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the VIP with S defined by (1.1) the semi-infinite variational inequality problem (SIVIP),
and refer to as SIVI(S, F ). Note that S can be expressed as

S = { x ∈ Rn | h(x) ≤ 0 } , (1.2)

where the function h : Rn → R is defined by

h(x) = max
t∈T

g(x, t). (1.3)

Despite numerous works on the VIP and the semi-infinite programming problem (SIP) [19,
22], which is the mathematical programming problem with the feasible set defined by (1.1),
the study on theory and algorithms for solving the SIVIP is relatively recent.

Since S is defined by infinitely many inequalities, it is hard to deal with the problem
directly in practice. Then, for solving VI(S, F ) with such S, several algorithms have been
proposed by utilizing an outer approximation technique. The fundamental idea underlying
the outer approximation method is to generate a sequence {xk } by solving subproblems
whose feasible sets Sk contain S and are relatively easy to deal with. Fukushima [11]
introduced a relaxed projection method for solving VI(S, F ) where S is defined by (1.2) with
a general convex function h. This method computes at each iteration the projection onto a
half space Sk defined by using the subdifferential of h at the current iterate xk. It has been
showed that this method is globally convergent under the strong monotonicity assumption
on F . A method with Sk replaced by a general half space separating xk from S has been
proposed by Censor and Gibali [7]. Bello Cruz and Iusem [2] provided an algorithm based
on the method in [11] and showed its global convergence under the weaker condition that F
is paramonotone [15]. Moreover, the same authors [3] presented a relaxed projection-type
method which is globally convergent under the mere monotonicity assumption on F .

For SIVI(S, F ) with S particularly defined by (1.1), there have been proposed several
outer approximation methods. These methods solve VI(Sk, F ) at each iteration k, where
Sk is an outer approximation of S defined by finitely many inequalities. Under the as-
sumption that F is paramonotone and S is compact, Burachik et al. [4] proposed an outer
approximation scheme for solving the SIVIP. Assuming S is compact and F is Lipschitz
continuous and pseudomonotone-plus [17], implementable algorithms have been presented
in [9, 21]. Under the same assumptions, Fang et al. [10] provided an inexact method which
uses an approximate solution of VI(Sk, F ) at each iteration. They use the gap function [1]
to check a criterion for approximate solutions. Without the compactness of S, Burachik et
al. [6] introduced a scheme combining the outer approximation method with a regularization
method, which solves VI(Sk, F k) at each iteration, where F k is an approximate mapping of
F . They proved that when F is paramonotone, a sequence of exact solutions of VI(Sk, F k)
is bounded and any of its accumulation points solves SIVI(S, F ).

We propose an algorithm for solving the SIVIP, which is an implementable version of
the regularized outer approximation scheme [6]. This method needs only an approximate
solution of VI(Sk, F k), while the scheme in [6] assumes the exact solution of VI(Sk, F k).
We use the regularized gap function [12] to specify a criterion for approximate solution
of VI(Sk, F k). Moreover, we establish global convergence of the proposed algorithm by
assuming the existence of a solution of SIVI(S, F ), Slater’s condition, and the monotonicity
of F , which is a weaker assumption on F than the paramonotonicity assumed in [6].

This paper is organized as follows. In Section 2, we review some preliminary results
concerning monotone mappings and the regularized gap function. In Section 3, we present
an outer approximation method and show that it is globally convergent under the strong
monotonicity assumption on the mapping F . In Section 4, we propose the main algorithm by



REGURALIZED OUTER APPROXIMATION METHOD 737

combining the method proposed in Section 3 with a regularization method, and establish its
global convergence under the mere monotonicity assumption on the mapping F . In Section 5,
we give some numerical results to examine the effectiveness of the proposed algorithm. In
Section 6, we conclude the paper with some remarks.

2 Preliminaries

In this section, we simply assume that S is a general nonempty closed convex set. For
VI(S, F ), Auslender [1] showed that the gap function f0 : Rn → R ∪ {+∞} defined by

f0(x) = sup
y∈S

⟨F (x), x− y⟩

attains its minimum on S at a solution of VI(S, F ). However, the function f0 is in general
nondifferentiable and may even fail to be finite-valued. To overcome such drawbacks of the
gap function, Fukushima [12] proposed the regularized gap function fα : Rn → R defined by

fα(x) = sup
y∈S

{
⟨F (x), x− y⟩ − 1

2
α ∥y − x∥2

}
,

where α > 0 is a parameter. This function enjoys a similar property to that of the gap
function, as shown in the following proposition.

