers
each customer receives. Therefore, the prices will be the main decision variables in our
mathematical models. A parallel stream of research uses choice models to decide which
subset of customers should be offered which subset of products as well as the duration
of the offer. Let us call the first approach universal prices approach and the second one
distinguishing prices approach.

Distinguishing prices approach has been successfully applied in many settings, in par-
ticular, in airline revenue management, see [25, 16]. In the framework of the distinguishing
prices approach, another related situation is that of flexible products. The customers are
offered flexible products each of which is a subset of similar products (e.g., the customers
are offered the flexible products {product 1, product 2}, {product 3, product 4, product 5}
and {product 1, product 6}). Then, when a customer buys a flexible product (say {product
1, product 6}), the customer knows that s/he will end up with one of the products in the
subset for her/his choice (either product 1 or product 6); however, the company is the one
who decides which specific product from the subset chosen by the customer will be assigned
to that customer (either product 1 or product 6). See, [10, 9].

An important avenue of research in revenue management is concerned with dynamic
pricing situations (see, [4, 1, 2]). In this paper, we focus on the static version of the problem.
In practice, static models may be used in dynamic situations, provided reoptimization of the
prices can be done quickly (this was shown to be so for the maximum utility models using
reservation prices in [23]).

There are many other aspects of customer choices that can influence the prices. For
instance, a number of firms competing based on their local inventory levels may create an
environment where the demand shifts dramatically from one company to the other almost
purely based on the local availability of the products and hence the local inventory levels
(see [17]).

Many optimization models and techniques have been effectively utilized in the area of rev-
enue management. Classical approaches have used dynamic programming models and their
reformulations by very large scale linear programming problems. Also used are Markov de-
cision process formulations and their affine approximations (see [28]). Mixed-integer bilevel
programs are utilized in [5] to attack the joint network design and optimal pricing problems.
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In this paper, we assume that the reservation prices for each customer segment and prod-
uct are given. Given different models of customer purchasing behavior, we aim to formulate
and solve the corresponding revenue maximization problem as a mixed-integer programming
problem. Note that we take the customer choice (behavior) models (e.g., Share-of-Surplus,
Price Sensitive) as axioms in the corresponding sections of this paper. The axioms (customer
choice models) are probabilistic in nature (hence, the phrase Probabilistic Choice Models in
the title) as they define the probability that a customer segment will buy a particular prod-
uct (or what fraction of a group of customers in a customer segment will buy a particular
product). However, our main focus is in solving the underlying mathematical problem (i.e.,
computing optimal or near-optimal prices maximizing the expected revenue or profit). Our
mathematical optimization formulations of the underlying problem are deterministic and
exact (not an approximation to a stochastic problem). For a discussion of various axioms
related to the axioms of this paper, see [26]. In the Appendix, we discuss how we performed
the customer segmentation and estimated the mean values for the reservation prices from
customer purchase orders of a Canadian company in the tourism sector.

1.2 Probabilistic Choice Models

In this section, we introduce the general framework of probabilistic customer choice mod-
els that determines the probability that customer segment i will purchase product j, i =
1, . . . , n, j = 1, . . . ,m. Let βij be binary decision variables where

βij :=

{
1, if the surplus of product j is nonnegative for segment i;
0, otherwise.

That is, βij = 1 if and only if Rij − πj ≥ 0 and βij = 0 if and only if Rij − πj < 0, where,
again, πj is the decision variable for the price of product j. This relationship can be modeled
by:

(Rij − πj)βij ≥ 0,
(Rij − πj)(1− βij) ≤ 0,

(Rij − πj + 1) ≤ (Rij −mini {Rij}+ 1)βij ,

for i = 1, . . . , n and j = 1, . . . ,m (the third inequality is valid under Assumption 1.1). To
linearize the above inequalities, we can use a disjunctive programming technique. Let pij
be an auxiliary variable where pij = πjβij , i.e,

pij :=

{
πj , if βij = 1,
0, otherwise.

This relationship can be modeled by the following set of linear inequalities (together with
the restriction that βij ∈ {0, 1}, for every i, j):

pij ≥ 0,

pij ≤ πj ,

pij ≤ Rijβij ,

pij ≥ πj − ( max
i=1,...,n

Rij + 1)(1− βij),

for i = 1, . . . , n and j = 1, . . . ,m. The first and the third inequalities set pij = 0 when βij =
0; the second and the fourth inequalities set pij = πj when βij = 1. Rij is a valid upper-
bound for pij since if pij > Rij , then βij = 0 and thus pij = 0. Also, maxi=1,...,n {Rij}+1 is a
valid upper-bound for πj since no segment will buy product j if πj > Rij for all i = 1, . . . , n.
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Here π,β, and p are vectors of πj , βij and pij , respectively; let P be the following
polyhedron:

P := {(π, β, p) : Rijβij − pij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m, (1.1)

Rij(1− βij)− πj ≤ 0, i = 1, . . . , n, j = 1, . . . ,m,

pij ≤ πj , i = 1, . . . , n, j = 1, . . . ,m,

pij ≥ πj −
(

max
i=1,...,n

{Rij}+ 1

)
(1− βij), i = 1, . . . , n, j = 1, . . . ,m,

Rij − πj + 1 ≤
(
Rij − min

i=1,...,n
{Rij}+ 1

)
βij , i = 1, . . . , n, j = 1, . . . ,m,

pij ≥ 0, πj ≥ 0, i = 1, . . . , n, j = 1, . . . ,m}.

Thus, to model the condition in Assumption 1.2, we need to set prices πj and βij such that
β ∈ {0, 1}n×m and (π,β,p) ∈ P .

There are ambiguities regarding the choices between multiple products with nonnegative
utility. Given all the products with nonnegative surplus, which products would the customer
buy? Are there some products they are more likely to buy than others? In a probabilistic
choice framework, we need to determine the probability Prij that segment i buys product
j. Let Ni be the number of customers in segment i. Then the expected revenue for the
company is

n∑
i=1

NiE[revenue earned from segment i] =
n∑

i=1

Ni

m∑
j=1

πjPrij .

In our revenue management problem, we can interpret Prij as the fraction of customers of
segment i that buys product j, i.e., the expected revenue is

m∑
j=1

πjE[number of customers in segment i that buys product j] =
m∑
j=1

πj

n∑
i=1

NiPrij .

Furthermore, let Prij be positive if and only if the surplus of product j is nonnegative for
segment i.

Thus, the expected revenue maximization problem is:

max
n∑

i=1

m∑
j=1

NiπjPrij , (1.2)

s.t. Prij > 0 ⇔ βij = 1, i = 1, . . . , n; j = 1, . . . ,m,

Prij = 0 ⇔ βij = 0, i = 1, . . . , n; j = 1, . . . ,m,

(π, β, p) ∈ P,

βij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . ,m.

All the probabilistic choice models explored in this paper are based on the optimization
problem (1.2). What differentiates the models is how Prij is defined.

One of the most popular probabilistic choice models in the marketing literature may be
the multinomial logit (MNL) model,

Prij :=
evij∑m
k=1 e

vik
,
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where vij represent the utility or desirability of the product j to segment i. Clearly, there
are wide variations in how this vij is modeled as well. Note that in the MNL model, due
to the use of the exponential function, vij may take on any real value. For example, an
alternative model is to have

Prij :=
vij∑
k vik

,

but we would then require vij ≥ 0 and
∑

k vik > 0, which could be easily addressed in many
cases. One of the major differences in our work is that we model optimal pricing problem
for big-ticket items (just like the dichotomy between convex optimization and integer pro-
gramming) we are not able to assume that the buy/do-not-buy decisions are treatable by
continuous variables. Indeed, in the markets or decision making situations when the volume
of sales are so high one can define the decision variables using the inverse market share
variable as compared to the price variables, and generate tractable, convex optimization
problems; see for example [24] and [8] and the references therein. Using the reservation
price approach, Schön [21] extended such models to Bradley-Terry-Luce model; however,
these models still do not resolve the discreteness of the 0,1 decision making situations.

Main contributions of this paper are: new mathematical models of customer behavior
for big-ticket items (e.g., buying cars, trucks, airplanes or vacation packages), new MIP for-
mulations, new MIP-SOCP (Second Order Cone Programming) formulations, some of their
mathematical properties, heuristics and valid inequalities, algorithm to extract reservation
prices from raw, purchase order data. In this paper, we examine several probabilistic choice
models from a mathematical programming perspective. Depending on how Prij is modeled,
we can formulate the optimization problem (1.2) as a convex mixed-integer programming
problem (MIP). We present one of the simplest models of our paper, the Weighted Uniform
Model in Section 2. In this model, customers are more likely to purchase products with higher
reservation prices. We call a special case of it Uniform Model (purely of academic interest).
In Section 3, we explore mathematical optimization formulations of the Share-of-Surplus
Model proposed in [15], including an MIP formulation for the case with restricted prices.
Section 4 explores the Price Sensitive Model where Prij decreases as the price of product j
increases. We then discuss properties of the optimal solutions on particular data sets (Sec-
tion 5) and compare the optimal prices πj and variables βij of the different models (Section
5.1). We also consider enhancements to the models, including heuristics to determine good
feasible solutions quickly (Section 6) and valid inequalities to speed up the solution time
of the MIPs (Section 7). In Section 8, we show how we can incorporate product capacity
limits and product costs into the models. We illustrate some computational results of our
models in Section 9 and conclude and discuss future work in Section 10. Our main focus
is on the Share-of-Surplus Model and the Price Sensitive Model. For the former model, we
propose a modification and provide a new formulation. To the best of our knowledge, the
Price Sensitive Model although very intuitive is new, the novel part being the mathematical
formulation. Among other new ideas, we also utilize second order cone constraints (and
related solvers) in our convex relaxations and branch-and-bound algorithms. We introduce
these mathematical models slowly, building up towards more sophisticated (and more re-
alistic) models from more elementary (but much less applicable) Weighted Uniform Model.
We consider these simpler models for theoretical and computational reasons only. These
models by no means correspond to estimating the consumer behavior. We utilize them for
approximating optimal prices (for the more realistic Share-of-Surplus and the Price Sensitive
Models) and for improving our understanding of the underlying mathematical structures in
the more realistic models.

Note that proofs for all theorems and lemmas are in Appendix A.
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1.3 Notation

Following are common parameters and notation used throughout the paper:

n number of segments,
m number of products,
Ni size of segment i,
Rij reservation price of segment i for product j,
Rj := maxi{Rij},
Rj := mini{Rij},
R̃i := maxj{Rij},
πj price of product j (decision variable),
βij equals 1 iff Rij − πj ≥ 0, equals 0 otherwise (decision variable),
P polyhedron (1.1).

2 Uniform and Weighted Uniform Models

In this section, we introduce theWeighted Uniform Model which is inspired by the multinomial-
logit (MNL) model discussed in Section 1.2. We let the utilities vij be represented by the
reservations prices Rij , but only consider products with nonnegative surplus. Let

Prij :=


0, if

m∑
j=1

Rijβij = 0,

u(Rij)βij∑m
k=1 u(Rik)βik

, otherwise,

where u(·) is a monotone nondecreasing function of Rij . Thus, with this definition of Prij ,
out of all products with nonnegative surplus, a customer is more likely to buy a product
with higher reservation price. In the marketing literature, u(x) = exp(x) is a common
choice for the MNL model since u(x) > 0 for all x ∈ R. However, since from Assumption
1.1 Rij ≥ 0,∀i, j, we may define u(x) := x, i.e.,

Prij :=
Rijβij∑m

k=1 Rikβik
, if

m∑
j=1

Rijβij ≥ 1.

