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one. Therefore, the leader modelizes the upper level as a MinInf (risk-prone) problem in the
first case and as a MinSup (risk-averse) problem in the second one.
When the lower level corresponds to an optimization problem, these two formulations con-
figure, respectively, a strong (optimistic) and a weak (pessimistic) Stackelberg problem (also
called bilevel optimization problem) (see, for example, [7], [10], [28]....)
When the lower level is defined more generally by the solutions set of a variational or a
quasi-variational problem, the optimistic case has been extensively investigated from var-
ious point of view [40], [35], [21], [23], [10], [14].... More recently, in [26], the asymptotic
behavior of the infimal values of optimistic bilevel programs with variational inequalities
constraints under perturbations has been investigated.
On the contrary, in this paper, we consider a pessimistic two-stage model with quasi-
variational inequality constraints. More precisely, we assume that (X, τ) is a Hausdorff
topological space, H ⊆ X is a nonempty closed set, K ⊆ Rh is a nonempty convex and
closed set, A is a function from H × K to Rh and S is a set-valued map from H × K to
K with nonempty values. Then, for every x ∈ H, we consider the following parametric
quasi-variational inequality

(QV I)(x) find u ∈ S(x, u) such that ⟨A(x, u), u− w⟩ ≤ 0 ∀ w ∈ S(x, u).

The solution map Q : x ∈ H → Q(x) associates to every x ∈ H the set Q(x) of solutions to
(QV I)(x).
It is worth noting that Q(x) may be not a singleton even under very restrictive conditions
on the function A ([4]).
Then, given the objective function of the leader f : H × K → R ∪ {−∞}, the MinSup
(pessimistic bilevel) problem with quasi-variational inequality constraints, (MS) for short,
consists in finding x̂ ∈ H such that

sup
u∈Q(x̂)

f(x̂, u) = min
x∈H

sup
u∈Q(x)

f(x, u)

and the corresponding infimal value, called the security value is

ω = inf
x∈H

sup
u∈Q(x)

f(x, u).

Differently from what concerns optimistic two-stage models, there are quite a few papers
devoted to MinSup problems with quasi-variational problem constraints ([37], [38]). This
is probably due to the intrinsic theoretical difficulties of the problems presented in both
levels [20], [14], [11]... Indeed, referring to classical weak Stackelberg problems, it is known
that they may fail to have a solution also in presence of regular data [7], even if some
restricted classes of functions ensuring existence results have been determined in [34], [36]
and [32]. Moreover, at the lower level, a quasi-variational inequality has to be solved, that
is a problem in which a fixed-point problem is combined with a variational inequality over a
set depending on the solution itself, and that amounts, therefore, to an implicit variational
problem [4], [22]... Finally, note that their ”bilevel” nature does not allow to get general
convergence results for solutions and security values under perturbations of the data (see, for
example, [32]). An attempt to overcome these difficulties consisted in defining appropriate
regularized problems admitting solutions whose security values approach the initial security
value under reasonable conditions. Investigations of regularizations for weak Stackelberg
problems, parametric or not, have been presented in a sequential setting, [31] and [32], as
well in a topological one [20], together with approximation methods (like Tykhonov, least-
norm regularization, Molodtsov and interior penalty methods) [30], [29] and [28].
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Aim of this paper is now to investigate the asymptotical behavior of the security values of
the pessimistic model with quasi-variational inequality constraints under perturbations on
the data, having in mind to obtain conditions of minimal character which guarantee the
convergence of the security values of suitable regularized perturbed problems to the security
value of the unperturbed problem. So, some useful tools of Variational and Set-valued
Analysis ([3],[25],[39]...), necessary to reach results of minimal character involving possibly
discontinuous data, will be recalled in Section 2.
More precisely, let (An)n be a sequence of functions from H×K to Rh, (Sn)n be a sequence
of set-valued maps from H × K to K and (fn)n be a sequence of functions defined on
H ×K and valued in R∪{−∞}. For each positive integer n, we denote by Qn the map that
associates to x ∈ H the solutions set of the problem

(QV I)n(x) find u ∈ K : u ∈ Sn(x, u) and ⟨An(x, u), u− w⟩ ≤ 0 ∀ w ∈ Sn(x, u).