Proposition 2.1 ([12, Theorem 3.1]). The function fα satisfies fα(x) ≥ 0 for all x ∈ S.
Moreover, fα(x) = 0 and x ∈ S if and only if x solves VI(S, F ). Hence x solves VI(S, F ) if
and only if it solves the following optimization problem and fα(x) = 0:

minimize fα(x)

subject to x ∈ S.

Unlike the gap function f0, the regularized gap function fα is always finite-valued. When
the mapping F is continuously differentiable, so is fα [12, Theorem 3.2]. In addition, the
function fα enjoys some useful properties. Several methods utilizing this function have been
proposed for solving VI(S, F ) [24–26].

Recall that the mapping F : Rn → Rn is said to be monotone if

⟨F (x)− F (y), x− y⟩ ≥ 0 for any x, y ∈ Rn, (2.1)

strictly monotone if strict inequality holds in (2.1) whenever x ̸= y, and strongly monotone
with modulus µ > 0 if

⟨F (x)− F (y), x− y⟩ ≥ µ ∥x− y∥2 for any x, y ∈ Rn.

Clearly any strongly monotone mapping is strictly monotone, and any strictly monotone
mapping is monotone.

3 Algorithm for the Strongly Monotone SIVIP

In this section, we make the following assumption, which ensures that SIVI(S, F ) has a
unique solution.
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Assumption 3.1. The mapping F : Rn → Rn is strongly monotone with modulus µ > 0.

We propose a method for solving SIVI(S, F ) with S given by (1.1) and show its global
convergence under Assumption 3.1. The proposed algorithm consists of major iterations and
inner iterations within each major iteration. On the rth inner iteration of the kth major
iteration, a nonempty finite set T k,r ⊂ T is given. We define the convex set Sk,r ⊆ Rn by

Sk,r = {x ∈ Rn | g(x, t) ≤ 0 for all t ∈ T k,r } , (3.1)

and consider VI(Sk,r, F ), which is easier than SIVI(S, F ) to deal with, since Sk,r is given
by finitely many inequalities. Moreover, define the function fk,r

α : Rn → R by

fk,r
α (x) = sup

y∈Sk,r

{
⟨F (x), x− y⟩ − 1

2
α ∥y − x∥2

}
, (3.2)

where α > 0. The function fk,r
α is the regularized gap function for VI(Sk,r, F ), which is

continuously differentiable. By Proposition 2.1, VI(Sk,r, F ) is equivalent to the optimization
problem

minimize fk,r
α (x)

subject to x ∈ Sk,r.
(3.3)

Note that Assumption 3.1 ensures that, for every k and r, VI(Sk,r, F ) has the unique solution
x̄k,r which satisfies fk,r

α (x̄k,r) = 0 and x̄k,r ∈ Sk,r.
The next proposition shows that fk,r

α can be used as an error bound for VI(Sk,r, F ),
provided the parameter α is chosen sufficiently small.

Proposition 3.2 ([26, Proposition 3.4]). The function fk,r
α satisfies the inequality

fk,r
α (x) ≥

(
µ− 1

2
α

)
∥x− x̄k,r∥2 for all x ∈ Sk,r.

In the remainder of this section, we assume the following.

Assumption 3.3. The parameter α satisfies 0 < α < 2µ.

We propose the following algorithm which only requires an approximate solution xk,r of
VI(Sk,r, F ) for each k and r. In the stopping criterion of the algorithm, we use the functions
θkα : Rn → R defined by

θkα(x) = max

(
fk,r(k)
α (x),max

t∈T
g(x, t)

)
, (3.4)

where r(k) denotes the number of inner iterations within the kth major iteration.

Algorithm 1.

Step 0. Choose x0 ∈ Rn, α ∈ (0, 2µ), TOL ≥ 0 and sequences { δk } , {σk } ⊂ R++ such
that limk→∞ δk = limk→∞ σk = 0. Set k := 1.

Step 1. Obtain xk by the following procedure.

Step 1-0. Choose a nonempty finite set T k,1 ⊂ T . Set r := 1 and xk,0 := xk−1.

Step 1-1. Find an approximate solution xk,r of VI(Sk,r, F ) such that fk,r
α (xk,r) ≤ δk

and xk,r ∈ Sk,r.
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Step 1-2. Find tk,r ∈ T such that g(xk,r, tk,r) > σk.

