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always have a simple form (for examples of such a constraint set, see Examples (II) and
(III) in Subsection 1.2). This implies that the metric projection onto each user’s constraint
set cannot be easily computed.† The nonmonotone variational inequality problem in this
case includes, for instance, power control problems in direct-sequence code-division multiple-
access (CDMA) data networks [12] and in wireless networks [25], and bandwidth allocation
problems [13].

References [12,13] showed that practical problems, such as power control and bandwidth
allocation problems, can be translated into a nonmonotone variational inequality problem
over the fixed point set of a certain nonexpansive mapping [1], [9, Chapter 3], [10, Chap-
ter 1], and presented iterative methods for solving the nonmonotone variational inequality.
These iterative methods must use the explicit forms of the nonexpansive mapping and the
nonmonotone operator, and hence, they are referred to as centralized iterative methods.

In the case of the power control for the uplink or downlink in CDMA data network, the
base station plays the role of the centralized operator, and hence, it can get user information
such as the explicit forms of the objective functions and constraint sets from the start. To
control the power allocation in the network, the base station executes a centralized iterative
method and transmits the powers computed by the method to all users in the network.
However, there is no centralized operator in peer-to-peer (P2P) networks for data storage
allocation [20], wireless networks for power allocation [25], and wired networks for band-
width allocation [14, 19]. Therefore, in large-scale and complex networked systems, there is
an inconvenient possibility that none of the users can get the explicit forms of their own
objective functions and constraint sets, and hence, centralized iterative methods cannot be
applied to such systems. Moreover, since such networks can grow in size, distributed mecha-
nisms should be used for network resource allocation instead of centralized ones that involve
extra infrastructure. Distributed mechanisms enable each user to adjust its own resource
allocation without using the private information of other users such as their objective func-
tions and constraint sets.

Many distributed iterative methods, which can be applied to such systems, have been
proposed. The conventional distributed iterative methods enable each user in the networked
system to solve a monotone variational inequality without using other users’ convex, non-
differentiable objective functions and simple constraint sets. The well-known distributed
iterative method is the incremental subgradient method (see [3, Subchapter 8.2], [4,17,18,21]
and references therein). The incremental subgradient methods can be implemented through
cooperation, whereby each user communicates with its neighbor user. Broadcast types
of distributed iterative methods [5, 6, 25] were proposed for solving the monotone varia-
tional inequality. The broadcast iterative methods can be implemented through cooperation,
whereby all users communicate with each other. Reference [14] proposed an incremental gra-
dient method and a broadcast iterative method for solving a monotone variational inequality
over the intersection of the fixed point sets of nonexpansive mappings. These methods [14]
with slowly diminishing step-size sequences converge to a unique solution to the monotone
variational inequality.

From the above viewpoint, we can conclude that distributed iterative methods should
be devised to solve a nonmonotone variational inequality over the intersection of the fixed
point sets of nonexpansive mappings, which is defined properly in the next subsection.

†The projection onto a simple set (e.g., a half-space) can be computed within a finite number of arithmetic
operations.
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1.2 Main problem

This paper considers a networked system, which consists of K users, under the following
assumptions:

Assumption 1.1. Suppose that user i (i ∈ I := {1, 2, . . . ,K}) has its own private constraint
set C(i) and objective function f (i) satisfying the following:

(A1) X(i) (i ∈ I) is a nonempty, bounded, closed, convex set of RN onto which the projec-
tion, denoted by PX(i) , can be easily computed.

(A2) User i (i ∈ I) can use a firmly nonexpansive mapping‡ T (i) : RN → RN with (X(i) ⊃)
Fix(T (i)) := {x ∈ RN : T (i)(x) = x} = C(i) and

∩
i∈I Fix(T

(i)) ̸= ∅.

(A3) f (i) : RN → R (i ∈ I) is continuously differentiable.

User i in actual networked systems [14, 19, 20, 25] has a bounded constraint set C(i).
Then, user i can set a bounded X(i) (⊃ C(i)) (i ∈ I) in advance (e.g., X(i) is a closed ball
with a large enough radius). Section 4 discusses the network bandwidth allocation problem
when user i (source i) has a bounded set C(i) and a box constant set X(i). See [14,19,20,25]
for other examples of a bounded C(i).

Let us provide three examples (I)–(III) [14] of T (i) (i ∈ I) satisfying Assumption (A2).
(I) Suppose that user i has a simple, closed convex constraint set C(i) (e.g., C(i) is a closed
ball or a half-space). The typical example of T (i) is the metric projection, denoted by
PC(i) , onto C(i) because PC(i) can be easily computed and satisfies the firm nonexpansivity
condition and Fix(PC(i)) = C(i). (II) Let us consider the case where C(i) is the intersection

of simple, closed convex sets D
(i)
j s (j ∈ J(i) := {1, 2, . . . ,m(i)}), i.e.,

C(i) :=
∩

j∈J(i)

D
(i)
j . (1.1)

Since P
D

(i)
j

can be easily computed, user i can use T (i) defined by

T (i) :=
1

2

Id +
∏

j∈J(i)

P
D

(i)
j

 , (1.2)

where Id stands for the identity mapping on RN . T (i) satisfies the firm nonexpansiv-
ity condition [2, Definition 4.1, Proposition 4.2] and Fix(T (i)) = Fix(

∏
j∈J(i) PD

(i)
j
) =∩

j∈J(i) D
(i)
j = C(i). Section 4 describes that source i has T (i) defined by Equation (1.2)

with Fix(T (i)) = C(i) ⊂ X(i). (III) Let us consider the case where C(i) is the set of all
minimizers of a differentiable, convex functional g(i) with the Lipschitz continuous gradient
∇g(i) over a simple, closed convex set D(i), i.e.,

C(i) :=

{
x ∈ D(i) : g(i)(x) = min

y∈D(i)
g(i)(y)

}
. (1.3)

‡T : RN → RN is said to be firmly nonexpansive [1], [9, Chapter 12], [10, Subchapter 1.11] if ∥T (x) −
T (y)∥2 ≤ ⟨x − y, T (x) − T (y)⟩ (x, y ∈ RN ), where ⟨·, ·⟩ stands for the inner product of RN and ∥ · ∥ is the
norm of RN .
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PD(i)(Id− λ∇g(i)) is nonexpansive with an adequate λ (> 0) [11, Proposition 2.3]. Accord-
ingly, user i can use a firmly nonexpansive T (i) defined by

T (i) :=
1

2

(
Id + PD(i)

(
Id− λ∇g(i)

))
(1.4)

with Fix(T (i)) = Fix(PD(i)(Id − λ∇g(i))) = C(i) [27, Theorem 46.C (1) and (2)]. It would
be difficult to compute PC(i) onto C(i) in Equation (1.1) and PC(i) onto C(i) in Equation
(1.3). Meanwhile, we can see that T (i) in Equation (1.2) and T (i) in Equation (1.4) are
firmly nonexpansive with Fix(T (i)) = C(i) and can be easily computed.

The main problem in this paper is the following nonmonotone variational inequality
problem with information on the whole system:

Problem 1.1. Under Assumption 1.1, find a point in

VI

(∩
i∈I

Fix
(
T (i)

)
,∇

(∑
i∈I

f (i)

))

:=

{
x⋆ ∈ X :=

∩
i∈I

Fix
(
T (i)

)
:

⟨
x− x⋆,∇

(∑
i∈I

f (i)

)
(x⋆)

⟩
≥ 0 (x ∈ X)

}
.