This leads to our Weighted Uniform Model, we name the model arising from the trivial
constant function u(x) := 1, the Uniform Model.
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2.1 The Formulation

The corresponding expected revenue maximizing problem is

max
n∑

i=1

Niti, (2.1)

s.t.
∑m

j=1 Rijaij ≤
∑m

j=1 Rijpij , ∀i,

ti ≤ R̃i

∑m
j=1 Rijβij , ∀i,

aij ≤ R̃iβij , ∀i,∀j,
aij ≤ ti, ∀i,∀j,

aij ≥ ti − R̃i(1− βij), ∀i,∀j,
(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

2.2 Alternative Formulation

The Weighted Uniform Model has an alternative formulation using the binary variables xij :

max
n∑

i=1

Niti, (2.2)

s.t.
∑n

i=0 xij = 1, ∀j,∑m
j=1 Rijaij ≤

∑m
j=1

∑
l:Rlj≤Rij

RijRljxlj , ∀i,
aij ≤ ti, ∀i, j,

aij ≤ R̃i

∑
l:Rlj≤Rij

xlj , ∀i, j,

aij ≥ ti − R̃i

∑
l:Rlj>Rij

xlj , ∀i, j,

ti ≤ R̃i

∑m
j=1

∑
l:Rlj≤Rij

xlj , ∀i,
ti ≥ 0, ∀l, i,
aij ≥ 0, ∀i, j,

xij ∈ {0, 1}, ∀i, j.

This alternative formulation results in a stronger integer programming formulation (even
in the special case of the Uniform Model). Section 9 illustrates the running time of the
Weighted Uniform Model (2.2) on problem instances of various sizes.

Theorem 2.1. Let π∗
j , j = 1, . . . ,m, be the optimal prices of the Weigthed Uniform Model

above. Then, for every product k that is bought, π∗
k equals Rik for some i = 1, . . . , n. In

particular, let the vectors π∗ and β∗ be optimal for Problem (2.2). If
∑n

i=1 βik ≥ 1, then

π∗
k = min

i:β∗
ik=1

{Rik}.

If
∑n

i=1 βik = 0, then π∗
k = Rk + 1.

3 Share-of-Surplus Model

It seems realistic to assume that the probability of a customer buying a product is related
to the surplus. A similar scenario is when a customer prefers buying the product that has
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the most discount at the moment, rather than picking a product randomly or preferring
the product with the highest reservation price. We want a model where higher the surplus,
higher the fraction of the segment that buys that product. That is, the probability that a
customer buys a product depends on the customer’s reservation price as well as the price
of the product. A monotone nondecreasing function is needed to describe the relationship
between the probability and the surplus. The Share-of-Surplus Choice Model [15] is a form
of a probabilistic choice model where the probability that a segment will choose a product
is the ratio of its surplus versus the total surplus for the segment across all products with
nonnegative surplus.

3.1 The Formulation

In this model, the probability that segment i buys product j is given by:

Prij :=
(Rij − πj)βij∑
k(Rik − πk)βik

.

For the moment, let us assume that
∑

k(Rik − πk)βik > 0 for all i = 1, . . . , n for notational
simplicity. We will relax this assumption in Section 3.2. With the above definition, Prij = 0
if Rij = πj , which may not be desirable. To ensure that the probability Prij is strictly
positive when Rij = πj , we may define the probability as follows:

Pr∗ij :=
(Rij − πj + η)βij∑
k(Rik − πk + η)βik

, (3.1)

where η is a small positive constant. For the sake of simplicity of presentation, we will use
the first definition of the probability throughout the rest of this section. Note that this
differs from the standard MNL model since we do not consider negative surplus products.
The expected revenue given by this model is

n∑
i=1

m∑
j=1

Niπj

(
(Rij − πj)βij∑
k(Rik − πk)βik

)
.

We can model this Share-of-Surplus Choice Model as the following nonlinear mixed-
integer programming model:

max
n∑

i=1

m∑
j=1

Niπj

(
(Rij − πj)βij∑
k(Rik − πk)βik

)
(3.2)

s.t. (π, β, p) ∈ P,

βij ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . ,m,

where P is the polyhedron defined in Section 1.2.

The objective function can further be reformulated to a sum of ratios, where the numer-
ator is a concave quadratic and the denominator is linear:

max
n∑

i=1

m∑
j=1

Niπj

(
(Rij − πj)βij∑
k(Rik − πk)βik

)
⇔ max

n∑
i=1

m∑
j=1

Ni

(
Rijpij − p2ij∑
k Rikβik − pik

)
.
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Thus, Model (3.2) can be formulated as the following mixed-integer fractional programming
problem with linear constraints:

max
n∑

i=1

m∑
j=1

Ni

(
Rijpij − p2ij∑
k Rikβik − pik

)
, (3.3)

s.t. (p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j.

The formulation (3.3) is a non-convex optimization problem. Unfortunately, there is no
apparent convex relaxation of this formulation that yields a tight relaxation. In the next
section, we find a mixed-integer programming formulation that approximates the Share-of-
Surplus model by restricting the prices.

3.2 Restricted Prices

Unlike the Uniform and Weighted Uniform Models, the computation of optimal prices, given
βij ’s, is not immediate for the Share-of-Surplus model. Define Bi = {j : βij = 1}. Then the
optimal prices is the solution to

max
n∑

i=1

∑
j∈Bi

Niπj

(
(Rij − πj)∑

k∈Bi
(Rik − πk)

)
(3.4)

s.t. Rij − πj ≥ 0, ∀i, j ∈ Bi,

Rij − πj < 0, ∀i, j /∈ Bi,

πj ≥ 0, ∀j.

If βij equals one for at least one segment, then we know that

πj ∈
(

max
i:βij=0

{Rij} , min
i:βij=1

{Rij}
]
.

Suppose product l is bought by at least one segment and its price is increased by ϵ > 0 such
that βij ’s do not change. Define Sj = {i : βij = 1}. Then the change in the objective value
is:

∑
i∈Sl

ϵNi

(
(Ril − (πl + ϵ))

∑
j∈Bi

(Rij − πj) +
∑

j∈Bi
(πj − πl)(Rij − πj)

(
∑

k∈Bi
(Rik − πk))(

∑
k∈Bi

(Rik − πk)− ϵ)

)
. (3.5)

Increasing the price of product l by ϵ would result in an increased objective value if (3.5) is
positive. The βij ’s do not change after the price increase, which implies that Ril ≥ πl + ϵ.
Therefore, all the terms in (3.5) are nonnegative except perhaps (πj − πl). Thus, we can
expect (3.5) to be positive if πl is relatively low compared to other prices. Intuitively, this
means that if πl is low enough relative to other prices, then we want to raise πl so that the
surplus of product j decreases, hence decreasing the probability that the customers will buy
this low-priced product. On the other hand, if πl is high enough relative to other prices,
we want to decrease πl so that the probability that the customers will buy this expensive
product increases, thus generating more revenue. Suppose we restrict πj to be equal to
mini:βij=1 {Rij} (this was a property of the Uniform and Weighted Uniform Models, see
Theorem 2.1). Then the Share-of-Surplus Model can be modeled as a mixed-integer linear
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programming model. Again, let xij equal 1 if segment i has the smallest reservation price
out of all segments with nonnegative surplus for product j; 0 otherwise. Again, we introduce
a dummy segment 0 with R0j := Rj , ∀j, N0 := 0 and add the constraint

∑n
i=0 xij = 1. As

before, βij =
∑

l:Rlj≤Rij
xij and let us restrict πj to equal

∑
i Rijxij . Then the objective

function of the Share-of-Surplus Model is:

n∑
i=0

m∑
j=1

Niπj

(
(Rij − πj)βij∑
k(Rik − πk)βik

)
=
∑
i

Ni

(∑
j

∑
l:Rlj≤Rij

Rlj(Rij −Rlj)xlj∑
k

∑
l:Rlk≤Rik

(Rik −Rlk)xlk

)
.

Let us now relax the assumption that the denominator
∑m

k=1

∑
l:Rlk≤Rik

(Rik−Rlk)xlk >
0 for all i. Define:

ti :=

{∑
j

∑
l:Rlj≤Rij

Rlj(Rij−Rlj)xlj∑
k

∑
l:Rlk≤Rik

(Rik−Rlk)xlk
, if

∑
k

∑
l:Rlk≤Rik

(Rik −Rlk)xlk ̸= 0,

0, otherwise.

Let us introduce an auxiliary continuous variable ulij where ulij := tixlj for all segments
l, i and products j where Rlj ≤ Rij . Then we can formulate the problem as a linear
mixed-integer programming problem:

max
n∑

i=1

Niti, (3.6)

s.t.
∑n

i=0 xij = 1, ∀j,∑m
j=1

∑
l:Rlj≤Rij

(Rij −Rlj)ulij ≤
∑m

j=1

∑
l:Rlj≤Rij

Rlj(Rij −Rlj)xlj , ∀i,
ulij ≤ ti, ∀l, i, j, Rlj ≤ Rij ,

ulij ≤ R̃ixlj , ∀l, i, j, Rlj ≤ Rij ,

ulij ≥ ti − R̃i(1− xlj), ∀l, i, j, Rlj ≤ Rij ,

ti ≤ R̃i

∑m
j=1

∑
l:Rlj≤Rij

(Rij −Rlj)xlj , ∀i,
ti ≥ 0, ∀l, i,
ulij ≥ 0, ∀l, i, j, Rlj ≤ Rij ,

xij ∈ {0, 1}, ∀i, j.

If we use the probability Pr∗ij (3.1) instead, then the objective function is:

∑
i

Ni

(∑
j

∑
l:Rlj≤Rij

Rlj(Rij −Rlj + η)xlj∑
k

∑
l:Rlk≤Rik

(Rik −Rlk + η)xlk

)
.

Then the problem can be formulated along the same lines, with the exception that if η < 1,
then we need to replace the constraint

ti ≤ R̃i

m∑
j=1

∑
l:Rlj≤Rij

(Rij −Rlj + η)xlj , ∀i

by

ti ≤
1

η
R̃i

m∑
j=1

∑
l:Rlj≤Rij

(Rij −Rlj + η)xlj , ∀i
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so that the right-hand-side is at least R̃i whenever the summation is non-zero.

The constant η used in the formulation is assumed to be small enough such that the
difference between Pr∗ij and Prij is almost negligible but that the probability is positive
when the surplus is nonnegative. The examination of the effect of the value of η on the
problem and the determination of the ideal value for the constant are left for future work.
In our computational experiments, we found that the total computation time of the Share-
of-Surplus Model with restricted prices (3.6) is significantly longer than that of the Uniform
and the Weighted Uniform Models. We would like to explore other ways to formulate it or
perhaps find cuts in order to decrease the solution time. We may also want to investigate
other monotonically increasing functions to describe the probability which would perhaps
lead to formulations that are easier to solve. The experimental results are discussed further
in Section 9.

4 Price Sensitive Model

A common economic assumption is that as the price of a product decreases, the demand
increases. In this section, we discuss a probabilistic choice model where the probability of a
customer buying a particular product with nonnegative surplus is inversely proportional to
the price of the product.

4.1 The Formulation

Again, let pij be the auxiliary variable where pij := πjβij . Consider the probability of
customer segment i buying product j as defined below:

Prij :=


0, if βij = 0 (Case 0),
1, if βij = 1,

∑
k βik = 1 (Case 1),

1∑
k βik−1

(
βij − pij∑

k pik

)
, otherwise (Case 2).

In this model, Prij = 0 if product j has a negative surplus for segment i (Case 0), Prij =
1 if product j is the only product with nonnegative surplus (Case 1), and if there are
multiple products with nonnegative surplus (Case 2), Prij is inversely proportional to the
price of those products. Thus, we call this model the Price Sensitive Model. With some
reformulation, the expected revenue maximization problem corresponding to this model can
be formulated as a second-order cone programming problem with integer variables. In this
model, the expected revenue from segment i, Revi, is

Revi :=


0, if

∑
j pij = 0,( ∑

j pij∑
j βij−1+zi

−
∑

j p2
ij

(
∑

j βij−1+zi)(
∑

k pik)

)
+ (
∑

j pij)zi, otherwise.