(i) If such tk,r does not exist, then set r(k) := r, xk := xk,r. Go to Step 2.

(ii) Otherwise, set T k,r+1 := T k,r ∪ { tk,r }, r := r + 1 and return to Step 1-1.

Step 2. If θkα(x
k) ≤ TOL, then output xk and stop. Otherwise, set k := k + 1 and return

to Step 1,

Some remarks about Algorithm 1 are in order. Similar remarks also apply to Algorithm 2
to be presented in the next section. First, to find xk,r in Step 1-1, we may use an iterative
method such as [12, 26] for solving (3.3). Second, to find tk,r in Step 1-2, we need to carry
out global maximization of the function g(t, xk,r) over t ∈ T . This is by no means an easy
task unless the function g(t, xk,r) is concave with respect to t. However, some kind of global
optimization is generally unavoidable in semi-infinite problems. Here we simply presume
that such a tk,r can be found whenever one exists. In Section 5, we suggest a practical
procedure to find a tk,r for the case where T is an interval in R.

We first show that the inner iterations within Step 1 do not repeat infinitely, which
ensures that Algorithm 1 is well-defined.

Proposition 3.4. The inner iterations in Step 1 terminate finitely by producing xk for
every k.

Proof. Assume that, on some kth iteration, Step 1 does not terminate finitely, that is, an
infinite sequence {xk,r } is generated for some k. Choose x̂ ∈ S arbitrarily and define

M := max
y∈Rn

{
⟨F (x̂), x̂− y⟩ − 1

2
α ∥y − x̂∥2

}
,

which is finite since the maximand is a strongly concave quadratic function of y. For any
k and r, we have M ≥ fk,r

α (x̂) by the definition of fk,r
α . It follows from x̂ ∈ S ⊆ Sk,r and

Proposition 3.2 that

fk,r
α (x̂) ≥

(
µ− 1

2
α

)
∥x̂− x̄k,r∥2,

where x̄k,r is the unique solution of VI(Sk, F ). Hence we have

M

µ− 1
2α

≥ ∥x̂− x̄k,r∥2.

Moreover, we have

δk ≥ fk,r
α (xk,r) ≥

(
µ− 1

2
α

)
∥xk,r − x̄k,r∥2,

and hence the following inequalities hold:

∥xk,r − x̂∥ ≤ ∥xk,r − x̄k,r∥+ ∥x̄k,r − x̂∥

≤
√

δk

µ− 1
2α

+

√
M

µ− 1
2α

, (3.5)

which implies that {xk,r } is bounded. Moreover, since T is compact, { (xk,r, tk,r) } has
at least one accumulation point. Let (xk,∞, tk,∞) be an arbitrary accumulation point of
{ (xk,r, tk,r) }, and { (xk,r, tk,r) }r∈K be a subsequence of { (xk,r, tk,r) } which converges to

(xk,∞, tk,∞). We claim that g(xk,∞, tk,r) ≤ 0 for all r ∈ K. Assume to the contrary
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that there exists r̄ ∈ K such that g(xk,∞, tk,r̄) > 0. Then, there exists a sufficiently large
r̃ such that r̃ > r̄, r̃ ∈ K, and g(xk,r̃, tk,r̄) > 0 by the continuity of g. On the other
hand, since tk,r̄ ∈ T k,r̃, we have g(xk,r̃, tk,r̄) ≤ 0. This is a contradiction. Hence we have
g(xk,∞, tk,r) ≤ 0 for all r ∈ K, which implies g(xk,∞, tk,∞) ≤ 0. However, it follows from
g(xk,r, tk,r) > δk and the continuity of g that g(xk,∞, tk,∞) ≥ δk > 0, which again yields a
contradiction. Then the result follows.

The following proposition validates the use of the function θkα, which is defined by (3.4),
in the stopping criterion of the algorithm.

Proposition 3.5. For any k, the function θkα satisfies θkα(x) ≥ 0 for all x ∈ Rn. Moreover,
θkα(x) = 0 if and only if x solves SIVI(S, F ).

Proof. Let x be an arbitrary point in Rn. If x ̸∈ S, then we have maxt∈T g(x, t) > 0.

If x ∈ S, we have f
k,r(k)
α (x) ≥ fα(x) ≥ 0 from Proposition 2.1 and the definitions of

f
k,r(k)
α and fα. This proves the first part of the proposition. Since θkα(x) = 0 implies that

fα(x) ≤ f
k,r(k)
α (x) ≤ 0 and maxt∈T g(x, t) ≤ 0, the last part of the proposition also follows

from Proposition 2.1.