1.3 Main objective and contributions of the paper

The main objective of the paper is to devise distributed iterative methods for solving Prob-
lem 1.1, which the existing methods in Subsection 1.1 cannot solve, and to prove that the
proposed methods converge to a solution to Problem 1.1 under certain assumptions. The
contribution of this paper is that it is the first study to tackle nonmonotone variational
inequalities over the intersection of the fixed point sets of nonexpansive mappings and it
proposes two distributed iterative methods for them. Section 2 presents an incremental fixed
point optimization algorithm, based on the conventional incremental subgradient methods,
for solving Problem 1.1 and its convergence analysis. Section 3 presents a broadcast fixed
point optimization algorithm, based on the conventional broadcast iterative methods, for
solving Problem 1.1 and its convergence analysis. Section 4 applies the algorithms to a net-
work bandwidth allocation problem and provides numerical examples for network bandwidth
allocation. The convergence analyses and numerical examples describe that the algorithms
with slowly diminishing step-size sequences converge to a solution to Problem 1.1. Section
5 concludes the paper.

2 Incremental Gradient Method for Nonmonotone Variational In-
equality and Its Convergence Analysis

We first present the following algorithm for solving Problem 1.1:

Algorithm 2.1 (Incremental Fixed Point Optimization Algorithm).

Step 0. User i (i ∈ I) sets (αn)n∈N, (λn)n∈N, and (βn)n∈N, chooses x
(i)
−1 ∈ RN arbitrarily,

and computes d
(i)
−1 := −∇f (i)(x

(i)
−1). User K sets x0 ∈ RN and transmits x

(0)
0 := x0 to user

1.
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Step 1. Given xn = x
(0)
n ∈ RN and d

(i)
n−1 ∈ RN (i ∈ I), user i computes x

(i)
n ∈ RN

cyclically by 
d
(i)
n := −∇f (i)

(
x
(i−1)
n

)
+ βnd

(i)
n−1,

y
(i)
n := T (i)

(
x
(i−1)
n + λnd

(i)
n

)
,

x
(i)
n := PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
(i = 1, 2, . . . ,K).

Step 2. User K defines xn+1 ∈ RN by

xn+1 := x(K)
n

and transmits x
(0)
n+1 := xn+1 to user 1. Put n := n+ 1, and go to Step 1.

The conventional incremental subgradient method (see [3, Subchapter 8.2], [4,17,18,21]
and references therein) is defined as follows:{

x
(i)
n := PC

(
x
(i−1)
n − λng

(i)
n

)
, g

(i)
n ∈ ∂f (i)

(
x
(i−1)
n

)
(i = 1, 2, . . . ,K),

xn+1 := x
(K)
n ,

(2.1)

where all users have a simple, closed convex set C and ∂f (i)(x) stands for the subdifferential
of a nonsmooth, convex functional f (i) at x ∈ H. References [3, Proposition 8.2.6] and [21,
Proposition 2.4] describe that, when (λn)n∈N satisfies

∑∞
n=0 λn = ∞ and

∑∞
n=0 λ

2
n < ∞,

(xn)n∈N in Algorithm (2.1) converges to a minimizer of
∑

i∈I f
(i) over C.

The incremental fixed point optimization algorithm [14] was presented as a way to solve
Problem 1.1 when f (i) is differentiable and convex and T (i) is firmly nonexpansive. This
algorithm cannot be applied to the case where f (i) is nonsmooth and convex because the
proof of its convergence analysis essentially uses the Lipschitz continuity of the gradient of
f (i) (see [14, Proposition 2.1]).§

Meanwhile, Algorithm 2.1 can use a firmly nonexpansive T (i) satisfying Fix(T (i)) = C(i)

and can be applied even when f (i) (i ∈ I) is not always convex. Algorithm 2.1 uses the

conjugate gradient direction [22, Chapter 5], [15, 16] generated by d
(i)
n := −∇f (i)(x

(i−1)
n ) +

βnd
(i)
n−1 (i ∈ I, n ∈ N) to accelerate algorithms with the steepest descent direction d

(i)
n :=

−∇f (i)(x
(i−1)
n ) (i ∈ I, n ∈ N).

We need the following assumptions to guarantee that Algorithm 2.1 converges to a solu-
tion to Problem 1.1:

Assumption 2.1. User i (i ∈ I) has (αn)n∈N ⊂ [0, 1], (βn)n∈N ⊂ [0, 1], and (λn)n∈N ⊂ (0, 1]
satisfying¶

(C1) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, (C2)
∞∑

n=0

λn < ∞, (C3) lim
n→∞

βn = 0.

Assumption 2.2. (∇f (i)(x
(i−1)
n ))n∈N (i ∈ I) is bounded.

§In the future, we should consider developing distributed iterative methods for solving minimization
problems over the fixed point sets of nonexpansive mappings in which all users’ objective functions are
nonsmooth and convex.

¶Examples of (αn)n∈N, (λn)n∈N, and (βn)n∈N are αn := a (∈ (0, 1)), λn := 1/(n + 1)b (b > 1), and
βn := 1/(n+ 1)c (c > 0).
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Let us provide a condition to satisfy Assumption 2.2. The boundedness ofX(i) guarantees

that (x
(i)
n )n∈N (i ∈ I) is bounded. Now suppose that ∇f (i) (i ∈ I) is Lipschitz continuous

with L(i) > 0 (L(i)-Lipschitz continuous), i.e., ∥∇f (i)(x) −∇f (i)(y)∥ ≤ L(i)∥x − y∥ (x, y ∈
RN ). Accordingly, ∥∇f (i)(x

(i−1)
n ) − ∇f (i)(y)∥ ≤ L(i)∥x(i−1)

n − y∥ (i ∈ I, y ∈ RN ). This

inequality and the boundedness of (x
(i)
n )n∈N (i ∈ I) ensure that Assumption 2.2 is satisfied

under the Lipschitz continuity of ∇f (i) (i ∈ I).
Now let us do a convergence analysis on Algorithm 2.1.

Theorem 2.3. Suppose that Assumptions 1.1, 2.1, and 2.2 are satisfied. Then, (x
(i)
n )n∈N

(i ∈ I) in Algorithm 2.1 has the following properties:

(a) (x
(i)
n )n∈N (i ∈ I) is bounded and limn→∞ ∥xn − y∥ exists for all y ∈

∩
i∈I Fix(T

(i)).

(b) limn→∞ ∥xn−x
(i−1)
n ∥ = 0 (i ∈ I), limn→∞ ∥xn+1−xn∥ = 0, limn→∞ ∥xn−T (i)(xn)∥ = 0

(i ∈ I).

(c) (x
(i)
n )n∈N (i ∈ I) converges to a common fixed point of T (i)s.

(d) If ∥xn+1 − xn∥ = o(λn), (x
(i)
n )n∈N (i ∈ I) converges to a solution to Problem 1.1.