In the above zi ∈ {0, 1} an indicator variable that will be zero if and only if there are at
least two products for segment i with nonnegative surplus.

Let si be an auxiliary variable where si := (
∑

j pij)zi, which we know is a relationship
that can be modeled by linear constraints. Also let

ti :=

{
0, if

∑
j pij = 0,∑

j pij∑
j βij−1+zi

−
∑

j p2
ij

(
∑

j βij−1+zi)(
∑

k pik)
, otherwise.
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Then, the expected revenue maximization problem corresponding to the Price Sensitive
Model is:

max
n∑

i=1

Niti +
n∑

i=1

Nisi, (4.1)

s.t.
∑

j p
2
ij ≤ (

∑
j pij)

2 − ti(
∑

j βij − 1 + zi)(
∑

j pij), ∀i,
ti ≤

∑
j pij , ∀i,

si ≤
∑

j pij , ∀i,
si ≤

∑
j Rijzi, ∀i,∑

j βij ≤ zi +m(1− zi), ∀i,
zi ≥ βij −

∑
k ̸=j βik, ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,
zi ∈ {0, 1}, si ≥ 0, ∀i, j,

where P is the polyhedron (1.1) defined in Section 1.2.

We need to reformulate the first set of constraints to make the continuous relaxation of
(4.1) a convex programming problem. Let us look at the first set of constraints:

∑
j

p2ij ≤ (
∑
j

pij)
2 − ti(

∑
j

βij − 1 + zi)(
∑
j

pij), ∀i. (4.2)

If ti > 0 then zi = 0 and if zi = 1 then ti = 0. Thus, we can eliminate the zi term from the
above inequality if we include the constraint

ti ≤ R̃i(1− zi).

Also, let bij be auxiliary variables where bij := tiβij . Again, such relations can be modeled
by linear constraints. Then, (4.2) becomes

∑
j

p2ij ≤ (
∑
j

pij)(
∑
j

pij −
∑
j

bij + ti), ∀i.

Let us further introduce auxiliary variables xi and yi such that:

xi + yi =
∑
j

pij −
∑
j

bij + ti, ∀i,

xi − yi =
∑
j

pij , ∀i.

Thus, the constraint becomes
∑

j p
2
ij ≤ (xi+yi)(xi−yi) = x2

i −y2i . Then, (4.2) can be repre-
sented by the second-order cone constraints and linear inequalities, and the Price Sensitive
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Model becomes:

max
n∑

i=1

Niti +
n∑

i=1

Nisi, (4.3)

s.t.
√∑

j p
2
ij + y2i ≤ xi, ∀i,

xi + yi =
∑

j pij −
∑

j bij + ti, ∀i,
xi − yi =

∑
j pij , ∀i,

ti ≤ R̃i(1− zi), ∀i,∀j,
bij ≤ R̃iβij , ∀i,
bij ≤ ti, ∀i,∀j,

bij ≥ ti − R̃i(1− βij), ∀i,∀j,
ti ≤

∑
j pij , ∀i,

si ≤
∑

j pij , ∀i,
si ≤

∑
j Rijzi, ∀i,∑

j βij ≤ zi +m(1− zi), ∀i,
zi ≥ βij −

∑
k ̸=j βik, ∀i,∀j,

(p,π,β) ∈ P,

βij ∈ {0, 1}, ∀i, j,
zi ∈ {0, 1}, si ≥ 0, bij ≥ 0, ∀i, j.

We can easily eliminate the variables xi’s or yi’s from the above formulation, but we kept
them in the above formulation to illustrate the second order cone constraint in a canonical
form. Some preliminary computational results for the Price Sensitive Model are illustrated
in Section 9.

5 Special Properties

In this section, we discuss properties of the optimal solutions of our models for data sets
with special characteristics.

Lemma 5.1. Suppose n ≤ m and for every segment i, we can find a unique product p(i)
such that Rip(i) = maxj {Rij}. Further suppose that for each of such product p(i), segment

i is the unique segment such that Rip(i) = maxk
{
Rkp(i)

}
. Let J := {j : j = p(i) for some

segment i ̸= 0}. Then in an optimal solution,

βij :=

{
1, if j = p(i),
0, otherwise.

In the alternative formulation, an optimal solution is

xij :=

 1, if j = p(i),
1, if i = 0 and j /∈ J ,
0, otherwise,

where segment 0 is the dummy segment.
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The following lemmas apply to the Uniform Model, the Weighted Uniform Model, and
the Share-of-Surplus Model with restricted prices.

Lemma 5.2. If the optimal values for the x (or β) variables are known, then the optimal
prices can be determined. Furthermore, if the optimal prices are known, then the optimal
values for the x (or β) variables can be determined.

Lemma 5.3. Suppose Rst is the maximum reservation price over all segments and products
and only one pair of segment and product has that reservation price. Then in any optimal
solution, segment s buys product t.

5.1 Comparisons

In this subsection, we compare the optimal solution, in terms of the prices πj ’s and βij ’s,
of the different models. We notice in most examples, the four models have the same op-
timal solutions [22]. Of the ones where they have different optimal solutions, usually the
Uniform Model, the Weighted Uniform model and the Price Sensitive model have the same
optimal solution, while the Share-of-Surplus Model has a different optimal solution. We also
compared the models’ optimal solutions on random data in which the reservation prices are
uniformly generated from a specified range. The differences in the optimal values of the
Uniform, the Weighted Uniform, and the Price Sensitive Models were quite small in many
problem instances, but the Share-of-Surplus Model gave smaller optimal values than the
other three models in most cases. It is most likely because the probability for a segment
to buy a lower-priced product is usually higher in the Share-of-Surplus Model than in the
other three models.

6 Heuristics

As we will see in Section 9, CPLEX takes significant amount of time just to find a feasible
solution for larger problems. Fortunately, we can easily find a feasible mixed-integer solution
for the formulations of all our models. Thus, we can provide the solver with a “good” starting
feasible solution in hopes of decreasing the solution times.

6.1 Heuristic 0

One possible strategy, which we call Heuristic 0, is to set βij∗ = 1 for each segment i where
Rij∗ = maxj {Rij}. The other β variables are set accordingly to ensure feasibility. The
details can be found in [22]. For some very special data sets, this heuristic is guaranteed to
deliver the optimal solution.

Lemma 6.1. Suppose the conditions are the same as those stated in Lemma 5.1. That is,
for every segment i, we can find a unique product p(i) such that Rip(i) = maxj {Rij}, and for

each of such product p(i), segment i is the unique segment such that Rip(i) = maxk
{
Rkp(i)

}
.

Then Heuristic 0 gives an optimal solution.

However, Heuristic 0 may not yield a strong solution in general. For the rest of this
section, we discuss a few simple techniques for improving on the feasible solution found by
Heuristic 0.
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6.2 Heuristic 1

After running Heuristic 0, we select a product k that is bought by at least one customer
segment, and let l be the segment with the lowest reservation price that buys product k. We
consider the change in the objective value if the segment does not buy product k anymore
and perhaps buys another product q that it does not currently buy (i.e., βlq currently equals
to 0). This can be thought of as swapping βlk with βlq. We select the option that increases
the objective value the most and modify the β variables accordingly. That is, segment l
either does not buy product k anymore, or it buys another product instead of product k.
If none of the options increases the objective value, we make no changes. We repeat until
no swaps can be made to increase the objective value. This algorithm terminates because
there are finitely many possible values for the β’s and the objective value strictly increases
after each swap. The details can be found in [22].

The order in which we select the products to be examined affects the final solution that
will be given by the heuristic. The goal is to use an order that maximizes the total increase
in the objective value. In this heuristic, we sort the products by the price and examine the
products in the order of the lowest price to the highest price. If we make a change in any
iteration, we sort the products again since the prices may change, and start with the lowest-
priced product again. The heuristic stops when no changes can be made after examining all
the products consecutively from the lowest price to the highest price.

This simple heuristic can be used to find a feasible integral solution for any of the models.
The only part that needs to be changed is how the objective value is calculated. The version
shown here makes use of β, but it can be easily modified to use the x variables as in the
alternative formulation.

6.3 Heuristic 2

Heuristic 1 can be modified to have a polynomial runtime if the price of the product that
we examine is non-decreasing in each iteration. From experiments of Heuristic 1, we noticed
that if a swap can be made when product k at price πk is selected, it is very unlikely that a
swap can be made for a product at a price lower than πk in subsequent iterations. Therefore,
we would expect the results to be similar if we do not examine products with lower prices
again.

Heuristic 2 is the same as Heuristic 1 but the products are selected in a different order.
After a customer is swapped out of product k with price πk before the swap, only products
with prices at least πk are examined. The price of product k increases after a swap, so it
will be examined again if there are still customers buying product k. If a new product s is
bought and if its new price πnew

s is less than πk, then product s will never be examined. If
a product cannot be swapped to increase the objective value, then it will not be examined
again. The details can be found in [22].

Let O(f(n,m)) be the runtime to calculate the increase in objective value if segment l
does not buy product k anymore or if segment l buys product s instead of product k, where
n is the number of customer segments and m is the number of products. Clearly, f(n,m) is
polynomial in n and m, since the runtime to calculate the objective value is polynomial.

Lemma 6.2. The runtime of Heuristic 2 is polynomial.

6.4 Heuristic 3

Heuristic 3 is a hybrid between Heuristic 1 and Heuristic 2. It examines the products in
the same way, but after a swap in which segment l buys product s instead of product k and
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πnew
s < πk (equivalently, Rls < Rlk), it would examine all the products with prices ≥ πnew

s .
That is, the price of the products that it examines decreases only if a product has a lower
price after a swap. The details can be found in [22]. It is not yet clear if this heuristic has an
exponential worst-case runtime. However, experimental results shows that it has a similar
runtime to Heuristic 2 and the resulting objective value is usually better (see [22]).

6.5 Comparison of the Heuristics

All of the heuristics terminate in a very short time. The time required for Heuristic 1 to
terminate increases significantly as the problem size increases. The objective values found
are better than or at least as good as the ones found by the other two heuristics, except
in one problem instance (when n = 60, m = 20) where Heuristic 2 has a better solution.
Experimental results show that Heuristic 3 has a similar runtime as Heuristic 2 and the
resulting objective value is usually better. The effect of using a starting solution found by
the heuristics for the Uniform Model is explored in Section 9.

7 Valid Inequalities

To further improve the solution time for the mixed-integer programming models, we consid-
ered several mixed-integer cuts for the various choice models.

7.1 Convex Quadratic Valid Inequalities

In the original Uniform Model, the variable aij were introduced to convexify the bilinear
inequalities:

m∑
j=1

tiβij ≤
m∑
j=1

pij , ∀i. (7.1)

We wish to include a convex constraint in the mixed-integer programming formulation that
is implied by the above inequalities and some valid convex inequalities.

Let Mi be a positive number (as small as possible) such that t2i ≤ Mi, for every feasible
solution (t1, . . . , tn, β11, . . . , βnm, p11, . . . , pnm) of the mixed integer programming problem.
Also, note that β2

ij ≤ βij . Combining these relations together yields the following set of
valid inequalities:

ait
2
i + bi

m∑
j=1

(β2
ij − βij) +

m∑
j=1

tiβij −
m∑
j=1

pij ≤ aiMi, i = 1, . . . , n, (7.2)

where ai and bi are nonnegative constants. With appropriate values of ai and bi, the above
set of quadratic inequalities represents a convex set.

Lemma 7.1. The function f(t, β1, . . . , βm, p1, . . . , pm) := at2+b
∑m

j=1(β
2
j−βj)+

∑m
j=1 tβj−∑m

j=1 pj is a convex function iff a > 0, b > 0 and ab ≥ m
4 .