By the above proposition, if the algorithm with TOL = 0 terminates at some kth major
iteration, then xk solves SIVI(S, F ). Otherwise, the algorithm generates an infinite sequence
{xk }. We next show that the sequence {xk } is bounded.

Lemma 3.6. The sequence {xk } is bounded.

Proof. The result follows from (3.5) in the proof of Proposition 3.4, since xk = xk,r(k) for
each k and limk→∞ δk = 0.

We are ready to show global convergence of Algorithm 1 with TOL = 0, which implies
that Algorithm 1 with TOL > 0 terminates finitely.

Theorem 3.7. Let TOL = 0. Then the sequence {xk } converges to the unique solution of
SIVI(S, F ).

Proof. We assume that the sequence is infinite, since otherwise the algorithm terminates at
a solution by Proposition 3.5. It then follows from Lemma 3.6 that {xk } is bounded and
has at least one accumulation point. Let x∞ be an arbitrary accumulation point of {xk },
and {xk }k∈K be a subsequence of {xk } which converges to x∞. By the definitions of fα

and f
k,r(k)
α , we have

fα(x
k) ≤ fk,r(k)

α (xk) ≤ δk

for all k. Thus we have fα(x
∞) ≤ 0, since fα is continuous and { δk } converges to 0.

Moreover, by the construction of Algorithm 1, we have

h(xk) ≤ σk for all k ∈ N,

where h : Rn → R is defined by (1.3). This yields h(x∞) ≤ 0 by the continuity of h and
σk → 0, which implies x∞ ∈ S. Therefore by Proposition 2.1, x∞ solves SIVI(S, F ). Since
the solution of SIVI(S, F ) is unique by the strong monotonicity of F , we conclude that the
entire sequence {xk } converges to the solution of SIVI(S, F ).
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4 Algorithm for the Monotone SIVIP

In the previous section, under the strong monotonicity assumption on F , we have proved that
a sequence of approximate solutions of VI(Sk, F ) converges to the solution of SIVI(S, F ).
However, the strong monotonicity of F is very restrictive in practice. In this section, we pro-
pose a method that incorporates a regularization technique with the previous algorithm, and
establish its global convergence without assuming the strong monotonicity of F . Throughout
this section, we make the following assumption.

Assumption 4.1.

(i) SIVI(S, F ) has at least one solution.

(ii) The mapping F : Rn → Rn is monotone on Rn.

(iii) There exists w ∈ Rn such that h(w) = maxt∈T g(w, t) < 0 (Slater’s condition).

Let { εk } be a positive sequence converging to 0 and w be a Slater point as given in
Assumption 4.1 (iii). Such a point w can be obtained by applying a descent method for
minimizing the nonsmooth convex function h, whenever the Slater condition holds. For
each k, define the mapping F k : Rn → Rn by

F k(x) = F (x) + εk(x− w). (4.1)

Then, F k is strongly monotone under Assumption 4.1 (ii). Let {σk } be a positive sequence
converging to 0. In addition, for each k, let Sk be a convex set such that S ⊆ Sk and
assume the unique solution x̄k of VI(Sk, F k) satisfies h(x̄k) ≤ σk. Burachik et al. [6]
showed that, when F is paramonotone, { x̄k } is bounded and its accumulation point is
a solution of SIVI(S, F ) if { εk } and {σk } are chosen properly. Notice that the method
in [6] needs to solve VI(Sk, F k) exactly at each iteration, which is hardly implementable in
practice. Now we propose a method which solves VI(Sk, F k) only approximately at each
iteration k. Moreover, we show that the poposed algorithm is globally convergent under
the mere monotonicity assumption on F , which is a weaker assumption on F than the
paramonotonicity.

The algorithm also consists of major iterations and inner iterations within each major
iteration. On the rth inner iteration of the kth major iteration, a nonempty finite set
T k,r ⊂ T is given. Let the convex set Sk,r ⊆ Rn be given by (3.1) and the function
fk,r : Rn → R be defined by

fk,r(x) = sup
y∈Sk,r

{
⟨F k(x), x− y⟩ − 1

2
εk ∥y − x∥2

}
.