Item (c) in Theorem 2.3 guarantees that all (x
(i)
n )n∈Ns converge to the same point x⋆ in∩

i∈I Fix(T
(i)). This means that all users which use Algorithm 2.1 under Assumptions 2.1

and 2.2 can find the feasible point in Problem 1.1.
From Item (b) in Theorem 2.3 and Condition (C2), we find that limn→∞ ∥xn+1−xn∥ = 0

and limn→∞ λn = 0. Item (d) in Theorem 2.3 says that, if (∥xn+1 − xn∥)n∈N and (λn)n∈N
satisfy the more restrictive condition, ∥xn+1−xn∥ = o(λn), i.e., limn→∞ ∥xn+1−xn∥/λn = 0,

all (x
(i)
n )n∈Ns converge to x⋆ in VI(

∩
i∈I Fix(T

(i)),∇(
∑

i∈I f
(i))) even when the f (i)s are

nonconvex. User K can verify whether ∥x(K)
n − x

(K)
n−1∥ = ∥xn+1 − xn∥ = o(λn) is satisfied or

not.∥ Hence, it would be reasonable that user K determines a slowly diminishing (λn)n∈N
(e.g., λn := 1/(n + 1)1.01 or 1/(n + 1)1.001) to satisfy ∥xn+1 − xn∥ = o(λn) as much as
possible. From such a viewpoint, it would be desirable to set user K as an operator who
manages the networked system.

References [12, 13] present centralized fixed point optimization algorithms for solving
Problem 1.1 when f (i)s are nonconvex, and these algorithms can be applied to power control
[12] and network bandwidth allocation [13] problems. For convenience, we shall write the
algorithm in [12] for Problem 1.1 as follows:yn :=

∏
i∈I

T (i)

(
xn − λn∇

(∑
i∈I

f (i)

)
(xn)

)
,

xn+1 := PC (αnxn + (1− αn)yn) (n ∈ N),
(2.2)

where C (⊂ RN ) is closed and convex, and (λn)n∈N and (αn)n∈N satisfy Conditions (C1)
and (C2). Theorem 6 and Remark 7 (c) in [12] guarantee that (xn)n∈N in Algorithm (2.2)
converges to a solution to Problem 1.1 if ∥xn − yn∥ = o(λn). Numerical examples in [12,13]
indicated that the algorithms [12, 13] with λn := 1/(n + 1)1.01 satisfy ∥xn − yn∥ = o(λn),
while the algorithms with λn := 1/(n + 1)2 do not always satisfy ∥xn − yn∥ = o(λn).
Algorithm (2.2) requires us to use the explicit forms of all T (i)s and f (i)s. However, it

∥User K can obtain, for each n > 1, x
(K)
n , x

(K)
n−1, and λn and then compute zn := ∥x(K)

n − x
(K)
n−1∥/λn

and wn := zn−1 − zn. If wn ≥ 0 and zn is small for each n, the condition will be satisfied.
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would be difficult to apply Algorithm (2.2) to Problem 1.1 in networked systems. This
is because each user in such systems cannot get the explicit forms of other users’ objective
functions and nonexpansive mappings. Meanwhile, Algorithm 2.1 can be implemented under
the assumption that each user knows its own private objective function and nonexpansive
mapping.

2.1 Proof of Theorem 2.3

(a) The definition of (x
(i)
n )n∈N (i ∈ I) and the boundedness of X(i) (i ∈ I) guarantee

the boundedness of (x
(i)
n )n∈N (i ∈ I). Condition (C3) ensures the existence of n1 ∈ N

such that βn ≤ 1/2 for all n ≥ n1. We put M
(i)
1 := sup{∥∇f (i)(x

(i−1)
n )∥ : n ∈ N},

M̄
(i)
1 := max{M (i)

1 , ∥d(i)n1∥} (i ∈ I), and M1 := maxi∈I M̄
(i)
1 (M1 < ∞ is guaranteed by

the boundedness of (∇f (i)(x
(i−1)
n ))n∈N (i ∈ I)). We then have that, for all n ≥ n1 and for

all i ∈ I, ∥d(i)n+1∥ ≤ ∥∇f (i)(x
(i−1)
n+1 )∥ + βn+1∥d(i)n ∥ ≤ M1 + (1/2)∥d(i)n ∥. Let us fix i ∈ I and

assume that ∥d(i)n ∥ ≤ 2M1 for some n ≥ n1. We find that ∥d(i)n+1∥ ≤ M1 + (1/2)∥d(i)n ∥ ≤
M1 + (1/2)2M1 = 2M1. Induction guarantees that ∥d(i)n ∥ ≤ 2M1 for all i ∈ I and for all

n ≥ n1, which implies that (d
(i)
n )n∈N (i ∈ I) is bounded.

Choose y ∈
∩

i∈I Fix(T
(i)) arbitrarily and put M2 := maxi∈I(sup{2|⟨x(i−1)

n − y, d
(i)
n ⟩| +

λn∥d(i)n ∥2 : n ∈ N}) (M2 < ∞ is guaranteed by the boundedness of (x
(i)
n )n∈N and (d

(i)
n )n∈N

(i ∈ I)). The nonexpansivity of T (i) means that, for all n ∈ N and for all i ∈ I,

∥∥∥y(i)n − y
∥∥∥2 =

∥∥∥T (i)
(
x(i−1)
n + λnd

(i)
n

)
− T (i)(y)

∥∥∥2 ≤
∥∥∥(x(i−1)

n + λnd
(i)
n

)
− y
∥∥∥2

=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M2λn.

(2.3)

Inequality (2.3) and the boundedness of (x
(i)
n )n∈N (i ∈ I) ensure that (y

(i)
n )n∈N (i ∈ I) is

bounded. Moreover, the nonexpansivity of PX(i) (i ∈ I), Assumption (A2) (Fix(T (i)) ⊂
X(i) = Fix(PX(i))), and the convexity of ∥ · ∥2 guarantee that, for all n ∈ N and for all i ∈ I,

∥∥∥x(i)
n − y

∥∥∥2 =
∥∥∥PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
− PX(i)(y)

∥∥∥2
≤
∥∥∥(αnx

(i−1)
n + (1− αn)y

(i)
n

)
− y
∥∥∥2

=
∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M2λn

}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M2λn.

(2.4)
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Accordingly, we find that, for all n ∈ N,

∥xn+1 − y∥2 =
∥∥∥x(K)

n − y
∥∥∥2 ≤

∥∥∥x(K−1)
n − y

∥∥∥2 +M2λn

≤
∥∥∥x(0)

n − y
∥∥∥2 +KM2λn = ∥xn − y∥2 +KM2λn,

which means that, for all m,n ∈ N,

∥xn+m+1 − y∥2 ≤ ∥xn+m − y∥2 +KM2λn+m ≤ ∥xm − y∥2 +KM2

n+m∑
i=m

λi

≤ ∥xm − y∥2 +KM2

∞∑
i=m

λi.

Thus, for all m ∈ N, lim supn→∞ ∥xn − y∥2 = lim supn→∞ ∥xn+m+1 − y∥2 ≤ ∥xm − y∥2 +
KM2

∑∞
i=m λi. Therefore, Condition (C2) leads us to

lim sup
n→∞

∥xn − y∥2 ≤ lim inf
m→∞

{
∥xm − y∥2 +KM2

∞∑
i=m

λi

}
= lim inf

m→∞
∥xm − y∥2 ,

which implies that limn→∞ ∥xn − y∥ exists for all y ∈
∩

i∈I Fix(T
(i)).