For each n ∈ N, we denote by ωn the security value for the corresponding problem (MS)n

ωn = inf
x∈H

sup
u∈Qn(x)

fn(x, u),

We show in Section 3 that the sequence of the exact security values ωn may not converge
to the exact security value ω even under ”nice” assumptions on the data. So, we define ap-
proximate security values for MinSup problems with quasi-variational inequality constraints
(without perturbations) by the security values of suitable regularized MinSup problems with
quasi-variational inequality constraints.
More precisely, we assume that ε = (ε1, ε2), ε1 > 0 and ε2 > 0 and we consider the following
approximate solutions map

Qε : x ∈ H → Qε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε2 and ⟨A(x, u), u− w⟩ ≤ ε1 ∀w ∈ S(x, u)} .
(1.1)

Then, we formulate the following regularized MinSup problem

find x̂ ∈ H such that sup
u∈Qε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Qε(x)

f(x, u),

whose corresponding approximate security value is

ωε = inf
x∈H

sup
u∈Qε(x)

f(x, u),

and we investigate the convergence of ωε to the exact security value ω as ε is converging to
0.
Finally, in Section 4, we assume the presence of perturbations as defined above and we inves-
tigate the asymptotic behavior of the approximate security values ωn

ε = inf
x∈H

sup
u∈Qn

ε (x)

fn(x, u).

The case where H and S are described by inequalities is analyzed and, in both sections 3
and 4, results concerning MinSup problems with variational inequality constraints are en-
lightened. We emphasize that such results can open a way for motivate the use of numerical
approximations as discretizations and penalizations since they allow to define a general
scheme for approaching the security value ω by the sequence ωn

ε of security values of regu-
larized perturbed problems.
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2 Preliminaries

The following notions ([3], [21]) will be used in the paper. Let (Kn)n be a sequence of
nonempty subsets of Rh.

The Painlevé-Kuratowski upper and lower limits of the sequence (Kn)n are defined respec-
tively
by
• z ∈ lim sup

n
Kn if there exists a sequence (zk)k converging to z such that zk ∈ Knk

for a

subsequence (Knk
)k of (Kn)n and for each k ∈ N

• z ∈ lim inf
n

Kn if there exists a sequence (zn)n converging to z such that zn ∈ Kn for n

sufficiently large.
We recall that both these sets are closed and may be empty.

A function h : H → R∪{−∞} is coercive on H if for every t ∈ R there exists a sequentially
compact set Ct ⊆ X such that

Levt h = {x ∈ H : h(x) ≤ t} ⊆ Ct.

A function g : H ×K → R∪{−∞} is coercive with respect to u on K uniformly with respect
to x ∈ H (coercive in u on K for short) if for every t ∈ R there exists a compact set Yt ⊆ Rh

such that
(Levt g) (x) = {u ∈ K : g(x, u) ≤ t} ⊆ Yt for every x ∈ H.

A set-valued map F from X to K is sequentially lower semicontinuous over X, lower semi-
continuous for short, if for every x ∈ X and every sequence (xn)n converging to x in X

F (x) ⊆ lim inf
n

F (xn).

A set-valued map F from X to K is sequentially closed over X, closed for short, if for every
x ∈ X and every sequence (xn)n converging to x in X

lim sup
n

F (xn) ⊆ F (x).

A set-valued map F from X to K is sequentially subcontinuous over X, subcontinuous for
short, if for every x ∈ X and every sequence (xn)n converging to x in X, every sequence
(un)n such that un ∈ F (xn), for every n ∈ N, has a convergent subsequence;

A sequence (Fn)n of set-valued maps from X to K lower converges to F in X if for every x
and every sequence (xn)n converging to x in X

F (x) ⊆ lim inf
n

Fn(xn).

A sequence (Fn)n of set-valued maps from X to K upper converges to F in X if for every
x ∈ X and every sequence (xn)n converging to x in X

lim sup
n

Fn(xn) ⊆ F (x).

A sequence (Tn)n of functions from K to Rh:
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− is G−−converging to T in K if for every u ∈ K there exists a sequence (u′
n)n converging

to u in K such that lim
n

Tn(u
′
n) = T (u), that is

graphT ⊆ lim inf
n

graphTn.

− is equi-coercive on K if there exist a point vo ∈ K and, for every t ∈ R, a compact set
Zt ⊆ Rh such that

{u ∈ K : ⟨Tn(u), u− vo⟩ ≤ t} ⊆ Zt for all n ∈ N.

A sequence of functions (gn)n, gn : H ×K → R ∪ {−∞}:
− sequentially continuously converges to a function g in H ×K, c−converges to g for short,
if for every (x, u) ∈ H×K and every sequence (xn, un)n converging to (x, u), in H×K, one
has lim

n
gn(xn, un) = g(x, u);

− is equi-coercive on H × K if for every t ∈ R there exists a sequentially compact set
Wt ⊆ X × Rh such that

Levt gn = {(x, u) ∈ H ×K : gn(x, u) ≤ t} ⊆ Wt for all n ∈ N.
For examples that illustrate and compare the above concepts see [21].
The next lemma is a basic result for the next sections and can be proved as in [26].

