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a sufficient degree accuracy. On the other hand, one of the basic tools for obtaining the
(weak/proper) efficient solutions of the vector optimization problems is converting the prob-
lem to a scalar optimization problem, and then solving the obtained problem by iterative
numerical algorithms. So, some important questions arise naturally. How is the efficiency
situation of the approximate solutions generated from the scalar problems? Are these solu-
tions approximately (weak/proper) efficient? What is the degree of accuracy if we consider
these solutions as approximately efficient? Answering these questions is one of the aims
of studying the approximate efficient solutions. Another reason is related to the existence.
Existing the efficient solutions is guaranteed under some conditions, say compactness, which
are restrictive in some situations, while approximate efficient solutions exist under weaker
assumptions. Furthermore, from a computational point of view, obtaining approximate ef-
ficient solutions is economical in compared to obtaining the exact ones, especially in large
scale problems. Some applications of approximate solutions in large scale practical problems
can be seen in [28]. Also, some large scale multiobjective optimization problems arising in
Biology have been reported in [31,32].

After introducing the approximate solutions of vector optimization models by Kutate-
ladze, some scholars [11,15,24,35,39] dealt with the properties of these solutions. White [37]
investigated different kinds of these solutions. Further extensions of approximate efficiency
can be seen in [11, 15, 36]. Theoretical results, including necessary and sufficient conditions
and duality results, for characterizing different kinds of approximate efficient solutions can
be found in [5,7,10–12,14,21–24,27,33]. Shao and Ehrgott [28] addressed an application of
approximate efficiency in radiotherapy treatment planning.

The vector optimization problems under real linear vector spaces, without any topology,
have been studied by some authors [1–3] in recent years. Studying these problems opens new
connections between Optimization, Functional Analysis, and Convex analysis. Since there is
no topology here, we have to use some algebraic concepts to define and characterize approx-
imate efficiency. To this end, we use the concepts of algebraic (relative) interior, vectorial
closure, and algebraic dual cone, addressed in [1–3]. Three scalarization tools, including
dual cone, Gerstewitz’s function [25,30,34], and Lagrangian mapping, are utilized and new
necessary and sufficient conditions are provided. The results of the present paper extend
those given in the literature and provide some new applications for the notions introduced
in [1–3]. Using the presented results, one can answer the above-mentioned questions about
approximate proper efficiency and the degree of accuracy of the approximate solutions gener-
ated from the scalar problems by iterative numerical procedures. The established results fill
the gap between two fields, optimization in linear vector spaces and approximate solutions
of scalar optimization problems. Using the results of the present paper, any development
in numerical/theoreteical scalar optimization under linear vector spaces can be helpful in
developing the vector optimization on linear vector spaces; especially the results related to
convergent analysis and existence.

The rest of the paper unfolds as follows: Section 2 contains some preliminaries and three
separation and alternative results. In Section 3, the concept of approximate (weak/proper)
efficiency is defined and some propositions, highlighting the relationships between different
kinds of approximate efficiency, are provided. Section 4 contains the main results, presenting
necessary and sufficient conditions utilizing above-mentioned scalarization tools.

2 Preliminaries

Throughout this paper, X is a real linear vector space, A is a subset of X, and K ⊆ X is a
nontrivial nonempty ordering convex cone. K is called pointed if K∩(−K) = {0}. cone(A),
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conv(A), and aff(A) denote the cone generated by A, the convex hull of A, and the affine
hull of A, respectively.

Considering λ ∈ (0, 1), A is called λ−convex if for each a1, a2 ∈ A, λa1 + (1− λ)a2 ∈ A.
A is nearly convex if there exists a λ ∈ (0, 1) such that A is λ−convex.

For two sets A,B ⊆ X ant a vector ā ∈ X, we use the following notations:

A+B = {a+ b : a ∈ A, b ∈ B},

A−B = {a− b : a ∈ A, b ∈ B},

ā+A = {ā+ a : a ∈ A},

A\B = {a ∈ A : a /∈ B}.

The algebraic interior of A ⊆ X, denoted by cor(A), and the relative algebraic interior
of A, denoted by icr(A), are defined as follows [2]:

cor(A) = {x ∈ A : ∀x
′
∈ X , ∃λ

′
> 0; ∀λ ∈ [0, λ

′
], x+ λx

′
∈ A},

icr(A) = {x ∈ A : ∀x
′
∈ L(A) , ∃λ

′
> 0; ∀λ ∈ [0, λ

′
], x+ λx

′
∈ A},

where L(A) = span(A− A) is the linear hull of A− A. When cor(A) ̸= ∅ we say that A is
solid; and we say that A is relatively solid if icr(A) ̸= ∅. It is known that, if cor(K) ̸= ∅,
then cor(K) ∪ {0} is a convex cone, cor(K) +K = cor(K) and cor(cor(K)) = cor(K); see
[3].

Note: In [3] the authors showed that icr(K)+K = icr(K), while the relation cor(K)+K =
cor(K) can be proved similar to the proof given in [3]. So, we directly use cor(K) +K =
cor(K) as a result in this paper.

Although the (relative) algebraic interior set is usually defined in linear vector spaces
without topology, in some cases it might be useful under topological vector spaces too. It
is because the algebraic (relative) interior can be nonempty while (relative) interior set is
empty. The algebraic (relative) interior preserves most of the properties of (relative) interior.

