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with respect to B(Rn) are given. At the 1026th AMS Meeting in Hoboken, 2007, V. Soltan
informed one of the authors that the later law holds true. Theorem 5.7 gives formulas for
the supremum an infimum of subsets of X̃ =MRH(X). In Section 6 we prove the existence
of a minimal representation of elements of C(X) × K(X)/∼, where K(X) is the family of
all nonempty compact convex subsets of X. In Section 7 convex pairs (A,B) of closed
convex sets (i.e. such that A ∪ B is convex) are studied. A criterion for the quotient cone
S×B(X)/∼ being a lattice is given. In Section 8 we present reduction techniques for elements
of MRH(X) = C(X)×B(X)/∼.

2 Commutative Semigroups. Law of Cancellation.

Let S = (S,+) be a commutative semigroup. Assume that T ⊂ S is a subsemigroup of S.
We say that S satisfies the cancellation law with respect to T if for all b ∈ T, a, c ∈ S we
have

a+ b = c+ b implies a = c. (lcT )

Notice that if S satisfies the cancellation law with respect to finite subsemigroup T then T
is a subgroup.

Example 2.1. Let Z2 be an additive group containing two elements 0 and 1. Let Z2 contain
0, 1, ∞ and be a comutative semigroup with a +∞ = ∞ for all a ∈ Z2. Then Z2 satisfies
the cancellation law with respect to Z2 (lcZ2).

Semigroup S satisfies the cancellation law (lc) if it satisfies the cancellation law with respect
to S.

Theorem 2.2. Let G be a subgroup of a commutative semigroup S. Then semigroup S
satisfies the cancellation law with respect to subgroup G (lcG) if and only if zero 0G of the
subgroup G is a zero of the semigroup S.

Proof. Let S satisfy (lcG). Then a + 0G = a + 0G + 0G and by (lcG) we get a = a + 0G.
Conversely if 0G is a zero of the semigroup S and a+b = b+c with b ∈ G, then a = a+0G =
0G + c = c. �

3 Ordered Commutative Semigroups

Let S = (S,+,≤) be a commutative ordered semigroup. By definition of an ordered semi-
group the addition in S is isotonic

a ≤ b implies a+ x ≤ b+ x for all x ∈ S. (i)

For a, b ∈ S let a ∨ b = sup{a, b}, a ∧ b = inf{a, b}, if they exist. Semigroup S satisfies
property (v) if

for any a, b ∈ S there exists a ∨ b (v)

and the order law of cancellation with respect to T ⊂ S if for all b ∈ T, a, c ∈ S we have

a+ b ≤ c+ b implies a ≤ c. (olcT )
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Let G be a subset of the semigroup S. We say that S satisfies the property of translation of
supremum with respect to G if for all x ∈ G and any {ai}i∈I ⊂ S such that supi∈I ai exists
in S we have

sup
i∈I

(x+ ai) = x+ sup
i∈I

ai. (tsupG)

We say that S satisfies the law of distribution of supremum with respect to adding elements
of G if for all x ∈ G and any a, b ∈ S such that a ∨ b exists we have

x+ a ∨ b = (x+ a) ∨ (x+ b). (tvG)

We write (tsup) instead of (tsupS) and (tv) instead of (tvS). Obviously (tsupG) implies
(tvG).

Proposition 3.1. (lcT implies olcT ). The cancellation law with respect to T (lcT ) and the
distributive law (tvT ) imply the order law of cancellation with respect to T (olcT ).

Proof. Assume a + b ≤ c + b. By (tvT ), a ∨ c + b = (a + b) ∨ (c + b) = c + b. By (lcT ),
a ∨ c = c. Hence a ≤ c. �
Obviously, the order law of cancellation implies the cancellation law in S with respect to
elements of T .

According to Example 1.3 in [7] for a commutative ordered semigroup the conditions (olc)
and (v) do not imply the distribution law (tv).

Example 3.2. Let (Z+,+) be a commutative semigroup of non-negative integer numbers.
Let a ≼ b if and only if a ≤ b and (a, b) ̸= (0, 1). Then (Z+,+,≼) is a commutative ordered
semigroup with zero satisfying the cancellation law and the property (v). However, since
0 + s ≼ 1 + s for all s ≥ 1 and 0 ̸≼ 1, the semigroup (Z+,+,≼) satisfies the order law
of cancellation (olcT ) with respect to no subsemigroup T other than trivial subgroup {0}.
By Proposition 3.1 the semigroup (Z+,+,≼) does not satisfy the distributive law (tv). For
example 0 ∨ 1 + 1 = 2 + 1 = 3 ̸= 2 = 1 ∨ 2 = (0 + 1) ∨ (1 + 1).

An abstract difference has been recently introduced in [13]. Let a, b ∈ S be two elements
of a commutative ordered semigroup S. Then abstract difference of a and b is the greatest
element (if it exists) of the set D(a, b) = {x | x+ b ≤ a} and it is denoted by a

.
− b.

Proposition 3.3. Let S be a commutative ordered semigroup. Then:

(d1) If a
.
− b exists then (a

.
− b) + b ≤ a.