(b) We shall prove that limn→∞ ∥x(i−1)
n −y

(i)
n ∥ = 0 (i ∈ I). From the firm nonexpansivity

of T (i) and ⟨x, y⟩ = (1/2)(∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ RN ), we have that, for all n ∈ N,
for all i ∈ I, and for all y ∈

∩
i∈I Fix(T

(i)),

∥∥∥y(i)n − y
∥∥∥2 =

∥∥∥T (i)
(
x(i−1)
n + λnd

(i)
n

)
− T (i)(y)

∥∥∥2
≤
⟨(

x(i−1)
n + λnd

(i)
n

)
− y, y(i)n − y

⟩
=

1

2

{∥∥∥(x(i−1)
n − y

)
+ λnd

(i)
n

∥∥∥2 + ∥∥∥y(i)n − y
∥∥∥2 − ∥∥∥(x(i−1)

n − y(i)n

)
+ λnd

(i)
n

∥∥∥2} ,

which means that∥∥∥y(i)n − y
∥∥∥2 ≤

∥∥∥(x(i−1)
n − y

)
+ λnd

(i)
n

∥∥∥2 − ∥∥∥(x(i−1)
n − y(i)n

)
+ λnd

(i)
n

∥∥∥2
=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 + 2λn

⟨
y(i)n − x(i−1)

n , d(i)n

⟩
− λ2

n

∥∥∥d(i)n

∥∥∥2
=
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
y(i)n − y, d(i)n

⟩
−
∥∥∥x(i−1)

n − y(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn −

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,

(2.5)

where M3 := maxi∈I(sup{2|⟨y(i)n − y, d
(i)
n ⟩| : n ∈ N}) < ∞. Hence, Inequality (2.4) ensures
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that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n − y
∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M3λn −
∥∥∥x(i−1)

n − y(i)n

∥∥∥2}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn − (1− αn)

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 .
Therefore, for all n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 =
∥∥∥x(K)

n − y
∥∥∥2 ≤

∥∥∥x(K−1)
n − y

∥∥∥2 +M3λn − (1− αn)
∥∥∥x(K−1)

n − y(K)
n

∥∥∥2
≤
∥∥∥x(0)

n − y
∥∥∥2 +KM3λn − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2
= ∥xn − y∥2 +KM3λn − (1− αn)

∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
and hence,

(1− αn)
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn.

The existence of limn→∞ ∥xn−y∥ (y ∈
∩

i∈I Fix(T
(i))), limn→∞ λn = 0 (by Condition (C2)),

and Condition (C1) lead one to deduce that limn→∞
∑

i∈I ∥x
(i−1)
n − y

(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥x(i−1)
n − y(i)n

∥∥∥ = 0 (i ∈ I). (2.6)

Next, we shall prove that limn→∞ ∥x(i)
n − y

(i)
n ∥ = 0 (i ∈ I). The firm nonexpansivity of

PX(i) and ⟨x, y⟩ = (1/2)(∥x∥2 + ∥y∥2 − ∥x− y∥2) (x, y ∈ RN ) imply that, for all n ∈ N, for
all i ∈ I, and for all y ∈

∩
i∈I Fix(T

(i)) ⊂ X(j) = Fix(PX(j)) (j ∈ I),∥∥∥x(i)
n − y

∥∥∥2 =
∥∥∥PX(i)

(
αnx

(i−1)
n + (1− αn)y

(i)
n

)
− PX(i)(y)

∥∥∥2
≤
⟨(

αnx
(i−1)
n + (1− αn)y

(i)
n

)
− y, x(i)

n − y
⟩

=
1

2

{∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2 + ∥∥∥x(i)
n − y

∥∥∥2
−
∥∥∥αn

(
x(i−1)
n − x(i)

n

)
+ (1− αn)

(
y(i)n − x(i)

n

)∥∥∥2},
which means that∥∥∥x(i)

n − y
∥∥∥2 ≤

∥∥∥αn

(
x(i−1)
n − y

)
+ (1− αn)

(
y(i)n − y

)∥∥∥2
−
∥∥∥αn

(
x(i−1)
n − x(i)

n

)
+ (1− αn)

(
y(i)n − x(i)

n

)∥∥∥2 .
Accordingly, the convexity of ∥ · ∥2 and the equality, ∥αx + (1 − α)y∥2 = α∥x∥2 + (1 −
α)∥y∥2 − α(1 − α)∥x − y∥2 (x, y ∈ RN , α ∈ [0, 1]), ensure that, for all n ∈ N, for all i ∈ I,
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and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n − y
∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2 − αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2
− (1− αn)

∥∥∥y(i)n − x(i)
n

∥∥∥2 + αn(1− αn)
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 .
Since Inequality (2.5) implies that ∥y(i)n − y∥2 ≤ ∥x(i−1)

n − y∥2 + M3λn (n ∈ N, i ∈ I, y ∈∩
i∈I Fix(T

(i))), we find that

∥∥∥x(i)
n − y

∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 +M3λn

}
− αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 − (1− αn)
∥∥∥y(i)n − x(i)

n

∥∥∥2 + αn(1− αn)
∥∥∥x(i−1)

n − y(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 +M3λn − αn

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 − (1− αn)
∥∥∥y(i)n − x(i)

n

∥∥∥2
+
∥∥∥x(i−1)

n − y(i)n

∥∥∥2 .
Thus, for all n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +KM3λn − αn

∑
i∈I

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2
− (1− αn)

∑
i∈I

∥∥∥y(i)n − x(i)
n

∥∥∥2 +∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
which means that

(1− αn)
∑
i∈I

∥∥∥y(i)n − x(i)
n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn

+
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 ,
αn

∑
i∈I

∥∥∥x(i−1)
n − x(i)

n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +KM3λn

+
∑
i∈I

∥∥∥x(i−1)
n − y(i)n

∥∥∥2 .
The existence of limn→∞ ∥xn − y∥ (y ∈

∩
i∈I Fix(T

(i))), limn→∞ λn = 0, Condition (C1),

and Equation (2.6) lead one to deduce that limn→∞
∑

i∈I ∥y
(i)
n − x

(i)
n ∥ = 0 and

limn→∞
∑

i∈I ∥x
(i−1)
n − x

(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥y(i)n − x(i)
n

∥∥∥ = 0 (i ∈ I), (2.7)

lim
n→∞

∥∥∥x(i−1)
n − x(i)

n

∥∥∥ = 0 (i ∈ I). (2.8)
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Since the triangle inequality means that, for all n ∈ N,

∥xn − xn+1∥ =
∥∥∥x(0)

n − x(K)
n

∥∥∥ ≤
K∑
j=1

∥∥∥x(j−1)
n − x(j)

n

∥∥∥ ,
Equation (2.8) guarantees that

lim
n→∞

∥xn+1 − xn∥ = 0.