The algebraic dual of X is denoted by X
′
, and ⟨., .⟩ exhibits the duality pairing, i.e., for

l ∈ X
′
and x ∈ X we have ⟨l, x⟩ = l(x). The positive dual and the strict positive dual of K

are, respectively, defined by

K+ = {l ∈ X
′
: ⟨l, a⟩ ≥ 0, ∀a ∈ K},

K+s = {l ∈ X
′
: ⟨l, a⟩ > 0, ∀a ∈ K\{0}}.

The vectorial closure of A, which is considered instead of closure in the absence of
topology, is defined by [2]

vcl(A) = {b ∈ X : ∃x ∈ X ; ∀λ
′
> 0 , ∃λ ∈ [0, λ

′
] ; b+ λx ∈ A}.

A is called vectorially closed if A = vcl(A). It is known that, if K is a relatively solid
convex cone, then vcl(K) = K++, where K++ is the positive dual of K+; see [3].

In the rest of this section, two separation results and an alternative theorem under real
linear vector spaces are addressed. These theorems will be used in sequel.

The proofs of Theorems 2.2 and 2.3 can be found in [1, 3]. Proposition 2.1 results from
Theorem 3.14 in [13], though we have provided a short proof here.
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Proposition 2.1. Let M,K be solid nontrivial convex cones in X. If M ∩ cor(K) = ∅,
then there exists a functional l ∈ X

′\{0} such that,

⟨l,m⟩ ≤ 0 ≤ ⟨l, k⟩ ∀(k ∈ K,m ∈ M),

and furthermore, ⟨l, k⟩ > 0 for all k ∈ cor(K), and ⟨l,m⟩ < 0 for all m ∈ cor(M).

Proof. SinceM∩cor(K) = ∅ and cor(M) ⊆ M , we have 0 /∈ cor(M)−cor(K) = cor(M−K).
Hence, by Theorem 3.14 in [13], there exists a functional l ∈ X ′\{0} such that

⟨l,m− k⟩ ≤ 0 ∀k ∈ K , ∀m ∈ M.

Since 0 ∈ M ∩K, we obtain

⟨l,m⟩ ≤ 0 ≤ ⟨l, k⟩ ∀k ∈ K , ∀m ∈ M.

If there exists k ∈ cor(K) such that ⟨l, k⟩ = 0, then

∀x ∈ X, ∃λ′
> 0; ∀λ ∈ [0, λ

′
] k + λx ∈ K.

Therefore ⟨l, k⟩+ λ⟨l, x⟩ ≥ 0 for each x ∈ X. Hence ⟨l, x⟩ ≥ 0 for each x ∈ X. On the other
hand, −x ∈ X. Thus ⟨l, x⟩ = 0 for each x ∈ X, which makes a contradiction, because l ̸= 0.
Therefore, ⟨l, k⟩ > 0 for each k ∈ cor(K).
Similarly it can be shown that ⟨l,m⟩ < 0 for each m ∈ cor(M)\{0}. Note that, 0 /∈ cor(M)
because M ̸= X.

Theorem 2.2. Let M,K be two convex, nontrivial, and vectorially closed cones in X such
that M,K are relatively solid and K+ is solid. If M∩K = {0}, then there exists a functional
l ∈ X ′\{0} such that,

⟨l, k⟩ ≥ 0 ≥ ⟨l,m⟩ ∀(k ∈ K,m ∈ M),

and furthermore,
⟨l, k⟩ > 0 ∀k ∈ K\{0}.

Theorem 2.3 (Alternative theorem). Let K be a nontrivial solid pointed convex cone and
let A be a nonempty subset of X. If vcl(cone(A) +K) is convex, then one and only one of
the following alternatives is valid:
(i) A ∩ (−cor(K)) ̸= ∅
(ii) A+ ∩K+ ̸= {0}.

3 Approximate Proper Efficiency

Let X,Y, Z be three real linear vector spaces such that Y, Z are partially ordered by non-
trivial ordering convex cones K,M , respectively. Consider the following unconstrained and
constrained vector optimization problems:

(UVOP) K −Min {f(x) : x ∈ E},
(CVOP) K −Min {f(x) : x ∈ E, g(x) ∈ −M},

where E ⊆ X is a nonempty set, g : E → Z and f : E → Y.
The set of feasible solutions of (UVOP) and (CVOP) are, respectively,

Ω = E and Ω = {x ∈ E : g(x) ∈ −M}.

So, in general we consider the following vector optimization problem:
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(VOP) K −Min {f(x) : x ∈ Ω}.

Hereafter, ϵ ∈ K\{0} is a fixed vector, which is used as a tolerance in approximate efficiency.
In fact, ϵ exhibits the degree of accuracy.

The following definition is a generalization of the corresponding definitions given in
[3, 7, 18,24,29]. Comparing the approximate weak efficiency defined here with the standard
one, shows that here int(K) has been replaced by cor(K), because there is not any topology
here. Also, note that even in topological vector spaces the set of (weakly/properly) efficient
solutions might be empty in a noncompact instance, while the set of approximate solutions
can be nonempty under very weaker hypotheses. Furthermore, in applied optimization, the
mathematical programming models characterize simplified versions of the real problems, and
moreover, numerical algorithms may produce approximate solutions. These are some of the
reasons which make approximate solutions worth studying.

Definition 3.1. x0 ∈ Ω is called an ϵ−efficient solution of (VOP) if(
f(Ω)− f(x0) + ϵ

)
∩
(
−K\{0}

)
= ∅.

Furthermore, when K is solid, x0 ∈ Ω is called an ϵ−weak efficient solution of (VOP) if(
f(Ω)− f(x0) + ϵ

)
∩
(
−cor(K)

)
= ∅.