Next, we generalize the above construction to allow different coefficients bj for the in-
equalities β2

ij ≤ βij . Let b denote the vector (b1, b2, . . . , bm)T and let B denote the m×m
diagonal matrix with entries b1, b2, . . . , bm on the diagonal.

Lemma 7.2. The function F (t, β1, . . . , βm, p1, . . . , pm) := at2+
∑m

j=1 bj(β
2
j−βj)+

∑m
j=1 tβj−∑m

j=1 pj is a convex function iff b > 0 and a ≥
∑m

j=1
1

4bj
.



784 R. SHIODA L. TUNÇEL AND B. HUI

Corollary 7.3. Let Mi be as above, and b1 > 0, b2 > 0, . . . , bm > 0, and a ≥
∑m

j=1
1

4bj
be

given. Then the inequality

at2i +

m∑
j=1

[bjβ
2
ij + (ti − bj)βij − pij ] ≤ aMi

is a valid convex quadratic inequality for the feasible region of the mixed integer programming
problem.

In the alternate formulation of the Uniform Model (2.2) with xij variables instead of
βij ’s, the bilinear constraint corresponding to (7.1) is

m∑
j=1

ti
∑

l:Rlj≤Rij

xij ≤
m∑
j=1

∑
l:Rlj≤Rij

Rljxij , ∀i.

As before, we add a times t2i ≤ Mi and blj times x2
lj ≤ xlj for all j and l such that Rlj ≤ Rij

to get a valid convex quadratic inequality for (2.2).

Corollary 7.4. Let Mi be as above, and bl1 > 0, bl2 > 0, . . . , blm > 0 for l such that
Rlj ≤ Rij, and a ≥

∑m
j=1

∑
l:Rlj≤Rij

1
4blj

be given. Then the inequality

at2i +

m∑
j=1

∑
l:Rlj≤Rij

[bljx
2
lj + (ti − blj −Rlj)xlj ] ≤ aMi

is a valid convex quadratic inequality for the feasible region of the mixed integer programming
problem. If b = bl1 = bl2 = · · · = blm, then we need ab ≥

∑m
j=1

∑
l:Rlj≤Rij

1
4 .

Clearly, the tighter the upperbound Mi for t2i , the stronger the valid convex quadratic
inequality. One approach to generate suchMi would be to optimize ti over the current convex
relaxation and square the result. However, such upperbounds for t2i may not be effective.
Instead of going after a constantMi let us consider another upperbound for t2i , allowingMi to
be a linear function of the existing variables. For the alternative formulation of the Uniform

Model (2.2), we know that if
∑m

j=1

∑
l:Rlj≤Rij

xlj ≥ 1 then ti =

∑m
j=1

∑
l:Rlj≤Rij

Rljxlj∑m
j=1

∑
l:Rlj≤Rij

xlj
and

t2i =
(
∑m

j=1

∑
l:Rlj≤Rij

Rljxlj)
2

(
∑m

j=1

∑
l:Rlj≤Rij

xlj)2
≤

m∑
j=1

∑
l:Rlj≤Rij

R2
ljxlj ,

where we used the fact that ti will be the square of the average of certain Rij values
(depending on xij); clearly, such a value is at most the square of the maximum, which is at
most the sum of squares of all such Rij involved in the average. Thus,

Corollary 7.5. Let bl1 > 0, . . . , blm > 0 for l such that Rlj ≤ Rij, and a ≥
∑m

j=1

∑
l:Rlj≤Rij

1
4blj

be given. Then the inequality

at2i +
m∑
j=1

∑
l:Rlj≤Rij

[bljx
2
lj + (ti − blj −Rlj − aR2

lj)xlj ] ≤ 0 (7.3)

is a valid convex quadratic inequality for the feasible region of the mixed integer programming
problem. If b = bl1 = bl2 = · · · = blm, then we need ab ≥

∑m
j=1

∑
l:Rlj≤Rij

1
4 .
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We tested the efficacy of the convex quadratic inequality (7.3) on the Uniform Model,
where the reservations prices were randomly generated from a uniform distribution. Table 1
illustrates the optimal value of the mixed-integer programming problem (MIP), the optimal
value of the corresponding LP relaxation (LP), and the optimal value of the quadratically
constrained problem (QCP) resulting from adding the inequalities (7.3) to the LP relaxation.
We see that these inequalities are indeed cuts since the optimal solution of the LP violates
them in most instances.

n m v MIP LP With Cut

10 10 1 8980.67 9020.83 9007.12
2 7576.50 8136.93 8076.50
3 8656.75 8814.38 8799.53
4 8767.67 8956.24 8950.98
5 7369.68 7977.77 7860.84

10 20 1 9658.00 9691.25 9690.69
2 9373.00 9433.28 9430.34
3 9276.83 9424.39 9423.05
4 8603.58 8970.78 8939.18
5 9473.00 9534.28 9532.12

10 40 1 9777.50 9782.75 9782.05
2 9798.67 9839.42 9837.89
3 9788.50 9806.82 9805.72
4 9592.50 9654.70 9653.06
5 9771.00 9771.00 9770.49

10 60 1 9836.00 9836.00 9833.83
2 9836.00 9868.33 9866.21
3 9860.50 9868.95 9868.08
4 9865.00 9865.00 9863.50
5 9854.00 9854.00 9852.26

Table 1: Uniform Model with the convex quadratic valid inequalities (7.3). n is the number
of customer segments, m is the number of products, and v is a label of the problem instance.
The column “MIP” is the optimal objective value (2.2), the column “LP” is the optimal
objective value of the LP relaxation of (2.2), and the column “With Cut” is the optimal
objective value of the continuous relaxation of (2.2) with the convex quadratic inequality
(7.3).

There are four anomalies in Table 1, namely, the instances (n,m, v) with (10, 40, 5), (10,
60, 1), (10, 60, 4) and (10, 60, 5). For each of these instances, the objective value of the QCP
relaxation is strictly less than the optimal objective value of the MIP. The convex quadratic
inequalities were indeed valid for the MIP optimal solution. However, we determined that
CPLEX’s barrier method returned a suboptimal solution for these QCPs. When observing
the details of the CPLEX run, we saw that in each of these four instances the initial solution
of the QCP relaxation had primal infeasibility in the order of 1010 and dual infeasibility in
order of 103. CPLEX stopped after 30 to 40 barrier iterations, declaring the current primal
solution, with complementarity gap around 10−8, dual infeasibility about 10−5 and primal
infeasibility around 102, as “primal optimal” with “no dual solution available”. While
these preliminary experiments show the potential usefulness of our convex cuts, it is also
clear that to use them in a robust and effective manner, one needs to work with QCP or
second-order cone (SOCP) algorithms that generate dual feasible solutions and use the dual
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objective function value in the related SOCP-IP computations. We leave the design of such
specialized interior-point algorithms to future work.

7.2 Knapsack Covers

We can formulate the Uniform Model as a pure 0,1 optimization problem. For k = 0, . . . ,m,
let

yik :=

{
1, if segment i has exactly k products with nonnegative surplus,
0, otherwise.

Then, the probability that segment i buys product j is
∑m

k=1
1
kβijyik and the Uniform Model

can be formulated as the following 0,1 programming problem:

max
n∑

i=1

Ni

m∑
j=1

∑
l:Rlj≤Rij

Rlj

m∑
k=1

1

k
zl,j,i,k, (7.4)

s.t.

n∑
i=1

xij = 1, j = 1, . . . ,m,

m∑
k=0

yik = 1, i = 1, . . . , n,

m∑
k=1

m∑
j=1

∑
l:Rl,j≤Ri,j

1

k
zl,j,i,k = 1− yi,0, i = 1, . . . , n,

m∑
j=1

∑
l:Rl,j≤Rij

xlj =
m∑

k=0

kyik, i, . . . ,m,

zl,j,i,k ≤ xl,j , ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j ,

zl,j,i,k ≤ yi,k, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j ,

zl,j,i,k ≥ xl,j + yi,k − 1, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j ,

xi,j ∈ {0, 1}, ∀i,∀j,
yi,k ∈ {0, 1}, ∀i, k = 0, . . . ,m,

0 ≤ zl,j,i,k ≤ 1, ∀i,∀j, k = 1, . . . ,m; l : Rl,j ≤ Ri,j .

In the above, zl,j,i,k is a continuous variable defined for the segment pairs i, l and the product
j (defined for Rlj ≤ Rij); the final index k is a counter (recall the definition of yik). The
constraints imply

zl,j,i,k ≤ min {xlj , yik} .

So, zl,j,i,k is zero unless segment i has exactly k products with nonzero surplus and segment l
has the smallest reservation price out of all segments with a nonnegative surplus for product
j. In the latter case zl,j,i,k will be one.

The pure 0,1 formulation (7.4) may not be as strong as the mixed-integer formulation
(2.2). However, we may be able to exploit the vast amount of work done in developing
strong valid inequalities for pure 0-1 programming problems for formulation (7.4). One
obvious family of valid inequalities are the knapsack covers [19]. From (7.4), we have the
constraints

m∑
j=1

βij =
m∑

k=0

kyik, i = 1, . . . , n,
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(where we substituted βij :=
∑

l:Rl,j≤Rij
xlj purely for notational ease) and

m∑
k=0

yik = 1, i = 1, . . . , n.

From these, for a given i and k, we get:

m∑
j=1

βij ≤
k∑

l=0

kyil +
m∑

l=k+1

myil =
k∑

l=0

kyil +
m∑

l=k+1

myil +m−m
m∑

k=0

yik

⇒
m∑
j=1

βij + (m− k)
k∑

l=0

yil ≤ m,

where the last inequality is a knapsack constraint (note that
∑k

l=0 yil ∈ {0, 1} in the integer
solution so we can treat the term as a 0-1 variable). For a given i and k, let Pik be a subset
of k + 1 products , i.e, Pik ⊆ {1, . . . ,m}, |Pik| = k + 1. Thus, the corresponding knapsack
cover inequality is ∑

j∈Pik

βij +
k∑

l=0

yil ≤ k + 1. (7.5)

Given a fractional solution to (7.4), separating (7.5) can be done in polynomial time.
Given xij ’s , and thus βij ’s, we rank βij for each i, i = 1, . . . , n. For each k, let

P ∗
ik = {j : βij is one of the kth largest βij ’s, j = 1, . . . ,m}.

Thus, for each i and k, the corresponding cover inequality is violated by the current solution
if and only if

∑
j∈P∗

ik
βij +

∑k
l=0 yil > k + 1. We can also incorporate all of the inequalities

(7.5) into (7.4) with only polynomial numbers of additional constraints and variables.

Lemma 7.6. Given i and k, there exists βij, j = 1, . . . ,m and yil, l = 0, . . . , k satisfying
(7.5) for all Pik ⊆ {1, . . . ,m}, |Pik| = k+1 if and only if there exists q and pj, j = 1, . . . ,m
such that

(k + 1)q +
m∑
j=1

pj +
k∑

l=0

yil ≤ k + 1,

q + pj ≥ βij , j = 1, . . . ,m,

pj ≥ 0, j = 1, . . . ,m.

Thus, we can either iteratively separate the knapsack cover inequalities, or from Lemma
7.6, add the following constraints to (7.4):

(k + 1)qik +
m∑
j=1

pi,j,k +
k∑

l=0

yil ≤ k + 1, i = 1, . . . , n; k = 0, . . . ,m, (7.6)

qik + pijk ≥ βij , j = 1, . . . ,m; i = 1, . . . , n; k = 0, . . . ,m,

pijk ≥ 0, j = 1, . . . ,m; i = 1, . . . , n; k = 0, . . . ,m.