Let us prove that limn→∞ ∥xn − x
(i−1)
n ∥ = 0 (i ∈ I). Fix i ∈ I arbitrarily. The triangle

inequality guarantees that, for all n ∈ N,

∥∥∥xn − x(i−1)
n

∥∥∥ ≤
i−1∑
j=1

∥∥∥x(j−1)
n − x(j)

n

∥∥∥ ≤
i−1∑
j=1

(∥∥∥x(j−1)
n − y(j)n

∥∥∥+ ∥∥∥y(j)n − x(j)
n

∥∥∥) .
Hence, Equations (2.6) and (2.7) ensure that

lim
n→∞

∥∥∥xn − x(i−1)
n

∥∥∥ = 0 (i ∈ I). (2.9)

Moreover, we have from ∥xn − y
(i)
n ∥ ≤ ∥xn − x

(i−1)
n ∥ + ∥x(i−1)

n − y
(i)
n ∥ (i ∈ I, n ∈ N), and

Equations (2.6) and (2.9) that

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I). (2.10)

The nonexpansivity of T (i) guarantees that, for all n ∈ N and for all i ∈ I, ∥y(i)n −T (i)(xn)∥ =

∥T (i)(x
(i−1)
n + λnd

(i)
n ) − T (i)(xn)∥ ≤ ∥(x(i−1)

n + λnd
(i)
n ) − xn∥ ≤ ∥x(i−1)

n − xn∥ + λn∥d(i)n ∥.
Accordingly, Equation (2.9), limn→∞ λn = 0, and the boundedness of (d

(i)
n )n∈N (i ∈ I) imply

that

lim
n→∞

∥∥∥y(i)n − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (2.11)

Since ∥xn − T (i)(xn)∥ ≤ ∥xn − y
(i)
n ∥+ ∥y(i)n − T (i)(xn)∥ (i ∈ I, n ∈ N), Equations (2.10) and

(2.11) lead us to deduce that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (2.12)

(c) The boundedness of (xn)n∈N guarantees the existence of an accumulation point of
(xn)n∈N. Let x∗ ∈ RN be an arbitrary accumulation point of (xn)n∈N; i.e., there exists a
subsequence (xnk

)k∈N (⊂ (xn)n∈N) converging to x
∗. We shall prove that x∗ ∈

∩
∈I Fix(T

(i)).

Fix i ∈ I arbitrarily. The continuity of T (i) and Equation (2.12) ensure that

0 = lim
k→∞

∥∥∥xnk
− T (i)(xnk

)
∥∥∥ =

∥∥∥x∗ − T (i)(x∗)
∥∥∥ ,

which implies that x∗ ∈ Fix(T (i)). Therefore, we have x∗ ∈
∩

i∈I Fix(T
(i)).

Let x∗ ∈ RN be an accumulation point of (xn)n∈N. Then, (xnl
)l∈N (⊂ (xn)n∈N) exists

such that (xnl
)l∈N converges to x∗. A discussion similar to the one above leads us to



702 HIDEAKI IIDUKA

x∗ ∈
∩

i∈I Fix(T
(i)). Assume x∗ ̸= x∗. Accordingly, the existence of limn→∞ ∥xn − y∥

(y ∈
∩

i∈I Fix(T
(i))) and Opial’s condition∗∗ mean that

0 = lim
k→∞

∥xnk
− x∗∥ < lim

k→∞
∥xnk

− x∗∥ = lim
n→∞

∥xn − x∗∥

= lim
l→∞

∥xnl
− x∗∥ = 0.

This is a contradiction; i.e., x∗ = x∗. This guarantees that (xn)n∈N (= (x
(K)
n−1)n∈N) converges

to x∗ ∈
∩

i∈I Fix(T
(i)). Equation (2.9) and the convergence of (xn)n∈N to x∗ lead us to that

(x
(i−1)
n ) (i ∈ I) also converges to x∗ ∈

∩
i∈I Fix(T

(i)). Therefore, we can conclude that

(x
(i)
n )n∈N (i ∈ I) converges to x∗ ∈

∩
i∈I Fix(T

(i)).

(d) Inequality (2.3) guarantees that, for all n ∈ N, for all i ∈ I, and for all y ∈∩
i∈I Fix(T

(i)),

∥∥∥y(i)n − y
∥∥∥2 ≤

∥∥∥x(i−1)
n − y

∥∥∥2 + 2λn

⟨
x(i−1)
n − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
x(i−1)
n − y,−∇f (i)

(
x(i−1)
n

)
+ βnd

(i)
n−1

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n,

whereM4 := maxi∈I(sup{2|⟨x(i−1)
n −y, d

(i)
n−1⟩| : n ∈ N}) < ∞ andM5 := maxi∈I(sup{∥d(i)n ∥2 :

n ∈ N}) < ∞. So, Inequality (2.4) implies that, for all n ∈ N, for all i ∈ I, and for all
y ∈

∩
i∈I Fix(T

(i)),

∥∥∥x(i)
n − y

∥∥∥2 ≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn

∥∥∥x(i−1)
n − y

∥∥∥2 + (1− αn)

{∥∥∥x(i−1)
n − y

∥∥∥2 + 2λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n

}
≤
∥∥∥x(i−1)

n − y
∥∥∥2 + 2(1− αn)λn

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+M4λnβn +M5λ

2
n,

which means that

∥xn+1 − y∥2 ≤ ∥xn − y∥2 + 2(1− αn)λn

∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4λnβn +KM5λ

2
n,

∗∗Suppose that (xn)n∈N (⊂ RN ) converges to x∗ ∈ RN and x∗ ̸= x∗. Then the following condition, called
Opial’s condition [23], is satisfied: limn→∞ ∥xn − x∗∥ < limn→∞ ∥xn − x∗∥.
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and hence,

0 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2

λn
+ 2(1− αn)

∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn

=
(∥xn − y∥+ ∥xn+1 − y∥)(∥xn − y∥ − ∥xn+1 − y∥)

λn

+ 2(1− αn)
∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn

≤ (∥xn − y∥+ ∥xn+1 − y∥) ∥xn − xn+1∥
λn

+ 2(1− αn)
∑
i∈I

⟨
y − x(i−1)

n ,∇f (i)
(
x(i−1)
n

)⟩
+KM4βn +KM5λn.

The convergence of (x
(i)
n )n∈N (i ∈ I) to x∗ ∈

∩
i∈I Fix(T

(i)), the continuity of ∇f (i) (i ∈
I), Conditions (C1), (C2), and (C3), and ∥xn+1 − xn∥ = o(λn) ensure that, for all y ∈∩

i∈I Fix(T
(i)),

0 ≤
∑
i∈I

⟨
y − x∗,∇f (i) (x∗)

⟩
=

⟨
y − x∗,

∑
i∈I

(
∇f (i) (x∗)

)⟩

=

⟨
y − x∗,∇

(∑
i∈I

f (i)

)
(x∗)

⟩
;

that is, x∗ is a solution to Problem 1.1. Therefore, Item (c) guarantees that (x
(i)
n )n∈N (i ∈ I)

converges to a solution x∗ to Problem 1.1.

3 Broadcast Iterative Method for Nonmonotone Variational In-
equality and Its Convergence Analysis

This section presents the following algorithm:

Algorithm 3.1 (Broadcast Fixed Point Optimization Algorithm).
Step 0. User i (i ∈ I) sets (αn)n∈N, (λn)n∈N, and (βn)n∈N, transmits an arbitrary

chosen x
(i)
0 ∈ RN to the all users, and computes x0 := (1/K)

∑
i∈I x

(i)
0 . User i sets d

(i)
0 :=

−∇f (i)(x0).

Step 1. Given xn, d
(i)
n ∈ RN (i ∈ I), user i computes x

(i)
n+1 ∈ RN byy

(i)
n := T (i)

(
xn + λnd

(i)
n

)
,

x
(i)
n+1 := PX(i)

(
αnxn + (1− αn)y

(i)
n

)
and transmits x

(i)
n+1 to all users.

Step 2. User i computes xn+1 ∈ RN and d
(i)
n+1 ∈ RN by

xn+1 :=
1

K

∑
i∈I

x
(i)
n+1,

d
(i)
n+1 := −∇f (i) (xn+1) + βn+1d

(i)
n .
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Put n := n+ 1, and go to Step 1.