Note: Hereafter, whenever we talk about the (approximate) weak efficiency, it is as-
sumed that cor(K) ̸= ∅, i.e., K is solid. Also, notice that 0 /∈ cor(K) because K ̸= Y . In
fact, it can be shown that K = Y if 0 ∈ cor(K).

One of the most important solution notions in vector optimization theory is proper
efficiency. This concept has been studied in many publications to eliminate the situations
in which the trade-off between criteria is unbounded. The following definition generalizes
the proper efficiency notions defined in [3, 29].

Definition 3.2. x0 ∈ Ω is called an ϵ−Hurwicz vectorial proper efficient solution (ϵ−HuV)
of (VOP) if

vcl

(
conv

(
cone

(
(f(Ω)− f(x0)) ∪ (K + ϵ)

)))
∩ (−K) = {0};

and x0 ∈ Ω is called an ϵ−Benson vectorial proper efficient solution (ϵ−BeV) of (VOP) if

vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
∩ (−K) = {0}.

The following proposition shows that the set of ϵ−BeV solutions is a subset of that of
ϵ−efficient solutions.

Proposition 3.3. If x0 is ϵ−BeV for (VOP), then x0 is an ϵ−efficient solution of (VOP).

Proof. Suppose, on the contrary, x0 is not ϵ−efficient. Then there exists

y ∈
(
f(Ω)− f(x0)

)
∩
(
−K\{0} − ϵ

)
.
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Thus,

y + ϵ ∈ f(Ω)− f(x0) + (0 + ϵ) ⊆ f(Ω)− f(x0) + (K + ϵ),

and

y + ϵ ∈ (−K\{0}).

Therefore, we have

y + ϵ ∈ vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
∩ (−K\{0}),

which contradicts the assumption and completes the proof.

From the above proposition and due to cor(K) ⊆ K, it can be seen that, the set of
ϵ−BeV solutions is a subset of that of ϵ−weak efficient points. The following proposition
provides a relationship between ϵ−HuV and ϵ−BeV notions. Part (i) of this proposition
generalizes part (i) of Proposition 3.1 in [3]. From the following result, it can be seen that
the set of ϵ−HuV solutions is a subset of that of ϵ− (weak) efficient points, as well.

Proposition 3.4. (i) If x0 is ϵ−HuV for (VOP), then x0 is ϵ−BeV for (VOP).

(ii) Suppose that −ϵ ∈ K. If x0 is ϵ−BeV for (VOP) and cone

(
f(Ω) − f(x0) +K + ϵ

)
is

convex, then x0 is ϵ−HuV for (VOP).

Proof. (i) The proof of this part is simalr to that of Proposition 3.1 in [3], and is hence
omitted.
(ii) Since −ϵ ∈ K, we get

f(Ω)− f(x0) ⊆ f(Ω)− f(x0) +K + ϵ,

On the other hand
K + ϵ ⊆ f(Ω)− f(x0) +K + ϵ.

Therefore, (
f(Ω)− f(x0)

)
∪
(
K + ϵ

)
⊆ f(Ω)− f(x0) +K + ϵ.

Hence,

vcl

(
conv

(
cone

((
f(Ω)−f(x0)

)
∪(K+ϵ)

)))
⊆ vcl

(
conv

(
cone

(
f(Ω)−f(x0)+K+ϵ

)))
.

Since cone

(
f(Ω)− f(x0) +K + ϵ

)
is convex, we have

vcl

(
conv

(
cone

((
f(Ω)− f(x0)

)
∪ (K + ϵ)

)))
⊆ vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
.

Thus,

vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
∩(−K) = {0}

implies

vcl

(
conv

(
cone

((
f(Ω)− f(x0)

)
∪(K + ϵ)

)))
∩(−K) = {0}.

This completes the proof.
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Remark 3.5. Some definitions of approximate efficiency are given by means of an ϵ-
translation of the image set, where ϵ is a member of the ordering cone. If one follows the
same scheme in defining the ϵ−Hurwicz proper efficiency, then this notion will be defined
by the following relation:

vcl

(
conv

(
cone

(
(f(Ω)− f(x0) + ϵ) ∪ (K + ϵ)

)))
∩ (−K) = {0}. (3.1)

If we define the ϵ−Hurwicz proper efficiency based upon relation (3.1), then it can be shown
that part (ii) of the above proposition holds without the assumption −ϵ ∈ K. Notice that
this assumption fails for a pointed ordering cone.

Also, if we consider the ϵ−Hurwicz proper efficiency using (3.1), then similar to the proof
of Proposition 3.1 in [3], it can be shown that: If x0 is ϵ−HuV for (VOP), then x0 is 2ϵ−BeV
for (VOP).

4 Scalarization

This section contains the main results of the paper. In the first part of this section, a
scalar optimization problem, based upon the algebraic dual cone, is dealt with and some
connections between approximate minimality for scalar problem and approximate efficiency
for (VOP) are presented. The following definition is used in sequel.

Definition 4.1. Considering the scalar function h : X → R and the given positive scalar
ε > 0, the vector x0 ∈ Ω is called an ε−minimum of the scalar optimization problem

Min {h(x) : x ∈ Ω}

if

h(x0) ≤ h(x) + ε ∀x ∈ Ω.

The vector x0 ∈ Ω is called an ε− strict minimum of the above scalar optimization problem
if

h(x0) < h(x) + ε ∀x ∈ Ω.

Theorems 4.2 and 4.3 provide necessary and sufficient conditions for approximate effi-
ciency and approximate weak efficiency for (VOP).