Note that fk,r is the regularized gap function for VI(Sk,r, F k). In particular, notice that the
parameter εk is common to the regularization parameter used to define F k in (4.1). This
particular choice of the parameters enables us to ensure that the inner iterations terminate
finitely at each major iteration, see Proposition 4.2.

The detailed steps of the regularized outer approximation method are described as fol-
lows.

Algorithm 2 (Regularized outer approximation method).
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Step 0. Choose x0 ∈ Rn, a Slater point w ∈ Rn such that h(w) = maxt∈T g(w, t) < 0,
α > 0, TOL ≥ 0 and sequences { δk } , {σk } , { εk } ⊂ R++ such that limk→∞ δk =
limk→∞ σk = limk→∞ εk = 0. Set k := 1.

Step 1. Obtain xk by the following procedure.

Step 1-0. Choose a nonempty finite set T k,1 ⊂ T . Set r := 1 and xk,0 := xk−1.

Step 1-1. Find an approximate solution xk,r of VI(Sk,r, F k) such that fk,r(xk,r) ≤ δk
and xk,r ∈ Sk,r.

Step 1-2. Find tk,r such that
g(xk,r, tk,r) > σk. (4.2)

(i) If such tk,r does not exist, then set r(k) := r, xk := xk,r. Go to Step 2.

(ii) Otherwise, set T k,r+1 := T k,r ∪ { tk,r }, r := r + 1 and return to Step 1-1.

Step 2. If θkα(x
k) ≤ TOL, then output xk and stop. Otherwise, set k := k + 1 and return

to Step 1.

Recall that θkα in Step 2 is defined by (3.4). We next show that the inner iterations in Step 1
terminate finitely.

Proposition 4.2. The inner iterations in Step 1 terminate finitely by producing xk for
every k.

Proof. For each k, we can regard Step 1 of Algorithm 2 as Step 1 of Algorithm 1 with
µ = α = εk. Then the result follows from Proposition 3.4.

Now we are ready to state the main theorem that establishes global convergence of
Algorithm 2.

Theorem 4.3. Let TOL = 0 and parameters { δk }, {σk } and { εk } be chosen to satisfy
δk = O(εk) and σk = O(εk). Then, the following statements hold:

(i) The sequence {xk } is bounded.

(ii) Any accumulation point of {xk } solves SIVI(S, F ).

Proof. Proposition 4.2 ensures that r(k) < ∞ for each k. Define fk : Rn → R as fk :=
fk,r(k). If the algorithm terminates at some kth major iteration, then xk solves SIVI(S, F )
by Proposition 3.5. Below we assume that the algorithm generates an infinite sequence
{xk }.

(i) There exist λ > 0 and ξ > 0 such that supk σk/εk < λ < ∞ and supk δk/εk < ξ < ∞.
By Assumption 4.1 (iii), we have h(w) ≤ −ϕ < 0 for some ϕ. Since εk → 0, we have
0 < λεk/ϕ < 1 for all k sufficiently large. Without loss of generality, we assume that these
inequalities hold for all k ∈ N. Define x̃k as

x̃k = xk +
λεk
ϕ

(w − xk). (4.3)

Then, we have x̃k ∈ S. In fact, by the convexity of h, we have

h(x̃k) ≤ λεk
ϕ

h(w) +

(
1− λεk

ϕ

)
h(xk)

≤ λεk
ϕ

(−ϕ) +

(
1− λεk

ϕ

)
λεk

= −λ2ε2k
ϕ

≤ 0,
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where the second inequality follows from h(w) ≤ −ϕ and h(xk) ≤ σk ≤ λεk. Therefore we
have

⟨F (x∗), x̃k − x∗⟩ ≥ 0, (4.4)

where x∗ is a solution of SIVI(S, F ). It follows from the definition of fk that

ξεk ≥ δk ≥ fk(xk) ≥ ⟨F (xk) + εk(x
k − w), xk − x∗⟩ − 1

2
εk∥x∗ − xk∥2,

which implies

⟨F (xk), x∗ − xk⟩

≥ εk

{
∥xk∥2 − ⟨w, xk − x∗⟩ − ⟨xk, x∗⟩ − 1

2
(∥xk∥2 − 2⟨x∗, xk⟩+ ∥x∗∥2)− ξ

}
= εk

{
1

2
∥xk∥2 − ⟨w, xk − x∗⟩ − 1

2
∥x∗∥2 − ξ

}
. (4.5)

Moreover, by the definition (4.3) of x̃k, we have

λεk
ϕ

⟨F (x∗), w − xk⟩ = ⟨F (x∗), x̃k − xk⟩

≥ ⟨F (x∗), x∗ − xk⟩

≥ ⟨F (xk), x∗ − xk⟩, (4.6)

where the first inequality follows from (4.4), and the second inequality follows from the
monotonicity of F . Combining (4.5) with (4.6) and rearranging terms yield∥∥∥∥xk +

λ

ϕ
F (x∗)− w

∥∥∥∥2 ≤ λ2

ϕ2
∥F (x∗)∥2 + ∥x∗ − w∥2 + 2ξ.