Table 2 illustrates that these knapsack covers (7.5) are indeed cuts. It compares for-
mulation (7.4) with and without the cover inequalities (7.6) in terms of the objective value
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MIP Pure 0-1
n m v (2.2) (7.4) without (7.6) (7.4) with (7.6)
4 4 1 2304.79 2564.71 2399.63

2 3447.79 3404.00 3404.00
3 333.60 333.00 333.00
4 3005.67 3060.92 3005.67
5 3294.81 3360.95 3271.48

4 10 1 382.54 406.42 390.50
2 381.85 398.19 391.36
3 358.60 397.36 373.89
4 355.97 389.98 365.59
5 394.23 402.74 384.18

10 4 1 744.71 802.93 799.31
2 845.80 856.12 853.60
3 799.50 850.95 848.58
4 809.58 856.85 842.16
5 883.05 925.44 911.67

10 10 1 985.58 997.40 990.70
2 991.44 1008.53 1003.15
3 1016.35 1021.94 1016.75
4 825.48 872.92 864.30
5 1014.14 1021.50 1013.01

Table 2: Objective values of the LP relaxation for the mixed-integer programming formula-
tion (2.2) and Pure 0-1 formulation with and without the Knapsack Cover inequalities (7.5),
where n is the number of customer segments, m is the number of products, and v is a label
of the problem instance. LP objective values in bold corresponds to the IP optimal value.

of their linear programming relaxation on randomly generated instances. However, even
with all the knapsack cover inequalities, the Pure 0,1 formulation is still weaker than the
mixed-integer formulation (2.2) in most cases.

These knapsack cover inequalities (7.5) can also be used to generate valid inequalities
for the mixed-integer programming formulation (2.2).

Lemma 7.7. Suppose x̄ij is a fractional solution of (2.2) and let β̄ij =
∑

l:Rlj≤Rij
x̄lj. For

a given i, i = 1, . . . , n, if there are no yik’s that satisfies

∑m
k=0 yik = 1, (7.7)∑m

k=0 kyik =
∑m

j=1 β̄ij ,∑k
l=0 yil ≤ k + 1−

∑
j∈P∗

ik
β̄ij , k = 0, . . . ,m

where P ∗
ik := {j : β̄ij is one of the k largest β̄ij , j = 1, . . . ,m}, then

m∑
j=1

vβij +
∑
j∈P∗

ik

wkβij ≤
m∑

k=0

(k + 1)wk (7.8)
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is a valid inequality for (2.2) that cuts off x̄ij, where

u+ kv +
∑k

l=0 wk ≥ 0, k = 0, . . . ,m,

u+
∑m

j=1 β̄ijv +
(
k + 1−

∑
j∈P∗

ik
β̄ij

)
wk < 0,

wk ≥ 0, k = 0, . . . ,m,

for some u.

8 Product Capacity and Cost

In all of our discussions thus far, we have assumed that there are no capacity limits nor
costs for our products. Clearly, this is not a realistic assumption in many applications. In
this section, we discuss how we can incorporate capacity limits and product costs into some
of our customer choice models.

8.1 Product Capacity

Product capacity limits are crucial constraints for products such as airline seats and hotel
rooms. Certain consumer choice models handle capacity constraints easily, whereas it poses
a challenge to others. We present this extension for the Uniform Model, the Weighted
Uniform Model, and the Share-of-Surplus Model with restricted prices. We were not able
to incorporate the capacity constraint in the Price Sensitive Model while maintaining the
convexity of the continuous relaxation. In all of the following subsections, we assume that
the company can sell up to Capj units of product j, Capj ≥ 0, j = 1, . . . ,m.

Uniform and Weighted Uniform Model

Capacity constraints can be incorporated to the mixed-integer formulations of the Uniform
Model and the Weighted Uniform Model with some additional variables. We discuss the
formulation for the Uniform Model only, since it extends easily to the Weighted Uniform
Model. In the Uniform Model, the expected number of customers that buy product j is∑

i Ni
βij∑
k βik

if
∑

k βik ≥ 1 and is 0 if
∑

k βik = 0. Let Bij be an auxiliary variable such

that Bij :=
βij∑
k βik

if
∑

k βik ≥ 1 and is 0 if
∑

k βik = 0, i.e., the fraction of customers from

segment i buying product j, Prij . Thus, βij = Bij

∑
k βik. Let bijk := Bijβik. The capacity

constraint can be represented by the following set of linear constraints:∑
i NiBij ≤ Capj , ∀j, (8.1)

βij =
∑

k bijk, ∀i,∀j,
bijk ≤ βik, ∀i,∀j,∀k,

bijk ≥ Bij − (1− βik), ∀i,∀j,∀k,
bijk ≤ Bij , ∀i,∀j,∀k,
bijk ≥ 0, ∀i,∀j,∀k.

The above constraints can also be represented by xij variables of earlier sections, instead of
the βij variables.
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Share-of-Surplus Model

For the Share-of-Surplus Model with restricted prices (3.6), the expected number of cus-

tomers that buy product j is
∑

i Ni

( ∑
l:Rlj≤Rij

(Rij−Rlj)xlj∑
k(

∑
l:Rlk≤Rik

(Rik−Rlk)xlk)

)
if
∑

k[
∑

l:Rlk≤Rik
(Rik −

Rlk)xlk] ̸= 0. Let Bij be an auxiliary variable such that

Bij :=


( ∑

l:Rlj≤Rij
(Rij−Rlj)xlj∑

k(
∑

l:Rlk≤Rik
(Rik−Rlk)xlk)

)
, if

∑
k[
∑

l:Rlk≤Rik
(Rik −Rlk)xlk] ̸= 0

0, otherwise.

Again, Bij is the fraction of customers from segment i buying product j, or Prij . Thus,

∑
l:Rlj≤Rij

(Rij −Rlj)xlj = Bij

∑
k

 ∑
l:Rlk≤Rik

(Rik −Rlk)xlk

 .

Let bijlk := Bijxlk. Just as before, the capacity constraint can be represented by the
following set of linear constraints:∑

i NiBij ≤ Capj , ∀j, (8.2)∑
l:Rlj≤Rij

(Rij −Rlj)xlj =
∑

k

[∑
l:Rlk≤Rik

(Rik −Rlk)bijlk

]
∀i,∀j,

bijlk ≤ xlk, ∀i,∀j, ∀l, ∀k,
bijlk ≥ Bij − (1− xlk), ∀i,∀j, ∀l, ∀k,

bijlk ≤ Bij , ∀i,∀j, ∀l, ∀k,
bijlk ≥ 0, ∀i,∀j, ∀l, ∀k.

Risk Products

In some cases, companies may want to penalize against under-shooting a capacity. For
example, if there is a large fixed cost or initial investment for product j, the company may
sacrifice revenue and decrease its price to ensure that all of the product is sold. We call such
products risk products. For these products, we may add a penalty for under-shooting in the
objective, i.e., given a user-defined penalty coefficient wj > 0 for under-selling product j,
we modify the objective to

n∑
i=1

Ni

m∑
j=1

πjPrij −
m∑
j=1

wj

(
Capj −

n∑
i=1

NiBij

)
or

n∑
i=1

m∑
j=1

Ni(πjPrij + wjBij)

where Bij is as before.
From a profit optimization point of view, it is sub-optimal to forcibly sell unprofitable

products. Such a policy implies that the company is overstocked with these risk products,
i.e., Capj is too large. In some cases, we may want to treat Capj as a variable. For example,
in the travel industry, the product procurement division will seek out contracts with hotels to
secure certain numbers of rooms for a given time period. However, if that travel destination
is not profitable for the company, they may be better off securing very few rooms or not
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securing any rooms at all. In all of our models, making Capj a variable will not affect the
linearity of the constraints. Also, there will most likely be an upperbound for Capj for all
j = 1, . . . ,m. If procuring a unit of product j costs vj , then the objective function can be
modified to:

n∑
i=1

Ni

m∑
j=1

πjPrij −
m∑
j=1

vjCapj .

By determining the optimal value for Capj , it should no longer be necessary for the company
to penalize under-selling of products‡.

8.2 Product Cost

Suppose each product j has a variable cost of cj per unit. In the objective function, we want
to subtract cj multiplied by the expected number of customers that buy product j. For all
the probabilistic choice models discussed in this paper, the objective function becomes∑

i

Ni

∑
j

(πj − cj)Prij ,

where Prij is the probability that the customer segment i buys product j. This is equivalent
to lowering all the reservation prices of product j by cj in all of the models except the Price
Sensitive Model. We can also easily incorporate fixed costs for products and capacities
(resources) with additional constraints and 0,1 variables.

9 Computational Results

This section illustrates the empirical performances of the Uniform, Weighted Uniform, Share-
of-Surplus and Price Sensitive Models on randomly generated and real data sets. The
randomly generated reservation prices are generated from a uniform distribution. For each
n (number of segments) and m (number of products) pair, five instances were generated.
The real data are subsets of reservation prices estimated from actual booking orders of a
travel company (our procedure in estimating reservation prices are discussed in Appendix
B). There is one instance for each n and m pair. The same data set were used for the
Uniform, Weighted Uniform and the Share-of-Surplus Model, however the Price Sensitive
Model was tested on smaller data sets due to its significantly longer computation time.

The models were run with default parameter settings of CPLEX 9.1 and a time limit
of two hours (7200 CPU seconds) unless indicated otherwise. They were run on a machine
with four processors and 8 gigabyte of RAM, with at most one process running at a time
on each processor.

The Uniform, Weighted Uniform and the Share-of-Surplus Model all began with the
solution of Heuristic 1 of Section 6. For every problem instance, the heuristic took at most
one CPU second to solve. Although Heuristic 1 found strong feasible integer solutions, it
did not significantly improve the total solution time and the total branch-and-bound nodes
explored by CPLEX. Thus, even when starting out with a good integer solution, proving
optimality was a difficult task for many of these problems.

The tables show the number of segments n, the number of products m, total number of
dual simplex iterations (“# of SimplxItns”), total number of branch-and-bound nodes visited

‡It is possible that a company may procure large quantities of a currently non-profitable product to
increase their long-term market share. We will not consider such long-term marketing strategy in this
paper.
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(“# of Nodes”), the relative optimality gap when CPLEX was terminated (“FinalGap”),
total CPU seconds (“Time”), and the relative gap between the objective value of the best
integer solution found by CPLEX versus that of Heuristic 1 (“Heuristic Gap”). For the
randomly generated data, the geometric mean over the five instances is illustrated. The
column “Provably Optimal” indicates the percentage of the five instances solved to provable
optimality within the two hour time limit. For the real data, where there is just one instance
for each (n,m) pair, the column “CPLEX Status” indicates whether the problem was solved
to provable optimality (“Optimal”) or not (“Feasible”) within the two hour time limit.

9.1 Uniform Model

We use the alternative formulation (2.2) of the Uniform Model for all experiments. In this
formulation, there are 2nm+ n variables (mn of them are binary), 2n+m+3nm rows and
m(n+ 1)(2n+ 1) + 6nm+ n non-zeros.

Table 3 shows the results of the Uniform Models on the randomly generated data sets.
CPLEX solves problems with n ≤ 10 within seconds to provable optimality, but requires
significantly longer time for larger problems. However, even for those problems that CPLEX
could not solve to provable optimality within two hours, the optimality gap at termination
is very low (largest at 5.58%). Thus, proving optimality seems to be the main difficulty
though it succeeds in finding good integer solutions. The heuristic also yields good initial
solutions, especially for smaller problems (i.e., n ≤ 20). For n = 60 and n = 100, it appears
as though the heuristic gives better solution for problems with larger m, but this may be
because CPLEX is unable to find better integer solutions for these larger problems.