Theorem 4.2. Let ε > 0. If there exists l ∈ K+\{0} such that x0 ∈ Ω is an ε−minimum
of scalar program,

Min {l ◦ f(x) : x ∈ Ω},

then x0 is an ϵ−weak efficient solution to (VOP) for each ϵ ∈ K\{0} which satisfies ε ≤ ⟨l, ϵ⟩.
Furthermore, if x0 ∈ Ω is a strict ε−minimum of the above scalar program, then x0 is an
ϵ−efficient solution to (VOP) for each ϵ ∈ K\{0} which satisfies ε ≤ ⟨l, ϵ⟩.

Proof. Assume that x0 is not an ϵ−weak efficient solution to (VOP) for some ϵ ∈ K\{0}
which satisfies ε ≤ ⟨l, ϵ⟩. Then

∃y ∈
(
f(Ω)− f(x0) + ϵ

)
∩
(
−cor(K)

)
.

Since l ∈ K+\{0} and y ∈ −cor(K), we have −y ∈ K which implies ⟨l, y⟩ ≤ 0. Since
−y ∈ cor(K),
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∀x′ ∈ X , ∃λ′
> 0 , ∀λ ∈ [0, λ

′
] , −y + λx

′ ∈ K.

If ⟨l, y⟩ = 0, then 0 ≤ ⟨l,−y + λx
′⟩ = λ⟨l, x′⟩. Hence, ⟨l, x′⟩ ≥ 0 for each x

′ ∈ X. This
implies l = 0, which contradicts the assumption of the theorem. Hence ⟨l, y⟩ < 0.
Furthermore, there exists x ∈ Ω such that

y = f(x)− f(x0) + ϵ.

Thus,

⟨l, f(x)− f(x0) + ϵ⟩ < 0.

Hence,

⟨l, f(x)⟩+ ε ≤ ⟨l, f(x)⟩+ ⟨l, ϵ⟩ < ⟨l, f(x0)⟩.

This contradicts the ϵ−minimality of x0 and completes the proof of the first part. The
second part of the theorem can be proved similarly.

Theorem 4.3. Assume that cone

(
f(Ω) − f(x0) + K + ϵ

)
is convex and solid. If x0 is

an ϵ−weak efficient solution to (VOP), then there exists l ∈ K+\{0} such that x0 is an
ε−minimum of scalar optimization problem

Min {l ◦ f(x) : x ∈ Ω},

for each ε > 0 which satisfies ε ≥ ⟨l, ϵ⟩.

Proof. Since x0 is ϵ−weak efficient,(
f(Ω)− f(x0) + ϵ

)
∩
(
−cor(K)

)
= ∅.

It can be shown that cor(K) +K = cor(K). Also, 0 /∈ cor(K) because K ̸= Y . Hence

cone

(
f(Ω)− f(x0) +K + ϵ

)
∩
(
−cor(K)

)
= ∅.

By Theorem 2.2, there exists l ∈ K+\{0} such that

⟨l, f(x)− f(x0) + k + ϵ⟩ ≥ 0 ∀(x ∈ Ω , k ∈ K).

Setting k = 0, we have

⟨l, f(x)− f(x0) + ϵ⟩ ≥ 0 ∀x ∈ Ω.

Hence,

⟨l, f(x)⟩+ ε ≥ ⟨l, f(x)⟩+ ⟨l, ϵ⟩ ≥ ⟨l, f(x0)⟩ ∀x ∈ Ω,

and the proof is completed.

Regarding Propositions 3.3 and 3.4, if x0 is an ϵ−HuV (or ϵ−BeV or ϵ−efficient), then
the above theorem is still valid.

In the above two theorems, the functional l belongs to K+, that is, this functional is
nonnegative on K. In the following two theorems, we consider positive functionals belonging
to K+s, to obtain necessary and sufficient conditions to characterize the ϵ−BeV solutions
of (VOP).
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Theorem 4.4. Let ε > 0. If there exists l ∈ K+s such that x0 ∈ Ω is an ε−minimum of
the scalar program

Min {l ◦ f(x) : x ∈ Ω},

then x0 is an ϵ−BeV solution to (VOP) for each ϵ ∈ K\{0} which satisfies ε ≤ ⟨l, ϵ⟩.

Proof. Assume that x0 is not an ϵ−BeV solution to (VOP) for some ϵ ∈ K\{0} with
ε ≤ ⟨l, ϵ⟩. Then there exists y ̸= 0 such that

y ∈ vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
∩(−K).

Then y ∈ (−K) and, since l ∈ K+s, we have

⟨l, y⟩ < 0. (4.1)

On the other hand, since y ∈ vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
, there exist x

′ ∈ X and a

sequence λn → 0+ such that

y + λnx
′ ∈ cone

(
f(Ω)− f(x0) +K + ϵ

)
∀n.

So, there exist sequences {αn} ⊆ [0,+∞), {yn} ⊆ Ω and {kn} ⊆ K such that

y + λnx
′
= αn

(
f(yn)− f(x0) + kn + ϵ

)
.

Since l is linear, we deduce

⟨l, y + λnx
′⟩ = αn

(
⟨l, f(yn)⟩ − ⟨l, f(x0)⟩+ ⟨l, kn⟩+ ⟨l, ϵ⟩

)
.

Since x0 is an ε−minimum of the scalar program

Min {l ◦ f(x) : x ∈ Ω},

we have

⟨l, f(x0)⟩ ≤ ⟨l, f(x)⟩+ ε ∀x ∈ Ω.

So, we obtain

⟨l, f(yn)⟩ − ⟨l, f(x0)⟩+ ⟨l, ϵ⟩ ≥ ⟨l, f(yn)⟩ − ⟨l, f(x0)⟩+ ε ≥ 0.