Lemma 2.1. Let (Fn)n be a sequence of set-valued maps from H ×K to K.
If (Fn)n lower converges to F in H×K, then, for every x ∈ H, every u ∈ K, every sequence
(xn, un)n converging towards (x, u), in H ×K, one has

lim sup
n

d(un, Fn(xn, un)) ≤ d(u, F (x, u)).

If (Fn)n upper converges to F in H ×K and the following holds:
⋄ given a convergent sequence (xn, un)n, (xn, un) ∈ H×K, every sequence (wn)n, such that
wn ∈ Fn(xn, un) for all n ∈ N, has a convergent subsequence,
then, for every x ∈ H, every u ∈ K, every sequence (xn, un)n converging towards (x, u), in
H ×K, one has

d(u, F (x, u)) ≤ lim inf
n

d(un, Fn(xn, un)).

3 Approximating Security Values

Assuming that An, Sn, fn are perturbations of A, S and f respectively, for each positive
integer n, as in the introduction, we denote by Qn the map that associates to x ∈ H the
solutions set of the problem

(QV I)n(x) find u ∈ K : u ∈ Sn(x, u) and ⟨An(x, u), u− w⟩ ≤ 0 ∀ w ∈ Sn(x, u).

Throughout the paper, the sets of solutions to the lower level problems are assumed to be
nonempty. Conditions ensuring the existence of solutions to quasi-variational inequalities,
or to variational inequalities, in finite dimensional spaces can be found, for example, in [15]
and in [13].
For each n ∈ N, we denote by ωn the security value for the corresponding perturbed problem
(MS)n

ωn = inf
x∈H

sup
u∈Qn(x)

fn(x, u),

First, we show that the sequence of the perturbed exact security values ωn may not converge
to the exact value ω even under “nice” assumptions on the data.
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Example 3.1. Assume that a ∈ R, X = H = [0, a], h = 1, K = [0,+∞[, Sn(x, u) =
S(x, u) = K, An(x, u) = 1/n and fn(x, u) = u + x + 1/n. The sequences (An)n and
(fn)n uniformly converge, and therefore also continuously converge, to the functions A and
f defined, respectively, by: A(x, u) = 0 and f(x, u) = u + x. One easily checks that
Qn(x) = {0}, Q(x) = [0,+∞[, so that ωn = inf

x∈[0,a]
(x + 1/n) = 1/n, ω = +∞ and the

sequence (ωn)n does not converge to ω.

Therefore, we assume that ε = (ε1, ε2), ε1 > 0 and ε2 > 0 and in line with previous papers
(see, for example, [29], [19], [37], [16], [25], [26]...) we consider the following approximate
solutions map

Qε : x ∈ H → Qε(x) = {u ∈ K : d(u, S(x, u)) ≤ ε2 and ⟨A(x, u), u− w⟩ ≤ ε1 ∀w ∈ S(x, u)}
(3.1)

Then, we formulate the following regularized MinSup problem

find x̂ ∈ H such that sup
u∈Qε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Qε(x)

f(x, u)

whose corresponding approximate value is

ωε = inf
x∈H

sup
u∈Qε(x)

f(x, u).

We show that ωε can be used to determine the security value ω under suitable conditions.

Proposition 3.2. Assume that the following hold:
L1) the set-valued map S is subcontinuous, lower semicontinuous and closed on H ×K;
L2) the function A is continuous on H ×K;
U1) the function −f is coercive in u on K;
U2) for every x ∈ H there exists a sequence (xn)n converging to x in H such that for every
u ∈ K and every sequence (un)n converging to u in K one has

lim sup
n

f(xn, un) ≤ f(x, u).

Then,
ω = lim

ε→0
ωε.

Proof. Since lim
ε→0

ωε = inf
ε>0

ωε and ω ≤ ωε, it is sufficient to prove that

inf
ε>0

ωε ≤ ω.

Assume that this inequality is not true and let a be a real number such that

ω < a < inf
ε>0

ωε.

There exists a point x̄ ∈ H such that

sup
u∈Q(x̄)

f(x̄, u) < a. (3.2)

So, f(x̄, u) < a for every u ∈ Q(x̄). Let (x̄n)n be a sequence converging to x̄ and satisfying
condition U2), and let (εn)n = (ε1,n, ε2,n)n be a sequence of pairs of positive real numbers
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decreasing to 0 such that a + ε1,n < ωεn ≤ sup
u∈Qεn (x̄n)

f(x̄n, u) for every n ∈ N. There

exists a sequence (ūn)n such that

ūn ∈ Qεn(x̄n) and a + ε1,n < f(x̄n, ūn) (3.3)

for every n ∈ N. Assumption U1) implies that a subsequence (ūn′)n′ of (ūn)n converges to
a point ū ∈ K that must belong to S(x̄, ū) since d(x̄, S(x̄, ū)) ≤ lim inf

n′
d(x̄n′ , S(x̄n′ , ūn′)) ≤

lim
n′

ε2,n′ = 0 by Lemma 2.1.