Since this inequality holds for all k, we conclude that {xk } is bounded.
(ii) Let x∞ be an arbitrary accumulation point of {xk }, and {xk }k∈K be a subsequence

of {xk } which converges to x∞. Similarly to the proof of Theorem 3.7, we have x∞ ∈ S.
For an arbitrary positive scalar ᾱ, define yᾱ ∈ S as

yᾱ = argmax
y∈S

{
⟨F (x∞), x∞ − y⟩ − 1

2
ᾱ ∥y − x∞∥2

}
.

Note that fᾱ(x
∞) = ⟨F (x∞), x∞−yᾱ⟩− 1

2 ᾱ∥y
ᾱ−x∞∥2. By the construction of Algorithm 2

and the definition of fk, we have

δk ≥ fk(xk)

≥ ⟨F (xk) + εk(x
k − w), xk − yᾱ⟩ − 1

2
εk∥yᾱ − xk∥2

≥ ⟨F (xk) + εk(x
k − w), xk − yᾱ⟩ − 1

2
(εk + ᾱ)∥yᾱ − xk∥2.

It then follows from xk → x∞, δk → 0, εk → 0 and the continuity of F that

0 ≥
⟨
F (x∞), x∞ − yᾱ

⟩
− 1

2
ᾱ∥yᾱ − x∞∥2 = fᾱ(x

∞),

which implies that fᾱ(x
∞) = 0 and hence x∞ solves SIVI(S, F ) from Proposition 2.1.
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5 Numerical Experiments

In this section, we report some numerical results. The program was coded in MATLAB
2012b and run on a machine with Intel Core i7 3.00 GHz CPU and 4GB RAM. We observe
the behavior of Algorithm 2 applied to several examples of SIVI(S, F ) that have the following
common features: The mapping F is merely monotone, and it is neither paramonotone nor
strongly monotone. The origin w = (0, 0, . . . , 0)⊤ is a Slater point. The set T is the unit
interval [0, 1] in R, and the function g : Rn × T → R is given by

g(x, t) := ⟨a(t), x⟩ − b(t),

where a : T → Rn and b : T → R are continuous functions.

Actual implementation of Algorithm 2 is carried out as follows. In Step 0, we set x0 =
(−5,−5, . . . ,−5)⊤, α = 0.1 and TOL = 10−5, and choose parameters { δk }, {σk } and
{ εk } as δk = σk = 0.5k and εk = 30 · 0.5k. In Step 1-0, T k,1 is chosen as T 1,1 = { 0, 1 } and
T k,1 = T k−1,r(k−1) for each k ≥ 2. In Step 1-1, xk,r is obtained by applying the descent
method of [12] to (3.3). In Step 1-2, to find tk,r that satisfies (4.2), we first choose N grid
points t̄1, t̄2, . . . , t̄N from the interval T and compute g(xk,r, t) for t = t̄1, t̄2, . . . , t̄N ∈ T . If
we find a t̄ ∈ { t̄1, t̄2, . . . , t̄N } that satisfies (4.2), then we set tk,r := t̄. Otherwise, we solve

maximize g(xk,r, t)

subject to t ∈ T,
(5.1)

and check whether the computed solution t∗ of (5.1) satisfies (4.2). To solve (5.1), we
apply Newton’s method with the starting point t̄0 := argmax { g(xk,r, t) | t = t̄1, t̄2, . . . , t̄N }.
Although there is no theoretical guarantee, in practice we may expect to find a global
maximizer of (5.1) by taking a sufficiently large N . In these experiments, we set N = 101
and t̄i = (i− 1)/(N − 1) for i = 1, . . . , N . Moreover, we regard g(xk, t∗) as maxt∈T g(xk, t)
when computing θkα(x

k) in Step 2.

Example 1.