Furthermore,

⟨l, kn⟩ ≥ 0 ∀n,

because l ∈ K+s. From these, it follows that for each n

⟨l, y + λnx
′⟩ ≥ 0 ∀n.

As λn → 0+, we have ⟨l, y⟩ ≥ 0, which contradicts (4.1). Therefore, x0 is an ϵ − BeV
point.
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In the above theorem, if one further assumes that f is K−convexlike, then x0 is an
ϵ−HuV solution to (VOP) for each ϵ ∈ K\{0} which satisfies ε ≤ ⟨l, ϵ⟩ and −ϵ ∈ K.

The following definition is used in Theorem 4.6. In this definition a generalized convexity
notion, introduced by Adan and Novo [3], is presented. See [1, 2, 38] for more details about
generalized cone convexity.

Definition 4.5 ( [3]). The mapping f : E ⊆ X → Y is called a generalized vector convexlike
(GV CL) function in E with respect to K if

vcl

(
cone(f(E)) +K

)
is convex.

If one assumes that cone(f(E)) + K is nearly convex and relatively solid, then, by
Proposition 3 in [1], f is generalized vector convexlike.

Theorem 4.6 provides a necessary condition for ϵ−Benson proper efficiency utilizing the
dual cone.

Theorem 4.6. Suppose that K+ and K are solid and K is vectorially closed. Let x0 ∈ Ω
and let f(.) − f(x0) + ϵ be a GVCL mapping in Ω with respect to K. If x0 is an ϵ − BeV
solution to (VOP), then there exists a functional l ∈ K+s such that x0 is an ε−minimum
of the scalar program Min {l ◦ f(x) : x ∈ Ω} for ε ≥ ⟨l, ϵ⟩.

Proof. Since x0 is ϵ−BeV ,

vcl

(
cone

(
f(Ω)− f(x0) +K + ϵ

))
∩(−K) = {0}.

Hence,

vcl

(
cone

(
f(Ω)− f(x0) + ϵ

)
+K

)
∩(−K) = {0}.

Since f(.)− f(x0) + ϵ is GVCL in Ω with respect to the K,

vcl

(
cone

(
f(Ω)− f(x0) + ϵ

)
+K

)
is convex. Also, by Proposition 6 in [1],

cor

(
vcl

(
cone

(
f(Ω)− f(x0) + ϵ

)
+K

))
= cone

(
f(Ω)− f(x0) + ϵ

)
+cor(K).

On the other hand, cor(K) ̸= ∅, which implies that

cor

(
vcl

(
cone

(
f(Ω)− f(x0) + ϵ

)
+K

))
̸= ∅.

Therefore, vcl

(
cone

(
f(Ω) − f(x0) + ϵ

)
+K

)
is solid. Thus, by separation Theorem 2.3,

there exists l ∈ K+s such that,

⟨l, f(x)− f(x0) + k + ϵ⟩ ≥ 0 ∀(x ∈ Ω , k ∈ K)
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which implies that

⟨l, f(x0)⟩ ≤ ⟨l, f(x)⟩+ ⟨l, k + ϵ⟩ ∀(x ∈ Ω , k ∈ K).

Setting k = 0, we get

⟨l, f(x0)⟩ ≤ ⟨l, f(x)⟩+ ⟨l, ϵ⟩ ≤ ⟨l, f(x)⟩+ ε ∀x ∈ Ω,

which completes the proof.

Since each ϵ−HuV solution is an ϵ−BeV solution, the above theorem is also valid for
ϵ−HuV . In the above theorem if one sets ϵ = 0, then Theorem 4.2 in [3] is obtained.

From Theorems 4.4 and 4.6 we have the following corollary.

Corollary 4.7. Suppose that K and K+ are solid and K is vectorially closed. Let x0 ∈ Ω,
and f(.) − f(x0) + ϵ be a GVCL mapping in Ω with respect to K. Then, x0 is an ϵ−BeV
solution of (VOP) if and only if there exists a functional l ∈ K+s such that x0 is an
ε−minimum of the scalar program,

Min {l ◦ f(x) : x ∈ Ω},

for ε = ⟨l, ϵ⟩.

The second part of this section contains a characterization of the approximate (weak)
efficient solutions of (VOP) utilizing the notion of Gerstewitz’s scalarization function.

Considering e ∈ cor(K) and v ∈ Y , suppose that K is vectorially closed. The Gerste-
witz’s function he,v : Y −→ R, is defined by

he,v(y) := min{t ∈ R : y ∈ v + te−K}.

Notice that the set {t ∈ R : y ∈ v + te − K} is nonempty, closed and bounded from
below (Lemma 2.2 in [19]). The Gerstewitz’s function is well-known and widely used in
optimization, see e.g., [17, 25,34]

In the following, an equivalent form of the Gerstewitz’s function, utilizing the concept
of the base of cone K, is provided.

Definition 4.8 ( [25]). A convex subset Θ of a convex cone K is called a base of K if
0 /∈ vcl(Θ) and K = cone(Θ). We denote the set of all bases of K by B(K).

Now, we define the set B as follows:

B = {l ∈ K+ : l(e) = 1} (4.2)

where e ∈ cor(K). It is not difficult to show that B is a base of K+.

Proposition 4.9. Considering (e, v) ∈ cor(K)× Y , if K is vectorially closed, then

he,v(y) = Sup {⟨l, y − v⟩ : l ∈ B}.