It is interesting to note that the value of n drives the solution time of the problem. For
example, problems with (n,m) = (10, 100) was solved to optimality in 3.98 CPU seconds
on average, whereas none of the problems with (n,m) = (100, 10) was solved to provable
optimality within two hours. Clearly, the number of variables, number of rows and especially
the number of non-zeros differ between the two problem types. For (n,m) = (10, 100),
there 2010 variables, 3120 rows, and 29110 non-zeros, whereas (n,m) = (100, 10) has 2100
variables, 3210 rows, and 209110 non-zeros.

The heuristic also appears to perform better, in terms of the heuristic gap, in problems
where n ≤ m. For example, the heuristic gaps for (n,m) = (60, 2) and (n,m) = (100, 2) are
20.34% and 50.27%, respectively. However, the heuristic finds the optimal solution for all
instances with n = 2. This is probably due to properties described in Lemmas 5.1 and 6.1.
With randomly generated data and n ≪ m, the special properties described in the lemmas
are more likely to occur.

Table 4 illustrates the results of the Uniform Model on the real data set. It appears
that these problems are harder to solve than those with random data. For example, three
of the problems with n = 10 for the real data did not solve to provable optimality, whereas
all the problems with n = 10 solved within 4 CPU seconds for the random data. The final
optimality gaps are also significantly worse than that of the random data of similar sizes.
This is also true for the Heuristic Gap. Thus, it is clear that the relative values of Rij ’s are
critical in the solution time of these formulations, not just n and m.

9.2 Weighted Uniform Model

We use the alternative formulation (2.2) of the Weighted Uniform Model for all experiments.
The number of variables, number of rows and number of non-zeros are the same as that for
the Uniform Model with alternate formulation, namely, there are 2nm+ n variables (mn of
them are binary), 2n+m+ 3nm rows and m(n+ 1)(2n+ 1) + 6nm+ n non-zeros.
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Given that the formulation of the Weighted Uniform Model is very similar to that of the
Uniform Model, it is no surprise that the computational results are also very similar. Table
5 shows the results of the Weighted Uniform Model on the randomly generated data set.
Again, for most instances, the performance metrics are very similar to that of the Uniform
Model. Table 6 illustrates the results on the real data. Just as in the Uniform Model, the
optimality gap, running time and the heuristic gap are not as good as with the randomly
generated data.

9.3 Share-of-Surplus Model

We use the restricted price formulation of the Share-of-Surplus Model, where η := 1. In
this formulation, there are 1

2mn(n + 1) + nm + n variables (nm of them being binary),
3
2mn(n+ 1) + 2n+m rows, and m(n+ 1)(5n+ 1) + n non-zeros.

Table 7 illustrates the results of the Share-of-Surplus model on the randomly generated
data. The running time for this model is significantly longer than that of the Uniform
and Weighted Uniform models, especially for large n. This is not completely surprising
since the Share-of-Surplus formulation has more variables than the other models (e.g., for
(n,m) = (20, 10) the Uniform model has 420 variables, 650 rows and 9830 non-zeros, whereas
the Share-of-Surplus model has 2310 variables, 6350 rows and 21230 non-zeros). However,
it was still surprising to find that for several problems, the LP relaxation could not be
solved within the two hour time limit. For (n,m) = (20, 100) and (n,m) = (100, 5), the
LP relaxation of two out of the five instances could not be solved. For (n,m) = (60, 10),
the LP relaxation of three out of the five instances could not be solved. The “Final Gap”
value presented for these (n,m) pairs is the geometric mean of the optimality gap over the
instances whose LP relaxation was solved. For (n,m) = (60, 20), (60, 60), (60, 100), (100, 10),
(100, 20), (100, 60), (100, 100), the LP relaxation of none of the five instances could be solved.
These are not terribly large problems – (n,m) = (20, 100) has 23100 variables, 63140 rows,
and 212120 non-zeros. Thus, there must be some structural properties that make these LPs
difficult to solve.

By observing the CPLEX output when solving the LP relaxation, we noticed frequent
occurrences of unscaled infeasibility. CPLEX’s preprocessor scales the rows of the mixed-
integer programming formulation before solving it, and unscaled infeasibility occurs if the
optimal solution found for the scaled problem is not feasible for the original problem. This
seems to imply that our problem is ill-conditioned. The reservation prices in the problem
instances are generally in the range of 500 to 1500. That is, the coefficients of some of the
variables are more than 1500 times the coefficients of other variables, making the problem
quite ill-conditioned. We can attempt to solve this problem by scaling the reservation prices
before using them in the model since the optimal solution is the same regardless of the unit
of the reservation prices. In a future work, the impact of this type of specialized scaling on
the total computation time should be examined.

Table 8 shows the results with the real data. Similar to the Uniform and Weighted
Uniform Model, the real data is more difficult to solve, in general, than the randomly
generated data. This is most evident for n = 10 and 20, where the optimality gap and the
heuristic gap is significantly lower with the real data than with the randomized data.

9.4 Price Sensitive Model

Table 9 shows some preliminary computational results of running small problem instances
with the Price Sensitive Model formulation (4.3). The first ten cases (t*) each has 3 products
and 3 segments. The next six cases (rand*) each has 5 products and 5 segments and the
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reservation prices are random numbers that range from 500 to 1200. The rest of the cases
are subsets of real data and the file name (n×m) indicates the number of segments and the
number of products, respectively, in the inputs. The model was run with default parameter
settings of CPLEX 9.1 and a time limit of two hours (7200 CPU seconds). Since the
formulation has a second-order cone constraint, only small problems could be solved quickly.
The smaller cases can be solved to optimality fairly quickly, but the solutions for the last
two cases (“10×10” and “10×20”) found by CPLEX after 2 hours have large optimality
gaps.

10 Conclusion

We presented various ways to formulate and solve product pricing models using mathemat-
ical programming approaches. We have discussed four different probabilistic choice models,
all of which are based on reservation prices and are formulated as convex mixed-integer pro-
gramming problems. The Uniform Distribution Model assumes that Prij , the probability
that segment i buys product j, is uniform among all products with nonnegative surplus. The
Weighted Uniform Model assumes that Prij is proportional to the reservation price Rij . In
the Share-of-Surplus Model, the probability Prij depends on the surplus of the products.
Using the assumption that demand increases as price decreases, the Price Sensitive Model
uses Prij that is inversely proportional to the price of the products with nonnegative surplus.
A few special properties of the models have been shown and comparisons of the models’ op-
timal solutions provide some indication of how the models behave. We have proposed and
tested a few simple heuristics for finding feasible solutions, which results in strong, often
optimal, integer solutions from empirical experiments. Computational results of the various
models are also presented and they show that the proposed models are difficult to solve for
larger problem instances.

Further research is required to explore ways to improve the solution time of all the
models. For example, more investigations on different cuts may be useful, especially on the
valid inequalities discussed in Section 7. We also need to examine the structural properties
of the problem instances that are especially difficult to solve. For the Share-of-Surplus
Model, we may want to investigate other monotone nondecreasing functions to describe the
probability which would perhaps lead to formulations that are easier to solve. We may
examine the effect of the value of the constant η on the problem and determine the ideal
value for the constant. In addition, we currently do not fully understand the effect of scaling
the reservation prices and this area should be explored further.

All the models discussed in this paper assume that the company has no competitors.
We should explore ways to consider competitor products in our models in order to cor-
rectly model the loss of revenue when the customers buy from other companies. We can
easily incorporate competitor products in our formulations by considering the surplus of
every segment for every competitor product. However, this may unrealistically increase the
denominator of Prij and collecting such detailed competitor information is very difficult.
The challenge is to determine how to include competitor information without explicitly
considering each competitor product individually.

The motive of this paper is to show how some marketing models of customer choice
behavior can be modelled exactly using mixed-integer programming. This work illustrates
the modeling power of integer and convex nonlinear programming techniques and we hope
that our work and approach will be extended to other product pricing and customer choice
models in the future.
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Provably # of # of Final Time Heuristic
n m Optimal(%) SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 100 9 0 0.00 0.01 0.00
2 5 100 19 0 0.00 0.01 0.00
2 10 100 31 0 0.00 0.01 0.00
2 20 100 58 0 0.00 0.01 0.00
2 60 100 125 0 0.00 0.03 0.00
2 100 100 154 0 0.00 0.04 0.00

5 2 100 38 0 0.00 0.01 0.00
5 5 100 106 0 0.00 0.03 0.00
5 10 100 142 0 0.00 0.04 0.00
5 20 100 217 0 0.00 0.06 0.00
5 60 100 261 0 0.00 0.08 0.00
5 100 100 573 0 0.00 0.26 0.00

10 2 100 109 0 0.00 0.02 0.00
10 5 100 307 11 0.00 0.16 0.00
10 10 100 2252 0 0.00 0.90 0.00
10 20 100 5134 488 0.00 3.83 0.00
10 60 100 1885 0 0.00 1.26 0.00
10 100 100 3259 0 0.00 3.98 0.00

20 2 100 214 0 0.00 0.04 0.00
20 5 100 4401 454 0.00 1.12 0.00
20 10 100 356098 24550 0.01 64.34 0.56
20 20 60 6150940 232358 0.05 1659.42 0.43
20 60 60 1193300 38903 0.04 1102.32 0.06
20 100 80 73764 0 0.00 141.27 0.00

60 2 100 702 7 0.00 0.41 20.34
60 5 100 265222 11806 0.01 81.94 15.02
60 10 0 12324100 444651 3.01 7200.00 2.32
60 20 0 5982610 184930 2.81 7200.00 0.51
60 60 0 977550 27395 0.98 7200.00 0.00
60 100 0 333850 9169 0.35 7200.00 0.00

100 2 100 1025 9 0.00 0.95 50.37
100 5 80 8067590 273307 0.03 4100.81 19.49
100 10 0 7034250 189925 5.58 7200.00 4.80
100 20 0 1562800 50215 4.75 7200.00 0.00
100 60 0 241156 6956 1.20 7200.00 0.00
100 100 0 86500 836 0.65 7200.00 0.00

Table 3: Uniform Model on Randomly Generated Data.
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CPLEX # of # of Final Time Heuristic
n m Status SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 Optimal 5 0 0.00 0.06 0.00
2 5 Optimal 37 0 0.00 0.06 0.00
2 10 Optimal 28 0 0.00 0.06 0.00
2 20 Optimal 28 0 0.00 0.06 0.00
2 60 Optimal 96 0 0.00 0.08 0.00
2 100 Optimal 125 0 0.00 0.10 0.00

5 2 Optimal 40 1 0.00 0.07 0.00
5 5 Optimal 501 99 0.00 0.15 0.18
5 10 Optimal 14520 3066 0.01 1.61 0.00
5 20 Optimal 124 0 0.00 0.10 0.00
5 60 Optimal 146 0 0.00 0.17 0.00
5 100 Optimal 537 27 0.01 1.17 0.12

10 2 Optimal 123 7 0.00 0.08 2.94
10 5 Optimal 14702 4473 0.01 1.80 0.46
10 10 Optimal 3099905 976193 0.01 478.43 1.47
10 20 Feasible 36883946 4521011 7.01 7200.00 1.19
10 60 Feasible 16801245 3206741 2.27 7200.00 1.24
10 100 Feasible 14817894 2201874 0.69 7200.00 0.00

20 2 Optimal 152 0 0.00 0.13 0.34
20 5 Optimal 148607 33304 0.01 22.45 6.08
20 10 Feasible 33346360 5977052 1.18 7200.00 9.66
20 20 Feasible 20586030 1288903 19.08 7200.00 5.53
20 60 Feasible 9038508 435610 11.20 7200.00 2.93
20 100 Feasible 6982060 250213 5.95 7200.00 13.42