Now, let w ∈ S(x̄, ū) and let (wn′)n′ be a sequence converging to w ∈ K such that wn′ ∈
S(x̄n′ , ūn′) for n′ sufficiently large. Since the function A is continuous one has

⟨A(x̄, ū), ū− w⟩ = lim
n′

⟨A(x̄n′ , ūn′), ūn′ − wn′⟩ ≤ lim
n′

ε1,n′ = 0.

Therefore, ū ∈ Q(x̄) and f(x̄, ū) < a by (3.2). However, conditions U2) and (3.3) imply that
a ≤ lim sup

n
f(x̄n, ūn) ≤ f(x̄, ū) and one has a contradiction.

Remark 3.3. Assumption U2) is satisfied if the function f(x, ·) is upper semicontinuous
(usc for short) on K for every x ∈ H, but the following example shows that these two
conditions are not equivalent in general.

Example 3.4. Assume that X = H = [0,+∞[, h = 1, K =]0,+∞[, f(x, u) = u−x when
x > 0, f(0, u) = 1 if u ∈ [0, 1] and f(0, u) = 2 if u > 1. The function f(0, ·) is not
usc at u = 1 since f(0, 1) = 1 < lim sup

n
f(0, un) = 2 for every sequence (un)n, un > 1,

converging to 1. However, condition U2) is satisfied for x = 0 because there exists the
sequence (xn)n = (1/n)n such that for every u ∈ K and every sequence (un)n converging to
u one has: lim

n
f(1/n, un) ≤ 1 ≤ f(0, u). In fact, lim

n
fn(1/n, un) = lim

n
(un)

−1/n is equal to

1 when u is positive.

Having in mind to approach the security value ω also in the presence of perturbations of the
data, it is useful to introduce the strict approximate solutions map ([29], [19], [37])

Sε : x ∈ H → Sε(x) = {u ∈ K : d(u, S(x, u)) < ε2 and ⟨A(x, u), u− w⟩ < ε1 ∀w ∈ S(x, u)}
(3.4)

and the corresponding MinSup problem

find x̂ ∈ H such that sup
u∈Sε(x̂)

f(x̂, u) = min
x∈H

sup
u∈Sε(x)

f(x, u)

whose security value is
σε = inf

x∈H
sup

u∈Sε(x)

f(x, u).

Since, for every x ∈ H, Q(x) ⊆ Sε(x) ⊆ Qε(x) one has

ω ≤ σε ≤ ωε (3.5)

and these inequalities imply that assumptions of Proposition 3.2 also guarantee that

lim
ε→0

σε = ω.

The following corollary is a simplified version of Proposition 3.2, easier to use in the appli-
cations.
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Corollary 3.5. Assume that the sets H and K are compact. If conditions L1), L2) and
U ′
2) for every x ∈ H, the function f(x, ·) is usc on K,

hold, then
ω = lim

ε→0
ωε = lim

ε→0
σε.

Variational inequality constraints case

If the map S does not depend on u, i.e. variational inequality constraints are considered at
the lower level, the above approximation scheme leads to consider the approximate values

νε = inf
x∈H

sup
u∈Vε(x)

f(x, u) τε = inf
x∈H

sup
u∈Sε(x)

f(x, u)

where

Vε : x ∈ H → Vε(x) = {u ∈ K : d(u, S(x)) ≤ ε2 and ⟨A(x, u), u− w⟩ ≤ ε1 ∀w ∈ S(x)}

Sε : x ∈ H → Sε(x) = {u ∈ K : d(u, S(x)) < ε2 and ⟨A(x, u), u− w⟩ < ε1 ∀w ∈ S(x)}
and one has the following result:

Proposition 3.6. Assume that the following hold:
L1) the set-valued map S is subcontinuous, lower semicontinuous and closed on H;
L2) the function A is continuous on H ×K;
U2) for every x ∈ H there exists a sequence (xn)n converging to x in H such that for every
u ∈ K and every sequence (un)n converging to u in K one has

lim sup
n

f(xn, un) ≤ f(x, u).

Then,
ν = lim

ε→0
νε = lim

ε→0
τε.

Proof. As in Proposition 3.2, assume that there exists a ∈ R such that ν < a < inf
ε>0

νε.

Then, there exists x̄ ∈ H such that f(x̄, u) < a for every u ∈ V(x̄), and a sequence (x̄n)n
converging to x̄ satisfying condition U2). If (εn)n = (ε1,n, ε2,n)n is a sequence of pairs of
positive real numbers decreasing to 0 such that a + ε1,n < νεn for every n ∈ N, there
exists a sequence (ūn)n such that

ūn ∈ Vεn(x̄n) and a + ε1,n < f(x̄n, ūn) (3.6)

for every n ∈ N. The map S being subcontinuous, the set S(xn) is compact for every n. So,
from d(ūn, S(x̄n)) ≤ ε2,n one infers that there exists zn ∈ S(x̄n) such that

||ūn − zn|| = min
z∈S(x̄n)

||un − z|| ≤ ε2,n.