Proof. By proposition 2.2 in [3], we have K = K++. Hence
he,v(y) = Min {t ∈ R : y ∈ v + te−K}

= Min {t ∈ R : v + te− y ∈ K = K++}
= Min {t ∈ R : ⟨l, v + te− y⟩ ≥ 0 ∀l ∈ K+}
= Min {t ∈ R : ⟨l, y − v⟩ ≤ t ∀l ∈ B}
= Sup {⟨l, y − v⟩ : l ∈ B}.
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Theorem 4.10 introduces a sufficient condition for approximate (weak) efficiency using
the Gerstewitz’s function.

Theorem 4.10. Let ε > 0 and K be pointed and vectorially closed. If e ∈ cor(K) and
α ∈ R such that x0 is a strict ε−minimum solution to

Min {he,f(x0)−αe ◦ f(x) : x ∈ Ω}, (4.3)

then x0 is ε̄e−efficient for (V OP ) for each ε̄ ≥ ε.

Proof. Since x0 is a strict ε−minimum solution of (4.3), we get,

he,f(x0)−αe ◦ f(x) + ε > he,f(x0)−αe ◦ f(x0) ∀x ∈ Ω.

Considering

t1 = he,f(x0)−αe(f(x0)) = Min {t ∈ R ; f(x0) ∈ f(x0) + te− eα−K},

we have t1 ≤ α and (t1 − α)e ∈ K. Since K ̸= Y , 0 /∈ cor(K). Hence e ̸= 0. Also,
(α − t1)e ∈ K, because α − t1 ≥ 0. Hence ±(t1 − α)e ∈ K, which implies that t1 − α = 0
because K is pointed and e ̸= 0. Therefore,

he,f(x0)−αe ◦ f(x0) = α.

So, we have

he,f(x0)−αe ◦ f(x) + ε− α > 0 ∀x ∈ Ω.

Therefore, by Proposition 4.9, we get

Sup {⟨l, (f(x)− f(x0) + αe)⟩ : l ∈ B}+ ε− α > 0 ∀x ∈ Ω.

So, there exists l ∈ B such that ⟨l, (f(x) − f(x0) + αe)⟩ + ε − α > 0. Hence, there exists
l ∈ K+\{0} such that

⟨l, (f(x)− f(x0))⟩+ ε > 0 ∀x ∈ Ω.

Therefore, x0 is a strict ε−minimum solution of the scalar program

Min {l ◦ f(x) : x ∈ Ω}.

So, by Theorem 4.2, x0 is an ϵ−efficient solution of (VOP) for each ϵ ∈ K\{0} which satisfies
ε ≤ ⟨l, ϵ⟩. Hence, x0 is ε̄e−efficient solution of (V OP ) for each ε̄ ≥ ε.

The following theorem provides a stronger result in being compared to the above theorem.
In fact, in Theorem 4.11 the vector v of the considered Gerstewitz’s function is an arbitrary
vector belonging to Y . In this theorem, if one replaces the “ε−minimality” assumption with
“ε−strict minimality”, then the theorem is still valid even for ε̄ = ε.

Theorem 4.11. Let ε > 0 and K be vectorially closed. If x0 is an ε−minimum solution to

Min {he,v ◦ f(x) : x ∈ Ω},

for some e ∈ cor(K) and v ∈ X, then x0 is ε̄e−efficient solution for (V OP ) for each ε̄ > ε.
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Proof. Considering ε̄ > ε, by contradiction, assume that there exists x̄ ∈ Ω such that

f(x̄)− f(x0) + ε̄e ∈ −K.

Thus
f(x̄) ∈ f(x0)− ε̄e−K ⊆ v + he,v(f(x0))e−K − ε̄e−K

⊆ v +

(
he,v(f(x0))− ε̄

)
e−K.

Thus
he,v(f(x̄)) ≤ he,v(f(x0))− ε̄ < he,v(f(x0))− ε.

This contradicts the assumption and completes the proof.

The following result provides a necessary condition for approximate weak efficient so-
lutions of (VOP). It can be seen that this theorem is valid for εe−BeV, εe−HuV, and
εe−efficient points too.

Theorem 4.12. Let K be pointed and vectorially closed, and ε > 0. Suppose that cone(f(Ω)−
f(x0) + K + εe) is convex and solid for some e ∈ cor(K). If x0 is εe−weak efficient for
(VOP), then x0 is ε−minimum of the scalar program

Min {he,f(x0)−αe ◦ f(x) : x ∈ Ω}

for each α ∈ R.

Proof. Since x0 is εe−weak efficient, then

(f(Ω)− f(x0) + εe) ∩ (−cor(K)) = ∅

Suppose that x0 is not an ε−minimum solution to the scalar program

Min {he,f(x0)−αe ◦ f(x) : x ∈ Ω},

for some α ∈ R. Then there exists some x̄ ∈ Ω such that

he,f(x0)−αe(f(x0)) > he,f(x0)−αe(f(x̄)) + ε.

Thus,
α− ε > he,f(x0)−αe(f(x̄)) = Sup {⟨l, (f(x̄)− f(x0) + αe)⟩ : l ∈ B}

≥ ⟨l, (f(x̄)− f(x0) + αe)⟩ ∀l ∈ B.

Therefore,

⟨l, (f(x̄)− f(x0) + αe)⟩ < α− ε ∀l ∈ B

Hence
⟨l, f(x̄)⟩+ ε < ⟨l, f(x0)⟩ ∀l ∈ K+\{0}. (4.4)

On the other hand, due to Theorem 4.3, there exists l ∈ K+\{0} such that x0 is ε−minimum
of scalar program

Min {l ◦ f(x) : x ∈ Ω},

which leads to

⟨l, f(x)⟩+ ε ≥ ⟨l, f(x0)⟩ ∀x ∈ Ω.