In this section, we assume the following:

Assumption 3.1. (∇f (i)(xn))n∈N (i ∈ I) is bounded.

The boundedness of X(i) (Assumption (A1)) implies that (x
(i)
n )n∈N (i ∈ I) is bounded.

Hence, (xn)n∈N generated by xn := (1/K)
∑

i∈I x
(i)
n (n ∈ N) is also bounded. Therefore, the

same discussion as in Assumption 2.2 shows that, if ∇f (i) (i ∈ I) is Lipschitz continuous,
Assumption 3.1 is satisfied.

The following convergence analysis is presented for Algorithm 3.1:

Theorem 3.2. Suppose that Assumptions 1.1, 2.1, and 3.1 are satisfied. Then, (xn)n∈N in
Algorithm 3.1 satisfies the following properties:

(a) (xn)n∈N is bounded and limn→∞ ∥xn − y∥ exists for all y ∈
∩

i∈I Fix(T
(i)).

(b) limn→∞ ∥xn − T (i)(xn)∥ = 0 (i ∈ I).

(c) (xn)n∈N converges to a common fixed point of T (i)s.

(d) If ∥xn+1 − xn∥ = o(λn), (xn)n∈N converges to a solution to Problem 1.1.

Item (c) in Theorem 3.2 ensures that Algorithm 3.1 under Assumptions 2.1 and 3.1
can find a feasible point in Problem 1.1. Moreover, the convergence of (xn)n∈N to x⋆ ∈∩

i∈I Fix(T
(i)) guarantees that limn→∞ ∥xn+1 − xn∥ = 0. Item (d) in Theorem 3.2 guar-

antees that, if ∥xn+1 − xn∥ = o(λn), (xn)n∈N in Algorithm 3.1 converges in not only∩
i∈I Fix(T

(i)) but also VI(
∩

i∈I Fix(T
(i)),∇(

∑
i∈I f

(i))). When user i (i ∈ I) has x
(i)
n in

Algorithm 3.1, each point is broadcast to all users. Accordingly, all users have (xn)n∈N :=

((1/K)
∑

i∈I x
(i)
n )n∈N, which implies that all users can verify whether ∥xn+1 − xn∥ = o(λn)

is satisfied or not. On the other hand, in Algorithm 2.1, only user K can verify whether the
convergence condition is satisfied or not (see Section 2).

3.1 Proof of Theorem 3.2

(a) The same discussion as in the proof of Theorem 2.3 (a) and Assumption 3.1 guarantee

that (xn)n∈N, (x
(i)
n )n∈N, (d

(i)
n )n∈N, (y

(i)
n )n∈N (i ∈ I) are bounded.

We shall prove the existence of limn→∞ ∥xn − y∥ (y ∈
∩

i∈I Fix(T
(i))). By replacing

x
(i−1)
n in Inequality (2.3) with xn, we have that, for all n ∈ N and for all i ∈ I,∥∥∥y(i)n − y

∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
xn − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 +N1λn,

(3.1)

where N1 := maxi∈I(sup{2|⟨xn−y, d
(i)
n ⟩|+λn∥d(i)n ∥2 : n ∈ N}) < ∞. Moreover, by replacing

x
(i−1)
n in Inequality (2.4) with xn and replacing x

(i)
n in Inequality (2.4) with x

(i)
n+1, we find

that ∥∥∥x(i)
n+1 − y

∥∥∥2 ≤ αn ∥xn − y∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn ∥xn − y∥2 + (1− αn)

{
∥xn − y∥2 +N1λn

}
≤ ∥xn − y∥2 +N1λn.

(3.2)
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On the other hand, the convexity of ∥ · ∥2 means that, for all n ∈ N,

∥xn+1 − y∥2 =

∥∥∥∥∥ 1

K

∑
i∈I

(
x
(i)
n+1 − y

)∥∥∥∥∥
2

≤ 1

K

∑
i∈I

∥∥∥x(i)
n+1 − y

∥∥∥2 . (3.3)

Therefore, summing Inequality (3.2) over all i ensures that, for all n ∈ N,

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +N1λn.

So, the same discussion as in the proof of Theorem 2.3 (a) and Condition (C2) guarantee
that

lim sup
n→∞

∥xn − y∥2 ≤ lim inf
m→∞

{
∥xm − y∥2 +N1

∞∑
i=m

λi

}
= lim inf

n→∞
∥xm − y∥2;

that is, there exists limn→∞ ∥xn − y∥ (y ∈
∩

i∈I Fix(T
(i))).

(b) We shall prove that limn→∞ ∥xn − y
(i)
n ∥ = 0. Replacing x

(i−1)
n in Inequality (2.5)

with xn implies that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥y(i)n − y

∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
y(i)n − y, d(i)n

⟩
−
∥∥∥xn − y(i)n

∥∥∥2
≤ ∥xn − y∥2 +N2λn −

∥∥∥xn − y(i)n

∥∥∥2 ,
where N2 := maxi∈I(sup{2|⟨y(i)n − y, d

(i)
n ⟩| : n ∈ N}) < ∞. Hence, Inequality (3.2) implies

that, for all n ∈ N, for all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥x(i)

n+1 − y
∥∥∥2 ≤ αn ∥xn − y∥2 + (1− αn)

∥∥∥y(i)n − y
∥∥∥2

≤ αn ∥xn − y∥2 + (1− αn)

{
∥xn − y∥2 +N2λn −

∥∥∥xn − y(i)n

∥∥∥2}
≤ ∥xn − y∥2 +N2λn − (1− αn)

∥∥∥xn − y(i)n

∥∥∥2 .
Summing this inequality over all i and Inequality (3.3) mean that, for all n ∈ N and for all
y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 +N2λn − 1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 ,
which implies that

1− αn

K

∑
i∈I

∥∥∥xn − y(i)n

∥∥∥2 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2 +N2λn.

Therefore, Conditions (C1) and (C2), and the existence of limn→∞ ∥xn−y∥ (y ∈
∩

i∈I Fix(T
(i)))

lead one to deduce that limn→∞
∑

i∈I ∥xn − y
(i)
n ∥ = 0; i.e.,

lim
n→∞

∥∥∥xn − y(i)n

∥∥∥ = 0 (i ∈ I). (3.4)
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Moreover, the nonexpansivity of T (i) guarantees that, for all n ∈ N and for all i ∈ I,

∥y(i)n − T (i)(xn)∥ = ∥T (i)(xn + λnd
(i)
n ) − T (i)(xn)∥ ≤ ∥(xn + λnd

(i)
n ) − xn∥ ≤ λn∥d(i)n ∥.

Accordingly, the boundedness of (d
(i)
n )n∈N (i ∈ I) and limn→∞ λn = 0 (by Condition (C2))

imply that

lim
n→∞

∥∥∥y(i)n − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (3.5)

Since ∥xn − T (i)(xn)∥ ≤ ∥xn − y
(i)
n ∥+ ∥y(i)n − T (i)(xn)∥ (n ∈ N, i ∈ I), Equations (3.4) and

(3.5) ensure that

lim
n→∞

∥∥∥xn − T (i)(xn)
∥∥∥ = 0 (i ∈ I). (3.6)

(c) The boundedness of (xn)n∈N guarantees the existence of an accumulation point of
(xn)n∈N. Let x∗ ∈ RN be an arbitrary accumulation point of (xn)n∈N. Then, the same
discussion as in the proof of Theorem 2.3 (c) and Equation (3.6) imply that x∗ ∈ Fix(T (i))
(i ∈ I), i.e., x∗ ∈

∩
i∈I Fix(T

(i)).