F (x) =

(
x2 − 1
−x1 − 1

)
, a(t) =

(
cosπt
sinπt

)
, b(t) = 1.

Note that

S = {x ∈ R2 | ∥x∥ ≤ 1 } ∪ {x ∈ R2 | −1 ≤ x1 ≤ 1, x2 ≤ 0 } .

Upon termination, the algorithm found the point x = (0.0003, 1.0000)⊤ after 15 major
iterations, while the exact solution of this problem is x∗ = (0, 1)⊤.

Example 2.

F (x) =


x2 − 23/5
−x1 + 15/2
x3
3 + x4 − 37/5

−x3 + 27/10

 , a(t) =


4t

−13t2

18t3

−9t4

 , b(t) =
4

9
.

The algorithm found the point x = (1.0003, 1.0002, 0.9998, 0.9990)⊤ after 17 major itera-
tions. The exact solution is x∗ = (1, 1, 1, 1)⊤.
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Example 3.

F (x) =


ex1−1 + x2 − 6
ex2−1 − x1 − 5/3
x4 + 41/9
−x3 − 10/3
x3
5 + 8/9

 , a(t) =


4t
5t3

−10t2

13t3

−9t4

 , b(t) = 3t2 +
4

9
.

The algorithm found the point x = (1.0008, 1.0001, 1.0014, 1.0011, 1.0000)⊤ after 17 major
iterations. The exact solution is x∗ = (1, 1, 1, 1, 1)⊤.

Example 4.

F (x) =



x2 + 395/2
−x1 − 43061/64
x4 + 6117/8
−x3 − 3371/4
x3
5 + x6 + 586

x3
6 − x5 + 32077/64

x3
7 − 2605/4


, a(t) =



−256t6

625t5

−500t4

375t3

−168t2

143t5 − 428t4

201t3 + 33t


, b(t) = 25t2 +

9

4
.

The algorithm found the point x = (0.9949, 0.9954, 0.9955, 0.9976, 0.9991, 0.9994, 0.9998)⊤

after 17 major iterations. The exact solution is x∗ = (1, 1, 1, 1, 1, 1, 1, 1)⊤.

More detailed computational results are shown in Table 1 and Figure 1, where

ite : the number of major iterations,

rsum : the sum of r(k)’s, k = 1, 2, . . . , ite, where r(k) denotes the number of
inner iterations within the kth major iteration,

{ r(k) } : the values of r(k) for k = 1, 2, . . . , ite,

|T ite,r(ite)| : the number of elements of T ite,r(ite),

time(sec) : the CPU time in seconds.

In the column of { r(k) }, pq means that, for some k, we have r(k) = p in q consecutive
iterations, and { p1, . . . , pN̄ }q means that, for some k, r(k + iN̄ + j − 1) = pj for i =

0, 1, . . . , q− 1 and j = 1, . . . , N̄ . For example, 110, 3, { 1, 2 }2 means that r(1) = r(2) = · · · =
r(10) = 1, r(11) = 3, r(12) = 1, r(13) = 2, r(14) = 1 and r(15) = 2. Figure 1 depicts the
values of log10 θ

k
α(x

k) for k = 1, 2, . . . , ite.

Table 1: Computational results of Algorithm 2
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Figure 1: Behavior of Algorithm 2

6 Conclusion

We have proposed a regularized outer approximation method for solving the semi-infinite
variational inequality problem (SIVIP). Utilizing the properties of the regularized gap func-
tion, we have established global convergence of the algorithm by assuming the monotonicity
of the problem, Slater’s condition and the existence of a solution. Moreover, we have shown
the effectiveness of the proposed algorithm through numerical experiments. However, we
have to admit that the complexity of the subproblem VI(Sk,r, F k) grows

(i) as the inner iteration proceeds, since the size of the index set T k,r increases monoton-
ically, and

(ii) as the major iteration proceeds, since the numerical instability may occur due to the
diminishing effect of the regularization parameter εk.

We may mitigate (i) by introducing a constraint dropping scheme. For the semi-infinite
programming problem (SIP), the explicit exchange algorithms [14,18,27] have been proposed,
and in particular, Okuno et al. [20] proposed an explicit exchange method combined with
a regularization method. It is an interesting subject of research to extend their scheme
to the SIVIP. To avoid (ii), proximal-type methods have been proposed for the variational
inequality problem [5, 23] and the SIP [16]. It is also an interesting future work to explore
the possibility of applying the proximal point method to the SIVIP.
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