This contradicts (4.4), and completes the proof.
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Now, we start the last part of this section. In this part, we consider the constrained
problem (CVOP). This constrained vector optimization problem is converted to an uncon-
strained one using a Lagrangian mapping. Then some connections between two problems,
constrained and unconstrained, are given, utilizing some of the results established so far.
To this end, a constraint qualification condition is required. In the following definition, we
adapt the Slater constraint qualification to our context.

Definition 4.13 ( [3]). We say that the Slater constraint qualification for (CVOP) holds if
there exists x ∈ Ω such that g(x) ∈ −cor(M).

Hereafter, the set of all linear operators from Z into Y is denoted by O(Z, Y ), and Γ is
the set of positive linear operators, i.e.,

Γ = {T ∈ O(Z, Y ) : T (M) ⊆ K}.

The Lagrangian mapping L : E × Γ → Y corresponding to the program (CVOP) is defined
by L(x, T ) = f(x) + T (g(x)). The above-defined map helps us to convert (CVOP) to an
unconstrained vector optimization problem, under appropriate assumptions. Theorem 4.14
is a generalization of Theorem 4.3 in [3].

Theorem 4.14. In (CVOP), let x0 ∈ Ω and T ∈ Γ. Consider the following unconstrained
problem

Min {f(x) + (T ◦ g)(x) : x ∈ E} (4.5)

(i) If T (g(x0)) = 0 and x0 is ϵ−BeV for (4.5), then x0 is ϵ−BeV for (CVOP).
(ii) Assume that M is pointed and solid, K+ and K are solid, K is vectorially closed,

f(.)− f(x0) + ϵ is a GVCL mapping in Ω with respect to K and

(
f(.)− f(x0) + ϵ, g(.)

)
is

a GVCL mapping in E with respect to (K,M). If the Slater constraint qualification holds
and x0 is ϵ−BeV for (CVOP), then x0 is an ϵ−BeV solution to unconstrained optimization
problem (4.5) for some T ∈ Γ.

Proof. (i) For each x ∈ Ω, we have T (g(x)) ∈ −K. Hence, 0 ∈ T (g(Ω)) +K. Therefore,

f(Ω)− f(x0) + ϵ+K ⊆ f(Ω)− f(x0) + ϵ+K + T (g(Ω)) +K

= f(Ω)− f(x0) + ϵ+K + T (g(Ω)) +K − T (g(x0))

=

(
f + T ◦ g

)
(Ω)−

(
f + T ◦ g

)
(x0) + ϵ+K

⊆
(
f + T ◦ g

)
(E)−

(
f + T ◦ g

)
(x0) + ϵ+K.

Hence,

vcl

(
cone

((
f + T ◦ g

)
(E)−

(
f + T ◦ g

)
(x0) + ϵ+K

))
∩(−K) = {0}

implies

vcl

(
cone

(
f(Ω)− f(x0) + ϵ+K

))
∩(−K) = {0}.

This completes the proof of part (i).
(ii) Since f(.)− f(x0) + ϵ is GVCL in Ω, because of Corollary 4.7, there exists a functional
l ∈ K+s such that x0 is an ε−minimum of the scalar program,
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Min {(l ◦ f)(x) : x ∈ Ω}

for each ε which satisfies ε = ⟨l, ϵ⟩. This implies

⟨l, f(x0)⟩ ≤ ⟨l, f(x)⟩+ ε ∀x ∈ Ω.

Equivalently, for each x ∈ E which satisfies g(x) ∈ −M , we have

⟨l, f(x)− f(x0)⟩+ ε ≥ 0.

Thus, there is no x ∈ E such that(
⟨l, f(x)− f(x0)⟩+ ε , g(x)

)
∈ cor(−R+)× cor(−M) = −cor(R+ ×M).

Thus (
⟨l, f(E)− f(x0)⟩+ ε , g(E)

)
∩
(
−cor(R+ ×M)

)
= ∅.

Due to Proposition 4.1 in [3], vcl

(
cone

(
⟨l, f(E) − f(x0)⟩ + ε , g(E)

)
+

(
R+ × M

))
is

convex. Therefore, by Theorem 2.4,(
⟨l, f(E)− f(x0)⟩+ ε , g(E)

)+

∩
(
R+ ×M

)+

̸= {0}.

So, there exists (r, µ) ∈ (R+ ×M)+\{0} such that⟨
(r, µ) ,

(
⟨l, f(x)− f(x0)⟩+ ε , g(x)

)⟩
≥ 0, ∀x ∈ E.

This implies that

r

(
⟨l, f(x)− f(x0)⟩+ ε

)
+⟨µ, g(x)⟩ ≥ 0, ∀x ∈ E.

Furthermore r ̸= 0, otherwise

⟨µ, g(x)⟩ ≥ 0 ∀x ∈ E

which contradicts the Slater constraint qualification. Hence r > 0.
Also, there exists k1 ∈ K such that ⟨l, k1⟩ > 0, because l ∈ K+s. Considering

y1 =
k1

r⟨l, k1⟩
,

we have y1 ∈ K\{0} and ⟨l, y1⟩ =
1

r
.

Now, we define a linear mapping T : Z → Y by

T (z) = ⟨µ, z⟩y1.