Let x∗ ∈ RN be an accumulation point of (xn)n∈N. Then, a discussion similar to the
proof of Theorem 2.3 (c) leads us to x∗ ∈

∩
i∈I Fix(T

(i)) with x∗ = x∗. This guarantees that

(xn)n∈N converges to x∗ ∈
∩

i∈I Fix(T
(i)).

(d) Inequality (3.1) and the definition of d
(i)
n (n ∈ N, i ∈ I) imply that, for all n ∈ N, for

all i ∈ I, and for all y ∈
∩

i∈I Fix(T
(i)),∥∥∥y(i)n − y

∥∥∥2 ≤ ∥xn − y∥2 + 2λn

⟨
xn − y, d(i)n

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 + 2λn

⟨
xn − y,−∇f (i)(xn) + βnd

(i)
n−1

⟩
+ λ2

n

∥∥∥d(i)n

∥∥∥2
≤ ∥xn − y∥2 + 2λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n,

whereN3 := maxi∈I(sup{2|⟨xn−y, d
(i)
n−1⟩| : n ∈ N}) < ∞ andN4 := maxi∈I(sup{∥d(i)n ∥2 : n ∈

N}) < ∞. Hence, Inequality (3.2) means that∥∥∥x(i)
n+1 − y

∥∥∥2 ≤ αn∥xn − y∥2 + (1− αn)
∥∥∥y(i)n − y

∥∥∥2
≤ αn∥xn − y∥2 + (1− αn)

{
∥xn − y∥2 + 2λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n

}
≤ ∥xn − y∥2 + 2(1− αn)λn

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n.

Accordingly, summing this inequality over all i and Inequality (3.3) guarantee that, for all
n ∈ N and for all y ∈

∩
i∈I Fix(T

(i)),

∥xn+1 − y∥2 ≤ ∥xn − y∥2 + 2(1− αn)λn

K

∑
i∈I

⟨
y − xn,∇f (i)(xn)

⟩
+N3λnβn +N4λ

2
n.
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Therefore, we find that, for all n ∈ N and for all y ∈
∩

i∈I Fix(T
(i)),

0 ≤ ∥xn − y∥2 − ∥xn+1 − y∥2

λn
+

2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn

=
(∥xn − y∥+ ∥xn+1 − y∥)(∥xn − y∥ − ∥xn+1 − y∥)

λn

+
2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn

≤ (∥xn − y∥+ ∥xn+1 − y∥) ∥xn − xn+1∥
λn

+
2(1− αn)

K

∑
i∈I

⟨
y − xn,∇f (i) (xn)

⟩
+N3βn +N4λn.

The convergence of (xn)n∈N to x∗ ∈
∩

i∈I Fix(T
(i)), the continuity of ∇f (i) (i ∈ I), Condi-

tions (C1), (C2), and (C3), and ∥xn+1−xn∥ = o(λn) ensure that, for all y ∈
∩

i∈I Fix(T
(i)),

0 ≤
∑
i∈I

⟨
y − x∗,∇f (i) (x∗)

⟩
=

⟨
y − x∗,

∑
i∈I

(
∇f (i) (x∗)

)⟩

=

⟨
y − x∗,∇

(∑
i∈I

f (i)

)
(x∗)

⟩
.

This completes the proof.

4 Numerical Examples

Let us apply Algorithms 2.1 and 3.1 to the network bandwidth allocation problem. The
objective of utility-based bandwidth allocation is to share the available bandwidth among
traffic sources so as to maximize the overall utility subject to the capacity constraints [26,
Chapter 2]. In this section, we shall discuss a nonconcave utility bandwidth allocation
problem [13] which can be expressed as a nonmonotone variational inequality with the
gradient of a nonconcave, differentiable, step utility function. We assume that source i has
its own private nonconvex f (i) := −U (i) and C(i) with the capacity constraints for links used
by source i.

Consider the following problem on a network [26, Fig.2.2] (Figure 1 in the paper) that
consists of three links and four sources:

Find x⋆ ∈ VI

(∩
i∈I

C(i),−∇

(∑
i∈I

U (i)

))
, (4.1)

where I := {1, 2, 3, 4}, U (i)(x) := x + sinx (i ∈ I, x ∈ R+), D(1) := {(x1, x2, x3, x4) ∈
R4 : x1+x3 ≤ c1},†† D(2) := {(x1, x2, x3, x4) ∈ R4 : x2+x3 ≤ c2}, D(3) := {(x1, x2, x3, x4) ∈

††The projection onto D := {x ∈ RN : ⟨a, x⟩ ≤ b}, where a (̸= 0) ∈ RN and b ∈ R, is expressed as
follows [1, p.406], [2, Subchapter 28.3]: PD(x) := x+ [(b− ⟨a, x⟩)/∥a∥2]a (x /∈ D), or x (x ∈ D).
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R4 : x2+x4 ≤ c3}, B := {(x1, x2, x3, x4) ∈ R4 : xi ∈ [0, c] (i ∈ I)} (c > 0)‡‡, C(1) := B∩D(1),
C(2) := B ∩D(2) ∩D(3), C(3) := B ∩D(1) ∩D(2), and C(4) := B ∩D(3).

Source 1 Source 2 

Source 3 Source 4 

Link 1 Link 2 Link 3 

Figure 1: Network with three links and four sources [26, Fig.2.2]

Since C(i) (i ∈ I) in problem (4.1) satisfies C(i) ⊂ B, B is bounded, and PB can be
easily computed, source i (i ∈ I) can set X(i) (i ∈ I) in Assumption 1.1 (A1) and (A2) by
B.

Let us define T (i) : R4 → R4 (i ∈ I) by

T (1) :=
1

2
(Id + PBPD(1)) , T (2) :=

1

2
(Id + PBPD(2)PD(3)) ,

T (3) :=
1

2
(Id + PBPD(1)PD(2)) , T (4) :=

1

2
(Id + PBPD(3)) .

Then, we find that∩
i∈I

Fix
(
T (i)

)
=B ∩ Fix (PD(1)) ∩ Fix (PD(2)PD(3)) ∩ Fix (PD(1)PD(2)) ∩ Fix (PD(3))

=B ∩D(1) ∩
(
D(2) ∩D(3)

)
∩
(
D(1) ∩D(2)

)
∩D(3)

=B ∩
3∩

i=1

D(i) =
∩
i∈I

C(i) ̸= ∅.

From
∩

i∈I Fix(T
(i)) = B ∩

∩3
i=1 D

(i), any point in
∩

i∈I Fix(T
(i)) satisfies the capacity

constraints for all links.
We use

λn :=
µ

(n+ 1)a
, αn :=

1

2
, βn :=

1

(n+ 1)0.01
(n ∈ N),

‡‡Each source can use a box constraint set B with a constant c (e.g., c := max{c1, c2, c3} or c is a large
enough positive number) because the network in Figure 1 has a resource with finite capacity and supports
a finite number of sources.
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where µ = 10−2, 1, and a = 1.01, 2, 3, 10, satisfying Conditions (C1)–(C3). Theorems 2.3
and 3.2 guarantee that Algorithm 2.1 (IFPOA) and Algorithm 3.1 (BFPOA) with the λn,
αn, and βn converge to a solution to Problem (4.1) if ∥xn+1 − xn∥ = o(µ/(n+ 1)a). We set
c1 := 5, c2 := 4, c3 := 5, c := 100, chose ten random initial points, and executed Algorithms
2.1 and 3.1 for any point. The graphs in this section plot the mean values of the tenth
execution. The computer used in the experiment had an Intel Boxed Core i7 i7-870 2.93
GHz 8 M CPU and 8 GB of memory. The language was MATLAB 7.13.