A subsequence of (zn)n must converge to a point ū ∈ S(x̄) since S is closed and subcontinu-
ous. Therefore, a subsequence of (ūn)n converges to the same point ū that can be proved to
solve the variational inequality (V I)(x̄), so that ū ∈ V(x̄) and f(x̄, ū) < a. Then, conditions
U2) and (3.6) lead to a contradiction since a ≤ lim sup

n
f(x̄n, ūn) ≤ f(x̄, ū) < a.

Note that, in order to approximate the security value ν, assumption U1) can be eliminated,
so a “compactness” condition (that is: S is subcontinuous) is present only on the lower level
problem.
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Corollary 3.7. Assume that the set K is compact. If conditions L1), L2), U
′
2) hold, then

ν = lim
ε→0

νε = lim
ε→0

τε.

4 Asymptotically Approximating Security Values

Assuming that An, Sn, fn are perturbations of A, S and f respectively, we define the
following approximate solutions maps

Qn
ε : x ∈ H → Qn

ε (x)

= {u ∈ K : d(u, Sn(x, u)) ≤ ε2 and ⟨An(x, u), u− w⟩ ≤ ε1 ∀ w ∈ Sn(x, u)}

Sn
ε : x ∈ H → Sn

ε (x)

= {u ∈ K : d(un, Sn(x, u)) < ε2 and ⟨An(x, u), u− w⟩ < ε1 ∀ w ∈ Sn(x, u)}

and we consider the regularized perturbed MinSup problems with constraints described by
the maps Qn

ε and Sn
ε , whose security values are

ωn
ε = inf

x∈H
sup

u∈Qn
ε (x)

fn(x, u) σn
ε = inf

x∈H
sup

u∈Sn
ε (x)

fn(x, u)

In this section, as in the unperturbed case considered in Section 3, we wish to approximate
the security value ω with the approximate security values ωn

ε and/or σn
ε and we start by

showing that the data of Example 3.1 guarantee that the sequences (ωn
ε )n and (σn

ε )n ap-
proach asymptotically the security value ω even if the exact security values sequence (ωn)n
does not converge to ω.

Example 4.1. Assume that a ∈ R, X = H = [0, a], h = 1, K = [0,+∞[, Sn(x, u) =
S(x, u) = K, An(x, u) = 1/n, fn(x, u) = u+ x+ 1/n, A(x, u) = 0 and f(x, u) = u+ x. One
easily checks that Qn

ε (x) = [0, nε], Sn
ε (x) = [0, nε[, so that ωn

ε = σn
ε = inf

x∈[0,a]
(x + 1/n +

nε) = 1/n+ nε. Then, we have:

lim
ε→0

lim
n

ωn
ε = lim

ε→0
lim
n

σn
ε = ω = +∞.

Remark 4.2. In Example 4.1 one also has:

lim
n

lim
ε→0

ωn
ε = 0

so, it is clear that to define a satisfactory approximation scheme one has to study the be-
havior of (ωn

ε )n and (σn
ε )n first for n going to +∞ and second for ε going to 0 and not the

contrary.
Moreover, in line with classical methods in Variational Analysis ([1], [9], [39]), we approx-
imate ω by the sequences (ωn

ε )n and (σn
ε )n separately from above and from below because

this allows to individuate assumptions of minimal character on the upper level data (see
[18],[17]).

We start by approximating ω from above.
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Proposition 4.3. Assume that the following hold:
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every (x, u) ∈ H ×K and every sequence (xn, un)n converging to (x, u) in H ×K,
any sequence (wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L5) for every x ∈ H and every sequence (xn)n converging to x in H, the sequence (An(xn, ·))n
G−−converges to A(x, ·) in K;
U3) the sequence (fn)n is equicoercive on H ×K;
U4) for every (x, u) ∈ H ×K and every sequence (xn, un)n converging to (x, u) in H ×K
one has

f(x, u) ≤ lim inf
n

fn(xn, un).

Then, we have
σε ≤ lim inf

n
σn
ε ∀ ε > 0 (4.1)

and consequently
ω ≤ lim inf

ε→0
lim inf

n
σn
ε .

Proof. Assume that (4.1) fails to be true. There exist ε > 0 and a real number a such that
lim inf

n
σn
ε < a < σε.