Since for m ∈ M , T (m) = ⟨µ,m⟩y1 ∈ K, thus T ∈ Γ. Also, we have

r

(
⟨l, f(x)− f(x0)⟩+ ε

)
+⟨µ, g(x)⟩ − ⟨µ, g(x0)⟩ ≥ 0, ∀x ∈ E.
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Thus,
⟨l, f(x)− f(x0)⟩+ ε+ ⟨l, y1⟩ ⟨µ, g(x)− g(x0)⟩ ≥ 0, ∀x ∈ E,

which leads to

⟨l, f(x)− f(x0)⟩+ ε+ ⟨l, T (g(x))− T (g(x0))⟩ ≥ 0, ∀x ∈ E.

Therefore, we have

⟨l, f(x) + T (g(x))⟩ − ⟨l, f(x0) + T (g(x0))⟩+ ε ≥ 0, ∀x ∈ E.

So, x0 is an ε−minimum to the scalar program

Min {⟨l, (f + T ◦ g)(x)⟩ : x ∈ E}.

By Theorem 4.4, x0 is ϵ−BeV for

Min {(f + T ◦ g)(x) : x ∈ E},

and the proof is completed.

Theorem 4.15. (i) Let T ∈ Γ and x0 ∈ Ω such that T (g(x0)) = 0. If x0 is an ϵ−weak
efficient solution of (4.5), then x0 is an ϵ−weak efficient solution of (CVOP).
(ii) Suppose that K,M are pointed and M is solid. Also, assume that x0 ∈ Ω and (f(.) −
f(x0)+ ϵ , g(.)) is GVCL in E with respect to (K,M). If the Slater constraint qualification
holds, and x0 is ϵ−weak efficient for (CVOP), then there exists a T ∈ Γ such that x0 is
ϵ−weak efficient for unconstrained program (4.5).

Proof. (i) If x0 is not ϵ−weak efficient for (CVOP), then there exists x̄ ∈ E such that
g(x̄) ∈ −M and

f(x0) ∈ f(x̄) + cor(K) + ϵ.

Therefore

f(x0)−T (g(x̄)) ∈ f(x̄)+cor(K)+ ϵ−T (g(x̄)) ⊆ f(x̄)+cor(K)+ ϵ+K = f(x̄)+cor(K)+ ϵ.

Since T (g(x0)) = 0, we have

f(x0) + T (g(x0)) ∈ f(x̄) + cor(K) + ϵ+ T (g(x̄)),

leading to (
(f + T ◦ g)(E)− (f + T ◦ g)(x0) + ϵ

)
∩
(
−cor(K)

)̸
= ∅.

It makes a contradiction and completes the proof of part (i).
(ii) Since x0 ∈ Ω is an ϵ−weak efficient solution of (CVOP), then(

f(E)− f(x0) + ϵ , g(E)

)
∩ − cor

(
K ×M

)
= ∅.

Since

(
f(.)− f(x0) + ϵ , g(.)

)
is GVCL in E with respect to (K,M),

vcl

(
cone

(
f(E)− f(x0) + ϵ , g(E)

)
+(K,M)

)
is convex. Hence, applying Theorem 2.4, there exists (µK , µM ) ∈ (K ×M)+ such that
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⟨µK , f(x)− f(x0) + ϵ⟩+ ⟨µM , g(x)⟩ ≥ 0 ∀x ∈ E.

Furthermore µK ̸= 0, otherwise

⟨µM , g(x)⟩ ≥ 0 ∀x ∈ E

which contradicts the Slater constraint qualification. On the other hand,

⟨µM , g(x0)⟩ ≤ 0,

because x0 ∈ Ω. Since K is solid, there exists k1 ∈ K, such that ⟨µK , k1⟩ > 0; otherwise
l(K) = {0} and l(−K) = {0}. So l(K−K) = {0}, but since K is solid, we get span(K−K) =
Y ; and thus l = 0, which makes a contradiction.

Setting y1 =
k1

⟨µK , k1⟩
, we have y1 ∈ K\{0}. Now, we define a linear mapping T : Z → Y

by T (z) = ⟨µM , z⟩y1. Since for m ∈ M we have T (m) = ⟨µM ,m⟩y1 ∈ K\{0}, thus T ∈ Γ.
On the other hand,

(µK ◦ T )(z) = µK

(
⟨µM , z⟩y1

)
= ⟨µM , z⟩⟨µK , y1⟩ = ⟨µM , z⟩.

Therefore,

⟨µK , f(x)− f(x0) + ϵ⟩+ ⟨µM , g(x)⟩ − ⟨µM , g(x0)⟩ ≥ 0 ∀x ∈ E

⇒⟨µK , f(x)− f(x0) + ϵ⟩+ ⟨µK ◦ T, g(x)⟩ − ⟨µK ◦ T, g(x0)⟩ ≥ 0 ∀x ∈ E

⇒⟨µK , (f + T ◦ g)(x)⟩+ ⟨µK , ϵ⟩ − ⟨µK , (f + T ◦ g)(x0)⟩ ≥ 0 ∀x ∈ E (4.6)

Therefore, x0 is ϵ−weak efficient for Problem (4.5), otherwise there exists x̄ ∈ E such
that

(f + T ◦ g)(x0) ∈ (f + T ◦ g)(x̄) + ϵ+ cor(K).

Hence
⟨µK , (f + T ◦ g)(x0)− (f + T ◦ g)(x̄)− ϵ⟩ > 0.

So, we have
⟨µK , (f + T ◦ g)(x0)⟩ > ⟨µK , (f + T ◦ g)(x̄)⟩+ ⟨µK , ϵ⟩,

which contradicts (4.6). Hence x0 is ϵ−weak efficient for (4.5), and the proof is completed.
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