To check whether Algorithms 2.1 and 3.1 converge in
∩

i∈I C
(i) =

∩
i∈I Fix(T

(i)), we
employed the evaluation function∗

Dn :=
∑
i∈I

∥∥∥xn − T (i)(xn)
∥∥∥ (n ∈ N) .

(xn)n∈N converges in
∩

i∈I Fix(T
(i)) if and only if (Dn)n∈N converges to 0. We also employed

the following:

Xn :=
∥xn+1 − xn∥

λn
=

(n+ 1)a

µ
∥xn+1 − xn∥ (n ∈ N) ,

where µ = 10−2, 1 and a = 1.01, 2, 3, 10. Algorithms 2.1 and 3.1 satisfy the convergence
condition, ∥xn+1 − xn∥ = o(λn), if (Xn)n∈Ns generated by Algorithms 2.1 and 3.1 converge
to 0.

Figure 2 plots the behaviors of Dn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and 3.1 with
µ = 10−2 and a = 1.01, 2. This figure shows that (Dn)n∈Ns generated by Algorithms 2.1 and
3.1 converge to 0; i.e., the algorithms converge in

∩
i∈I C

(i) =
∩

i∈I Fix(T
(i)), as promised

by Item (c) in Theorem 2.3 and Item (c) in Theorem 3.2. Figure 2 shows that (Dn)n∈Ns
in Algorithms 2.1 and 3.1 with λn := 10−2/(n + 1)2 converge quickly and (Dn)n∈Ns in
Algorithms 2.1 and 3.1 with λn := 10−2/(n + 1)1.01 converge slowly. This implies that
Algorithms 2.1 and 3.1 with fast diminishing step-size sequences converge in

∩
i∈I Fix(T

(i))
faster than ones with slowly diminishing step-size sequences.

Figure 3 indicates the behaviors of Xn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and 3.1
with µ = 10−2 and a = 1.01, 2. We can see from this figure that (Xn)n≥100s in Algorithms 2.1
and 3.1 decrease monotonically and converge to 0, which means that Algorithms 2.1 and 3.1
with λn = 10−2/(n+1)a (a = 1.01, 2) satisfy the convergence condition ∥xn+1−xn∥ = o(λn).
Therefore, Item (d) in Theorem 2.3 and Item (d) in Theorem 3.2 guarantee that Algorithms
2.1 and 3.1 with λn = 10−2/(n+ 1)a (a = 1.01, 2) converge to a solution to Problem (4.1).

The behaviors of U(xn) generated by Algorithms 2.1 and 3.1 with µ = 10−2 and a =
1.01, 2 are presented in Figure 4. This figure indicates that Algorithms 2.1 and 3.1 are stable
in the early stages. Figures 2–4 and Theorems 2.3 and 3.2 ensure that Algorithms 2.1 and
3.1 find the optimal bandwidth for all sources; i.e., each source can find its own optimal
bandwidth (x⋆

1 ≈ 2.7786, x⋆
2 ≈ 2.0531, x⋆

3 ≈ 1.9468, x⋆
4 ≈ 2.8851) by using the incremental

and broadcast fixed point optimization algorithms.
Figure 3 indicates that Algorithms 2.1 and 3.1 with µ = 10−2 and a = 1.01, 2 satisfy the

convergence condition ∥xn+1 − xn∥ = o(λn). To see whether Algorithms 2.1 and 3.1 with
faster diminishing step-size sequences such as λn = 10−2/(n + 1)a (a = 3, 10) satisfy the
convergence condition, we checked the behaviors of Xn when a = 3, 10. Figure 5 shows that
(Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 10−2 and a = 3, 10 converge to 0; however,
(Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 10−2 and a = 10 are unstable in the early

∗x ∈ R4 satisfies
∑

i∈I ∥x − T (i)(x)∥ = 0 if and only if x ∈ Fix(T (i)) (i ∈ I), i.e., x ∈
∩

i∈I Fix(T
(i)) =

B ∩
∩3

i=1 D
(i) =

∩
i∈I C

(i).
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stage. Since the algorithms ought to be stable from the implementation viewpoint, it would
be useful to use the algorithms with λn = 10−2/(n + 1)a (a = 1.01, 2). Figure 6 plots the
behaviors of Xn (n = 1, 2, . . . , 1000) for Algorithms 2.1 and 3.1 with µ = 1 and a = 1.01, 2.
This figure shows that (Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 1 and a = 1.01 converge
to 0, while (Xn)n∈Ns in Algorithms 2.1 and 3.1 with µ = 1 and a = 2 do not converge to 0;
i.e., Algorithms 2.1 and 3.1 with µ = 1 and a = 2 do not satisfy the convergence condition.
This implies that the algorithms with µ = 1 and a = 2 are not good ways for solving Problem
(4.1). The above observations suggest that Algorithms 2.1 and 3.1 with a slowly diminishing
step-size sequence such as λn = µ/(n + 1)1.01 (µ = 10−2, 1) should be used for nonconcave
utility bandwidth allocation problems.

5 Conclusion

We discussed a nonmonotone variational inequality over the intersection of the fixed point
sets of nonexpansive mappings and presented two distributed fixed point optimization al-
gorithms for solving it. One algorithm is based on conventional incremental subgradient
methods, and the other is a broadcast type of distributed iterative method. We gave the
convergence analyses showing that the algorithms converge to a solution to the nonmonotone
variational inequality under certain assumptions. We also provided numerical examples for
the bandwidth allocation. The analyses and numerical examples suggested that the algo-
rithms with slowly diminishing step-size sequences converge to a solution to the nonmonotone
variational inequality.
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Figure 2: Behavior of Dn :=
∑

i∈I ∥xn −
T (i)(xn)∥ for Algorithm 2.1 (IFPOA) and Al-
gorithm 3.1 (BFPOA) with µ = 10−2 and a =
1.01, 2
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Figure 3: Behavior of Xn := ((n +
1)a/10−2)∥xn+1 − xn∥ for Algorithm 2.1 (IF-
POA) and Algorithm 3.1 (BFPOA) with µ =
10−2 and a = 1.01, 2

0 200 400 600 800 1000
12

12.1

12.2

12.3

12.4

12.5

12.6

Number of iterations

U

 

 
IFPOA (a=1.01)
IFPOA (a=2)
BFPOA (a=1.01)
BFPOA (a=2)

Figure 4: Behavior of U(xn) for Algorithm 2.1
(IFPOA) and Algorithm 3.1 (BFPOA) with µ =
10−2 and a = 1.01, 2
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Figure 5: Behavior of Xn := ((n +
1)a/10−2)∥xn+1 − xn∥ for Algorithm 2.1 (IF-
POA) and Algorithm 3.1 (BFPOA) with µ =
10−2 and a = 3, 10
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Figure 6: Behavior of Xn := (n + 1)a∥xn+1 −
xn∥ for Algorithm 2.1 (IFPOA) and Algorithm
3.1 (BFPOA) with µ = 1 and a = 1.01, 2