Then, there exist an increasing sequence of positive integers (nk)k and a sequence (xk)k,
xk ∈ H, such that

sup
u∈S

nk
ε (xk)

fnk
(xk, u) < a < σε ∀ k ∈ N. (4.2)

By assumption U3) we can assume that a subsequence of (xk)k, still denoted by (xk)k,
converges to a point x̄ ∈ H.
Consider ū ∈ Sε(x̄) and a sequence (uk)k, whose existence is guaranteed by L5), converging
to ū in K and such that

lim
k

Ank
(xk, uk) = A(x̄, ū). (4.3)

Since d(ū, S(x̄, ū)) < ε2, Lemma 2.1 ensures that there exists ko ∈ N such that
d(uk, Sk(xk, uk)) < ε2 for k ≥ ko and we claim that ⟨Ank

(xk, uk), uk − w⟩ < ε1 for ev-
ery w ∈ Sk(xk, uk) and for k sufficiently large. Indeed, if it is not true, there exists an
infinite set of positive integers N′ and sequence (wk′)k′ such that wk′ ∈ Sk′(xk′ , uk′) and
⟨Ank′ (xk′ , uk′), uk′−wk′⟩ ≥ ε1 for every k′ ∈ N′. By assumptions L3) and L4), a subsequence
of (wk′)k′ must converge towards a point w ∈ S(x̄, ū) and, by (4.3), ⟨A(x̄, ū), ū − w⟩ ≥ ε1
which is in contradiction with ū ∈ Sε(x̄). Therefore, uk ∈ Snk

ε (xk) for k sufficiently large,
so, conditions U4) and (4.2) imply that f(x̄, ū) ≤ lim inf

k
fnk

(xk, uk) ≤ a < σε. As ū is an

arbitrary point in Sε(x̄), we also have

sup
u∈Sε(x̄)

f(x̄, u) ≤ a < σε

and we get a contradiction.

The next result gives an approximation of ω from below.

Proposition 4.4. Assume that the following hold:
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every (x, u) ∈ H ×K and every sequence (xn, un)n converging to (x, u) in H ×K,
any sequence (wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L6) the sequence (An)n c−converges to A on H ×K;
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L7) the sequence (An)n is equicoercive on H ×K;
U5) for every x ∈ H there exists a sequence (xn)n converging to x such that for every u ∈ K
and every sequence (un)n converging to u in K one has

lim sup
n

fn(xn, un) ≤ f(x, u).

Then,

lim sup
n

ωn
ε ≤ ωε ∀ ε > 0 (4.4)

and consequently

lim sup
ε→0

lim sup
n

ωn
ε ≤ ω.

Proof. Assume that (4.4) fails to be true. Let a be a real number such that ωε < a <
lim sup

n
ωn
ε , let x̄ ∈ H be such that sup

u∈Qε(x̄)

f(x̄, u) < a and let (xn)n be a sequence converging

to x̄ in H satisfying assumption U5). Being a < lim sup
n

ωn
ε ≤ lim sup

n
sup

u∈Qn
ε (xn)

fn(xn, u),

there exist an increasing sequence (nk)k of positive integers and a sequence (unk
)k such that

unk
∈ Qnk

ε (xnk
) and fnk

(xnk
, unk

) > a for every k.
Then, d (unk

, Snk
(xnk

, unk
)) ≤ ε2 and ⟨Ank

(xnk
, unk

), unk
− w⟩ ≤ ε1 for every w ∈

Snk
(xnk

, unk
) and every k. The sequence (An)n is equicoercive on H×K, so, a subsequence

of (unk
)k, still denoted by (unk

)k, must converge to a point uo ∈ K. Assumptions
L3) and L4) guarantee that Lemma 2.1 applies and one has d(uo, S(x̄, uo)) ≤
lim inf

n
d (unk

, Snk
(xnk

, unk
)) ≤ ε2.

Given a point w ∈ S(x̄, uo), by the lower convergence of (Sn)n to S, there exists a sequence
(wk)k converging to w such that wk ∈ Snk

(xnk
, unk

) for k sufficiently large. Since

⟨Ank
(xnk

, unk
), unk

− wk⟩ ≤ ε1

and (An)n c−converges to A, one has ⟨A(x̄, uo), uo−w⟩ ≤ ε1, which implies that uo ∈ Qε(x̄).
Therefore, by U5) we infer that a ≤ lim sup

k
fnk

(xnk
, unk

) ≤ f(x̄, uo) < a which gives a

contradiction.

Remark 4.5. Condition U5), that amounts to a sort of convergence of the sequence (fn)n
towards f , has been introduced by Attouch and Wets in [2] to get the upper limit of the
sets of MinSup points for the functions (fn)n contained in the set of the Minsup points for
the function f . It has been further employed by Loridan and Morgan ([32], [33]) in order
to get convergence of solutions to weak Stackelberg problems in a sequential setting and
by the authors for stability of constrained MinSup points [17] and of approximate solutions
to weak Stackelberg problems [20]. As observed in [17], this convergence cannot be set in
the framework of epiconvergence ([9], [1]) differently from the convergence considered in
condition U4) of Proposition 4.3. Also note that U5) amounts to U2) when fn = f for every
n ∈ N.