60 2 Optimal 5757 420 0.00 2.10 9.57
60 5 Feasible 21893848 3472747 1.77 7200.00 20.11
60 10 Feasible 15824025 1460216 18.64 7200.00 8.83
60 20 Feasible 8570162 290388 21.44 7200.00 13.74
60 60 Feasible 2180690 43495 25.11 7200.00 14.93
60 100 Feasible 996247 6782 21.66 7200.00 8.28

100 2 Optimal 20970 1360 0.00 6.78 9.71
100 5 Feasible 14311720 2001758 7.43 7200.00 15.85
100 10 Feasible 9416746 644540 18.70 7200.00 16.89
100 20 Feasible 3513959 142581 30.80 7200.00 19.42
100 60 Feasible 785803 5144 26.30 7200.00 15.80
100 100 Feasible 375860 659 30.80 7200.00 0.00

Table 4: Uniform Model on Real Data with Heuristic
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Provably # of # of Final Time Heuristic
n m Optimal(%) SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 100 9 0 0.00 0.01 0.00
2 5 100 8 0 0.00 0.01 0.00
2 10 100 11 0 0.00 0.01 0.00
2 20 100 13 0 0.00 0.01 0.00
2 60 100 24 0 0.00 0.02 0.00
2 100 100 126 0 0.00 0.04 0.00

5 2 100 43 0 0.00 0.01 0.00
5 5 100 99 0 0.00 0.02 0.00
5 10 100 123 0 0.00 0.03 0.00
5 20 100 121 0 0.00 0.05 0.00
5 60 100 199 0 0.00 0.07 0.00
5 100 100 466 0 0.00 0.22 0.00

10 2 100 91 0 0.00 0.03 0.00
10 5 100 272 17 0.00 0.11 0.00
10 10 100 1937 0 0.00 0.60 0.00
10 20 100 3054 306 0.00 2.30 0.00
10 60 100 1647 0 0.00 1.15 0.00
10 100 100 2565 0 0.00 3.46 0.00

20 2 100 241 0 0.00 0.06 0.00
20 5 100 3114 390 0.00 0.84 0.00
20 10 100 218660 18240 0.01 39.31 0.55
20 20 80 2910690 138381 0.02 726.41 0.42
20 60 60 994118 29001 0.03 861.67 0.06
20 100 80 45913 0 0.00 98.81 0.00

60 2 100 1938 106 0.00 0.89 19.75
60 5 100 804911 37932 0.01 202.56 14.83
60 10 0 14506800 420194 2.68 7200.00 2.22
60 20 0 6361410 236692 2.42 7200.00 0.49
60 60 0 1229010 31682 0.92 7200.00 0.00
60 100 0 428255 13577 0.30 7200.00 0.00

100 2 100 2720 122 0.00 2.29 56.39
100 5 20 16598900 594915 1.10 7177.44 19.09
100 10 0 7778290 202018 6.45 7200.00 3.88
100 20 0 1845340 56619 4.39 7200.00 0.00
100 60 0 309144 8180 1.16 7200.00 0.00
100 100 0 93974 1500 0.64 7200.00 0.00

Table 5: Weighted Uniform Model on Randomly Generated Data.
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CPLEX # of # of Final Time Heuristic
n m Status SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 Optimal 3 0 0.00 0.01 0.00
2 5 Optimal 45 0 0.00 0.01 0.00
2 10 Optimal 20 0 0.00 0.01 0.00
2 20 Optimal 18 0 0.00 0.01 0.00
2 60 Optimal 4 0 0.00 0.02 0.00
2 100 Optimal 3 0 0.00 0.03 0.00

5 2 Optimal 42 0 0.00 0.01 0.00
5 5 Optimal 391 96 0.00 0.06 0.18
5 10 Optimal 23329 4752 0.01 2.03 1.09
5 20 Optimal 50 0 0.00 0.02 0.00
5 60 Optimal 90 0 0.00 0.03 0.00
5 100 Optimal 421 70 0.01 0.42 0.10

10 2 Optimal 101 9 0.00 0.03 3.08
10 5 Optimal 12343 3907 0.01 1.41 0.42
10 10 Optimal 3348430 1045730 0.01 507.41 1.04
10 20 Feasible 39369300 6194330 6.74 7200.00 0.99
10 60 Feasible 18731400 3423080 1.45 7200.00 1.30
10 100 Feasible 15682000 2204020 0.58 7200.00 0.00

20 2 Optimal 147 2 0.00 0.06 0.36
20 5 Optimal 123083 28175 0.01 18.33 6.00
20 10 Feasible 36021100 5402250 3.93 7200.00 9.05
20 20 Feasible 24832400 1800900 18.30 7200.00 6.04
20 60 Feasible 10603800 862087 8.79 7200.00 3.17
20 100 Feasible 8833870 694551 4.20 7200.00 11.46

60 2 Optimal 4894 684 0.00 1.46 9.66
60 5 Feasible 22890000 3716240 1.99 7200.00 20.18
60 10 Feasible 15735000 1173870 15.68 7200.00 10.66
60 20 Feasible 8696510 373766 20.35 7200.00 14.73
60 60 Feasible 2530950 116001 18.26 7200.00 16.78
60 100 Feasible 1312000 42641 14.40 7200.00 9.19

100 2 Optimal 17588 2030 0.00 5.44 9.68
100 5 Feasible 14179400 2392980 7.23 7200.00 16.28
100 10 Feasible 9981990 790005 18.38 7200.00 16.71
100 20 Feasible 5245070 175370 26.13 7200.00 20.11
100 60 Feasible 1121010 33001 17.46 7200.00 16.05
100 100 Feasible 625020 21315 16.72 7200.00 7.80

Table 6: Weighted Uniform Model on Real Data.
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Provably # of # of Final Time Heuristic
n m Optimal(%) SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 100 14 0 0.00 0.01 0.00
2 5 100 15 0 0.00 0.01 0.00
2 10 100 33 0 0.00 0.01 0.00
2 20 100 48 0 0.00 0.01 0.00
2 60 100 134 0 0.00 0.03 0.00
2 100 100 203 0 0.00 0.06 0.00

5 2 100 171 0 0.00 0.04 0.00
5 5 100 261 0 0.00 0.10 0.00
5 10 100 320 0 0.00 0.18 0.00
5 20 100 1056 0 0.00 0.48 0.00
5 60 100 600 0 0.00 0.28 0.00
5 100 100 1134 0 0.00 0.75 0.00

10 2 100 1392 41 0.00 0.33 0.00
10 5 100 6969 247 0.00 2.55 1.73
10 10 100 91468 3385 0.00 40.18 0.00
10 20 80 307804 8433 0.03 275.30 0.00
10 60 80 8988 0 0.00 10.54 0.00
10 100 100 6067 0 0.00 19.02 0.00

20 2 100 10312 117 0.00 4.59 0.00
20 5 100 406673 7447 0.00 279.50 1.42
20 10 0 5066530 62721 6.82 7200.00 1.42
20 20 0 1937260 13536 3.41 7200.00 0.00
20 60 0 191894 15 0.40 7200.00 0.00
20 100 20 71510 0 0.00∗ 1528.05 0.00

60 2 100 519426 2345 0.00 1095.90 21.39
60 5 0 466665 161 29.10 7200.00 0.00
60 10 0 206470 0 14.86∗∗ 7200.00 0.00
60 20 0 159213 0 noLP 7200.00 0.00
60 60 0 128080 0 noLP 7200.00 0.00
60 100 0 159868 0 noLP 7200.00 0.00

100 2 0 636346 403 35.18 7200.00 51.89
100 5 0 153009 0 43.76∗ 7200.00 0.00
100 10 0 139430 0 noLP 7200.00 0.00
100 20 0 135284 0 noLP 7200.00 0.00
100 60 0 173941 0 noLP 7200.00 0.00
100 100 0 171525 0 noLP 7200.00 0.00

Table 7: Share-of-Surplus Model with Restricted Prices on Randomly Generated Data. In
column “OptGap”, ‘ ∗’, ‘ ∗∗’ , and ‘noLP’ indicate that the LP relaxation of two out of the
five, three out of the five, and all five of the instances, respectively, could not be solved
within the two hour time limit.
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CPLEX # of # of Final Time Heuristic
n m Status SimplxItns Nodes Gap(%) (CPUsec) Gap(%)

2 2 Optimal 9 0 0.00 0.01 0.00
2 5 Optimal 45 0 0.00 0.01 0.00
2 10 Optimal 29 0 0.00 0.01 0.00
2 20 Optimal 52 0 0.00 0.01 0.00
2 60 Optimal 177 0 0.00 0.03 0.00
2 100 Optimal 216 0 0.00 0.04 0.00

5 2 Optimal 174 14 0.00 0.03 7.40
5 5 Optimal 1366 172 0.00 0.23 1.90
5 10 Optimal 88171 13920 0.01 11.90 3.39
5 20 Optimal 184 0 0.00 0.05 0.00
5 60 Optimal 369 0 0.00 0.21 0.00
5 100 Optimal 30968 17285 0.01 112.99 0.02

10 2 Optimal 1097 44 0.00 0.24 0.98
10 5 Optimal 41285 3391 0.01 7.67 10.39
10 10 Optimal 20140700 1218800 0.01 5328.99 18.76
10 20 Feasible 11489200 678326 13.59 7200.00 1.70
10 60 Feasible 2528930 27068 13.72 7200.00 4.97
10 100 Feasible 1398250 7331 12.28 7200.00 0.00

20 2 Optimal 7378 113 0.00 2.75 0.52
20 5 Optimal 3348750 137019 0.01 1680.05 10.60
20 10 Feasible 5765580 67567 24.20 7200.00 20.22
20 20 Feasible 1944430 16779 34.80 7200.00 11.01
20 60 Feasible 159487 250 40.17 7200.00 0.00
20 100 Feasible 122578 0 42.21 7200.00 0.00

60 2 Optimal 619097 2249 0.00 1089.83 13.97
60 5 Feasible 514955 95 37.08 7200.00 13.39
60 10 Feasible 184065 0 43.32 7200.00 0.00
60 20 Feasible 120800 0 noLP 7200.00 0.00
60 60 Feasible 60800 0 noLP 7200.00 0.00
60 100 Feasible 39400 0 noLP 7200.00 0.00

100 2 Feasible 684915 681 15.93 7200.00 14.29
100 5 Feasible 139800 0 34.75 7200.00 17.14
100 10 Feasible 134000 0 noLP 7200.00 0.00
100 20 Feasible 103800 0 noLP 7200.00 0.00
100 60 Feasible 46900 0 noLP 7200.00 0.00
100 100 Feasible 32700 0 noLP 7200.00 0.00

Table 8: Share-of-Surplus Model with Restricted Prices on Real Data.
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Problem CPLEX # of # of Final Time
Name Status SimplxItns Nodes Gap(%) (CPUsec)

t1 Optimal 861 106 0.00 0.61
t2 Optimal 616 54 0.00 0.74
t3 Optimal 453 48 0.00 0.53
t4 Optimal 980 86 0.00 1.00
t5 Optimal 716 84 0.00 0.69
t6 Optimal 1023 98 0.00 0.76
t7 Optimal 579 46 0.00 0.67
t8 Optimal 980 86 0.00 1.01
t9 Optimal 940 86 0.00 0.78
t10 Optimal 507 52 0.00 0.61

rand1 Optimal 20625 1682 0.00 21.30
rand2 Optimal 12025 735 0.00 14.47
rand3 Optimal 7254 498 0.00 9.67
rand4 Optimal 4899 316 0.00 6.34
rand5 Optimal 7443 474 0.00 10.08
rand6 Optimal 11705 873 0.00 12.85
2x2 Optimal 8 0 0.00 0.01
2x5 Optimal 768 56 0.00 0.59
5x2 Optimal 785 81 0.00 0.54
5x5 Optimal 25662 2151 0.00 23.62
5x10 Optimal 2685098 182506 0.01 4232.98
10x5 Optimal 970831 79289 0.01 1331.47

10x10 Feasible 1655571 105230 71.96 7200.00
10x20 Feasible 168276 7984 85.77 7200.00

Table 9: Price Sensitive Model on Small-Scale Randomly Generated Data.
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A Supplemental Proofs

Proof of Theorem 2.1. Suppose we are given the optimal βij ’s for Problem (2.1). Then, the
problem simplifies to:

max
n∑

i=1

Niti,

s.t. ti ≤
∑

j:βij=1 Rijπj∑
j:βij=1 Rijβij

, ∀i :
∑
j

βij ≥ 1,

ti = 0, ∀i :
∑
j

βij = 0,

πj ≤ Rij , ∀j :
∑
j

βij ≥ 1,∀i : βij = 1,

πj ≥ Rj + 1, ∀j :
∑
j

βij = 0,

πj ≤ Rj + 1, ∀j :
∑
j

βij = 0.