Remark 4.6. If we strengthen the assumptions on the set-valued maps Sn we can weaken
the assumptions on the functions An. Namely, the following result, alternative to Proposition
4.4, holds.
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Proposition 4.7. Assume that the following hold:
L0) the set-valued map Sn is convex-valued on H ×K for every n;
L3) the sequence (Sn)n upper and lower converges to S on H ×K;
L4) for every x ∈ H and every sequence (xn, un)n converging to (x, u) in H × K, any
sequence (wn)n, such that wn ∈ Sn(xn, un), has a convergent subsequence;
L6) the sequence (An)n c-converges to A on H ×K;
U5) for every x ∈ H there exists a sequence (xn)n converging to x such that for every u ∈ K
and every sequence (un)n converging to u in K one has

lim sup
n

fn(xn, un) ≤ f(x, u).

Then,

lim sup
n

ωn
ε ≤ ωε ∀ ε > 0 (4.5)

and consequently

lim sup
ε→0

lim sup
n

ωn
ε ≤ ω.

Proof. Assume that (4.5) fails to be true. Let a be a real number such that ωε < a <
lim sup

n
ωn
ε , let x̄ ∈ H be such that sup

u∈Qε(x̄)

f(x̄, u) < a and let (xn)n be a sequence converging

to x̄ in H satisfying assumption U5). Being a < lim sup
n

ωn
ε ≤ lim sup

n
sup

u∈Qn
ε (xn)

fn(xn, u),

there exist an increasing sequence (nk)k of positive integers and a sequence (unk
)k such that

unk
∈ Qnk

ε (xnk
) and fnk

(xnk
, unk

) > a for every k. Then, d(unk
, Snk

(xnk
, unk

)) ≤ ε2 and
⟨Ank

(xnk
, unk

), unk
− w⟩ ≤ ε1 for every w ∈ Snk

(xnk
, unk

) and every k. There exists a
sequence (zk)k such that zk ∈ Snk

(xnk
, unk

) and ||zk − unk
|| ≤ ε2 for every k, so that, by

condition L4), a subsequence of (unk
)k, still denoted by (unk

)k, must converge to a point
uo ∈ K and, by Lemma 2.1, d(uo, S(x̄, uo)) ≤ ε2. Given a point w ∈ S(x̄, uo), by the
lower convergence of (Sn)n to S, there exists a sequence (wk)k converging to w such that
wk ∈ Snk

(xnk
, unk

) for k sufficiently large. Since

⟨Ank
(xnk

, unk
), unk

− wk⟩ ≤ ε1

and (An)n c−converges to A, ⟨A(x̄, uo), uo−w⟩ ≤ ε1 and we have uo ∈ Qε(x̄). Therefore, by
U5) we infer that a ≤ lim sup

k
fnk

(xnk
, unk

) ≤ f(x̄, uo) < a which gives a contradiction.

Now, from propositions 3.2, 4.3 and 4.4 (resp. propositions 3.2, 4.3 and 4.7) we infer that
the exact value ω can be globally approximated by both sequences (ωn

ε )n and (σn
ε )n.

Proposition 4.8. Assume that assumptions L1)−L4), L6)−L7), U1)−U5) (resp. L0)−L4),
L6), U1)− U5)) hold.
Then

ω = lim
ε→0

lim
n

ωn
ε = lim

ε→0
lim
n

σn
ε . (4.6)

Proof. Inequalities in (3.5) imply that

σn
ε ≤ ωn

ε
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for every n ∈ N. Therefore, by propositions 4.3 and 4.4 (resp. 4.3 and 4.7) one gets

σε ≤ lim inf
n

σn
ε ≤ lim sup

n
σn
ε ≤ lim sup

n
ωn
ε ≤ ωε

as well as
σε ≤ lim inf

n
σn
ε ≤ lim inf

n
ωn
ε ≤ lim sup

n
ωn
ε ≤ ωε.

So, applying Proposition 3.2 one infers that (4.6) is true.

Corollary 4.9. Assume that the sets H and K are compact. If conditions L1)− L3), L6),
U ′
2), and the following hold

U6) the sequence (fn)n c-converges to f ,
then

ω = lim
ε→0

lim
n

ωn
ε = lim

ε→0
lim
n

σn
ε .

The following example shows a set of data that satisfy all assumptions of Proposition 4.8
and that does not satisfy all assumptions of Corollary 4.9.

Example 4.10. Let X = H = [0, 1], h = 1, K = [0, 1], Sn(x, u) = S(x, u) = [0, u],
An(x, u) = 1/n, fn(x, u) = (x−1/n)2−(u−x)2−1 for x ∈ [0, 2/n] and fn(x, u) = −(u−x)2

for x ∈ ]2/n, 1], f(0, u) = −(u2 +1) and f(x, u) = −(u−x)2 for x ∈ ]0, 1]. One easily checks
that all assumptions of Proposition 4.8 are satisfied. However the sequence (fn)n does not
continuously converge to f since, for every u, the sequence (2/

√
n, u)n converges to (0, u)

but the sequence (fn(2/
√
n, u))n = (−(u−2/

√
n)2)n does not converge to f(0, u) = −u2−1.

Finally, we assume that the constraint set H and the constraint maps S and Sn are described
by inequalities

H = {x ∈ X : hi(x) ≤ 0, i = 1, ..,m}

S(x, u) = {v ∈ K : sj(x, u, v) ≤ 0, j = 1, .., p} =

p∩
j=1

{v ∈ K : sj(x, u, v) ≤ 0}

Sn(x, u) = {v ∈ K : sj,n(x, u, v) ≤ 0, j = 1, .., p} =

p∩
j=1

{v ∈ K : sj,n(x, u, v) ≤ 0} ,

where hi, sj and sj,n are real-valued functions defined, respectively, in X and in H×K×K
and we are interested in determining sufficient conditions on the data for assumptions L1),
L3) and L4). It is obvious that the set H is closed whenever the functions hi are lower
semicontinuous and that H is compact if the functions hi are coercive. However, getting
continuity properties for the map S, as well convergence results for the sequence (Sn)n,
needs more specific arguments. This is essentially due to the lower semicontinuity and lower
convergence properties, that are not preserved by intersections ([18], [17]). First results on
continuity properties of univariate set-valued maps described by inequalities can be found
in [6]. Extensions to wider classes of functions, as well convergence properties, are in ([18],
[17]) and in [26]. Convergence results for sequences of bivariate set-valued maps can be
proven by easy adaptations of Lemma 2.1 in [26] and Lemma 2.2 in [26].

Variational inequality constraints case

Here, we consider the approximate solutions maps

Vn
ε : x ∈ H → Vn

ε (x) = {u ∈ K : d(u, Sn(x)) ≤ ε2 and ⟨An(x, u), u− w⟩ ≤ ε1 ∀ w ∈ Sn(x)}
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Snε : x ∈ H → Snε (x) = {u ∈ K : d(un, Sn(x)) < ε2 and ⟨An(x, u), u− w⟩ < ε1 ∀ w ∈ Sn(x)}

and the approximate security values

νnε = inf
x∈H

sup
u∈Vn

ε (x)

fn(x, u) τnε = inf
x∈H

sup
u∈Sn

ε (x)

fn(x, u).

The next results can be deduced from Propositions 3.6, 4.3 and 4.7 similarly to Proposition
4.8 and Corollary 4.9.

Proposition 4.11. Assume that assumptions L0)− L4), L6), U2)− U5) hold.
Then

ν = lim
ε→0

lim
n

νnε = lim
ε→0

lim
n

τnε . (4.7)

Corollary 4.12. Assume that the set H is compact. If conditions L0)−L3), L6), U
′
2), U6)

hold, then

ν = lim
ε→0

lim
n

νnε = lim
ε→0

lim
n

τnε .

5 Concluding Remarks

We have presented a way to get lower and upper approximations of the security value of a
MinSup problem with (quasi)variational inequality constraints through the security values
of perturbed MinSup problems. Namely, in order to globally approach the security values ω
and ν (see (4.6) and (4.7)), one has to perturb the problem, to regularize such perturbations
and to pass to the limit: first with respect to the perturbation parameter, then with respect
to the approximation parameter. We emphasize that Example 4.1 shows that these two final
steps cannot be exchanged, nor a unique limit can be considered taking a sequence (εn)n
converging to 0, since for εn = 1/n lim

n
ωn
εn = 1 while ω = +∞. Although assumptions of

propositions 4.8 and 4.11 are rather strong, propositions 4.3, 4.4 and 4.7 give approximations
from below and from above of the security values ω and ν that can be used whenever one
of the assumptions of propositions 4.8 and 4.11 is not satisfied.
The extension to infinite dimensional spaces would require a suitable ”equilibrium” between
compactness and continuity properties, [20, p. 6], and will be further investigated in a
forthcoming paper.
Finally, in our approximation scheme we do not need that the set-valued maps S and Sn are
convex-valued except in Proposition 4.7 where the convexity of Sn(x, u) allows to weaken
the assumptions on the sequence (An)n.
In our opinion, this theoretical approach can get an insight into the inherent difficulties of
the considered problem and can explain the lack of non-heuristic numerical methods in the
continuous case.
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