The first constraint is from the first constraint in (2.1) using the implications aij = βijti
and pij = βijπj . The last three sets of constraints are from the inequalities defining P (1.1).

Thus, in the optimal solution, ti =

∑
j:βij=1 Rijπj∑

j Rijβij
if
∑

j βij ≥ 1 and ti = 0 otherwise. Then,

πj = mini:βij=1 {Rij} if
∑

i βij ≥ 1 and πj = Rj + 1 otherwise.

Proof of Lemma 5.1. The maximum revenue we can get from segment i is
Ni (maxj {Rij}) = NiRip(i). This happens when segment i only buys product p(i). Hence,
the objective value of any feasible solution is at most

∑n
i=1 NiRip(i). Consider the solution

with the x variables assigned as in the lemma and

πj :=

{
maxk=1,...,n {Rkj} , if j ∈ J ,

R0j , otherwise.

Because of the assumptions in the lemma, the solution is feasible with exactly one seg-
ment with nonnegative surplus for each product j ∈ J and no segment buying any products
j /∈ J . Thus, every segment only buys the product with the maximum reservation price.
The corresponding objective value is

∑n
i=1 NiRip(i). Therefore, the solution is optimal.

Proof of Lemma 5.2. If the x variables are known, then πj = Rij where i is the segment
such that xij = 1. If the β variables are known, then πj = mini:βij=1 Rij . If the optimal
prices are known, we know that each πj equals the reservation price of some segment. Then
in the optimal solution,

xij :=

{
1, if Rij = πj ,
0, otherwise.

and βij :=

{
1, if Rij ≥ πj ,
0, otherwise.

These are the only values that would make the solution feasible.

Proof of Lemma 5.3. Suppose in an optimal solution, βst = 0. We know that βit = 0 for all
segments i in all three models. Let v be the optimal value. Consider the objective value v′

if βst is set to 1. We will have πt = Rst.
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In the Uniform Model, if
∑

j βsj = 0, then clearly the objective value increases by NsRst.
If
∑

j βsj ≥ 1, then

v′ − v = Ns

(
Rst +

∑
j psj

1 +
∑

j βsj
−
∑

j psj∑
j βsj

)
= Ns

( ∑
j(Rst − πj)βsj

(
∑

j βsj)(1 +
∑

j βsj)

)
. (A.1)

Rst is the maximum reservation price and each of the πj ’s equals to a reservation price, so
Rst ≥ πj ∀j. The condition

∑
j βsj ≥ 1 implies that βsk = 1 for some product k ̸= t, and

we know that Rst > πk. So the expression (A.1) is strictly positive. This contradicts the
fact that it is an optimal solution. Therefore, βst ≥ 1 in every optimal solution.

Similarly, in the Weighted Uniform Model, if
∑

j βsj = 0, then clearly the objective value
increases by NsRst. If

∑
j βsj = 1, then

v′ − v = NsRst

( ∑
j(πt − πj)Rsjβsj

(
∑

j Rsjβsj)(Rst +
∑

j Rsjβsj)

)
> 0,

where πt = Rst > πj , ∀j.
In the Share-of-Surplus Model with restricted prices, if

∑
j βsj = 0, then the objective

value increases by NsRst. Otherwise,

rclv′ − v = Ns

(
πt(Rst − πt + η) +

∑
j πj(Rsj − πj + η)βsj

(Rst − πt + η) +
∑

j(Rsj − πj + η)βsj
−
∑

j πj(Rsj − πj + η)βsj∑
j(Rsj − πj + η)βsj

)

=Ns(Rst − πt + η)

( ∑
j(πt − πj)(Rsj − πj + η)βsj

(
∑

j(Rsj − πj + η)βsj)((Rst − πt + η) +
∑

j(Rsj − πj + η)βsj)

)
>0,

where we let η > 0 to avoid singularity.
In all three models, we showed that the solution is not optimal if βst = 0. So in every

optimal solution, segment s buys product t.

Proof of Lemma 6.1. The proof directly follows from Lemma 5.1.

Proof of Lemma 6.2. The time it takes to examine a product k is O(mf(n,m)) since we
consider up to m products that product k can swap with. A product is examined multiple
times only if its price increases after a swap. Since a product’s price always equals to a
segment’s reservation price, it can only increase at most n times. So there are at most
O(nm) iterations to examine a product, and each iteration has a runtime of O(mf(n,m)).
Therefore, the runtime of Heuristic 2 is O(nm2f(n,m)).

Proof of Lemma 7.1. The Hessian of f is

∇2f =

[
A 0
0T 0

]
,

where A :=

[
2a eT

e 2B

]
, B is an m×m diagonal matrix with b, b, . . . , b on the diagonal, and

e is a vector of all ones. Since f is twice continuously differentiable, f is convex iff A is
a positive semi-definite matrix. If b ≤ 0, then A is not positive semi-definite and f is not
convex. So we may assume b > 0.
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The Schur-complement of B in A is 2a− 1
2b (e

Te). Thus,

A ≽ 0 ⇔ a− m

4b
≥ 0 ⇔ ab ≥ m

4
.

Proof of Lemma 7.2. As in the proof of the previous lemma, F is twice continuously differ-
entiable. The Hessian of F is

∇2F =

[
A 0
0T 0

]
,

where A :=

[
2a eT

e 2B

]
. Therefore, F is convex iff A is positive semidefinite. If for some j,

bj ≤ 0, thenA is not positive semidefinite. Therefore, b > 0. Let b̄ := ( 1√
b1
, 1√

b2
, . . . , 1√

bm
)T .

Also, if a ≤ 0 then A is not positive semidefinite; thus, a > 0. The Schur complement of a
in A is 2B − 1

2aee
T . Thus,

A ≽ 0 ⇔ 2B − 1

2a
eeT ≽ 0

⇔ 4I − 1

a
b̄b̄

T ≽ 0

⇔ 4b̄
T
b̄− 1

a
(b̄

T
b̄)2 ≥ 0

⇔ a ≥ b̄
T
b̄

4
=

m∑
j=1

1

4bj
.

Proof of Lemma 7.6. For given βij ’s, finding the most violated subset P ∗
ik for (7.5) is equiv-

alent to solving

max
∑m

j=1 βijzj ,

s.t.
∑m

j=1 zj = k + 1,

0 ≤ zj ≤ 1, j = 1, . . . ,m.

Since the feasible region of the above LP is an integral polyhedron, and since the LP is clearly
feasible and bounded, it has an optimal 0,1 solution corresponding to the characteristic
vector of P ∗

ik. The Dual of this LP is:

min (k + 1)q +
∑m

j=1 pj ,

s.t. q + pj ≥ βij , j = 1, . . . ,m,

pj , j = 1, . . . ,m.

If there exist βij ’s and yil which satisfy (7.5) for all covers Pik, then it must satisfy (7.5)
for P ∗

ik. Thus, from strong duality, there exist q and pj satisfying the constraints for the
Dual LP and

∑
j∈P∗

ik
βij = (k + 1)q +

∑m
j=1 pj .

Conversely, if there exist q and pj which satisfy the constraints of the Dual LP and there

is a yil such that (k + 1)q +
∑m

j=1 pj +
∑k

l=0 yil ≤ k + 1, then from weak duality,∑
j∈Pik

βij ≤ (k+1)q+
∑m

j=1 pj for all Pik’s and thus,
∑

j∈Pik
βij +

∑k
l=0 yil ≤ k+1 for all

Pik’s.
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Proof of Lemma 7.7. The system (7.7) are valid inequalities for the pure 0,1 formulation
(7.4). Thus, x̂ij is a feasible integer solution to (2.2) if and only if x̂ij and ŷik = 1, where
k =

∑
l:Rlj≤Rij

xlj is a feasible integer solution to (7.4).

Using Farkas’ Lemma, (7.7) is infeasible if and only if there exist u, v, and wk, k =
0, . . . ,m, where

u+ kv +
∑k

l=0 wk ≥ 0, k = 0, . . . ,m,

u+
∑m

j=1 β̄ijv +
(
k + 1−

∑
j∈P∗

ik
β̄ij

)
wk < 0,

wk ≥ 0, k = 0, . . . ,m.

Therefore,
∑m

j=1 vβij +
∑

j∈P∗
ik
wkβij ≤

∑m
k=0(k+1)wk is a valid inequality for (2.2) and it

is violated by β̄ij .

B Estimating the Reservation Price

The reservation price data used in the computational experiments of Section 9 are estimated
from actual purchase orders of a Canadian travel company. The customers are partitioned
into segments according to their demographic information, purchase lead time and other
characteristics. Suppose after the segmentation, there are n customers, with Ni customers
in segment i, i = 1, . . . , n. The company offers m products.

From the historical data, we know what fraction of customers of each segment purchased
each product and how much they paid for it. Let

frij := the fraction of segment i customers who purchased product j,
Bi := {j : frij > 0} , i.e., set of products purchased by segment i,
pij := the price that customers of segment i paid for product j.

The price paid for a particular product may be slightly different from customer to customer
depending on the time of sales and other anomalies. Thus, the above pij value is the average
price paid by segment i for product j.

To estimate the reservation price Rij of segment i for product j, we assumed that cus-
tomers behaved according to the share-of-surplus model of Section 3. Thus, frij should be
approximately equal to

Rij − pij∑
k∈Bi

(Rik − pik)
,

where Rij ’s are now variables and pij ’s are data.
We fit Rij ’s and the share-of-surplus model to the data using least squares regression,

i.e., for each segment i, we solved for Rij ’s, j = 1, . . . ,m, that minimizes

∑
j∈Bi

(
fij −

Rij − pij∑
k∈Bi

Rik − pik

)2

or
∑
j∈Bi

(
fij(

∑
k∈Bi

Rik − pik)−Rij − pij

)2

subject to:
Rij − pij ≥ 0, j ∈ Bi,∑

k∈Bi
Rik − pik ≥ δ

where δ > 0.
There are some further details that need to be addressed. One of the key issues is

estimating Rij for j /∈ Bi. Currently, we have these Rij ’s set to 0, which is clearly an



808 R. SHIODA L. TUNÇEL AND B. HUI

underestimate. Although we do not have any direct information about segment i’s preference
level of product j, we may be able to infer this from other segments that do purchase product
j. As a future work, we can consider using data mining techniques such as clustering and
collaborative filtering to determine these Rij ’s (see for instance [13, 14]).

Also note that in the above we only described a way to roughly estimate the expected
values of the reservation prices Rij . Indeed, most companies have much more detailed in-
formation on their customers (especially those customers with frequent flier accounts) and
the related market pricing and volume data. Using these, one usually observes the empirical
distribution of the sales, and also one accounts for the potential customers’ activities on the
firm’s website (those who search but perhaps do not buy) and fits a distribution function.
Finally, the actual Rijs are generated from these distributions using certain sampling tech-
niques. Much of the details of these procedures are sector dependent and more importantly
company dependent and are usually kept confidential.
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