(d2) If 0 ∈ S and a
.
− a exists then 0 ≤ a

.
− a.

(d3) If 0 ∈ S, a ≤ b and for some c ∈ S abstract differences a
.
− c and b

.
− c exist then

a
.
− c ≤ b

.
− c.

Let S additionally satisfy the order law of cancellation with respect to subsemigroup T . Then:

(d4) If a = b+ c and b ∈ T then c = a
.
− b.

(d5) If 0 ∈ S then for every a ∈ T we have a
.
− a = 0.
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(d6) If a
.
− c exists then for every b ∈ T, (a+ b)

.
− (c+ b) = a

.
− c.

The proof of Proposition 3.3 is based on definitions and is omitted.

Let G ⊂ S. Now we introduce the following conditions:

If D(a, b) ̸= ∅ and b ∈ G, then supD(a, b) exists. (s*G)

If D(a, b) ̸= ∅ and b ∈ G, then a
.
− b exists. (sG)

In the later case obviously a
.
− b = supD(a, b) ∈ D(a, b). Instead of (s*S) and (sS) we write

(s*) and (s).

Lemma 3.4. Let G be a subgroup of a commutative ordered semigroup S = (S,+,≤). If
a ∈ S, b ∈ G then:

(a) D(a, b) ⊂ D(a− b, 0G) = D(a+ 0G, b).

(b) a− b ∈ D(a− b, 0G).

Proof. (a) If x+b ≤ a then x+0G ≤ a−b. Now let y+0G ≤ a−b. Then y+b = y+0G+b ≤
a+ 0G. From z + b ≤ a+ 0G it follows z + 0G ≤ a+ 0G − b = a− b.
(b) By the equality a− b+ 0G = a− b, we have a− b ∈ D(a− b, 0G). �

Proposition 3.5. Let G be a subgroup of a commutative ordered semigroup S = (S,+,≤).
Then for all a ∈ S the following conditions are equivalent:

(a) D(a+ 0G, b) ⊂ D(a, b), for all b ∈ G.

(b) D(a+ 0G, b) = D(a, b), for all b ∈ G.

(c) a+ 0G ≤ a.

Proof. (a)⇒(c) Let D(a + 0G, b) ⊂ D(a, b) for all b ∈ G. In particular, D(a + 0G, 0G) ⊂
D(a, 0G). From the equality a+ 0G + 0G = a+ 0G we have a+ 0G ∈ D(a+ 0G, 0G). Hence
a+ 0G ≤ a.
(c)⇒(a) From x+ b ≤ a+ 0G ≤ a we get x ∈ D(a, b).
(a)⇒(b) By Lemma 3.4 we have D(a, b) ⊂ D(a+ 0G, b). �

Proposition 3.6. Let G be a subgroup of a commutative ordered semigroup S = (S,+,≤)

and b ∈ G. If a ≤ a+ 0G for every a ∈ S and a
.
− b exists then a

.
− b ≤ a− b.

Proof. Let x = a
.
− b. Then b+ x ≤ a and x ≤ x+ 0G ≤ a+ (−b). �

Example 3.7. Let Z = Z ∪ {∞} and S = (Z,+,≤) be a commutative ordered semigroup.
Then G = {∞} is a trivial subgroup of S and ∞ is a zero of subgroup G but not a zero of
S. Moreover S does not satisfy the cancellation law with respect to G but a ≤ a +∞ for
every a ∈ S.

Theorem 3.8. Let G be a subgroup of a commutative ordered semigroup S = (S,+,≤).
Then the following statements are equivalent:
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(a) Zero 0G of the subgroup G is a zero of the semigroup S.

(b) We have a
.
− b = a− b for every a ∈ S, b ∈ G.

(c) We have a
.
− 0G = a+ 0G for every a ∈ S.

Proof. (a) ⇒ (b) From x+ b ≤ a we have x = x+ 0G ≤ a− b. Now by Proposition 3.5 we

get a
.
− b = a− b.

(c) ⇒ (a) Let a
.
− 0G = a+ 0G. Then a+ 0G = a+ 0G + 0G ≤ a and we have a ∈ D(a, 0G).

Therefore a ≤ a
.
− 0G = a+ 0G and a+ 0G = a. �

Example 3.9. Let S = Z × Z2, (m, s) + (n, t) = (m + n, st), (m, s) ≤ (n, t) if m < n and
(m, s) ≤ (m, t) if s ≥ t. Then (S,+,≤) is a commutative ordered semigroup, G = Z×{0} is

a subgroup of S and 0G = (0, 0) ̸= 0S = (0, 1). Notice that (m, 1)
.
− (n, 0) = (m−n−1, 0) <

(m− n, 0) = (m, 1) + (−n, 0) = (m, 1)− (n, 0). Semigroup S satisfies the condition (s) and
the assumption of Proposition 3.5 (c). However, subgroup G does not satisfy conditions of
Theorem 3.8.

The following proposition connects different conditions that were introduced earlier.

Proposition 3.10. Let S = (S,+,≤) be a commutative ordered semigroup, G be a subset
of S and {ai}i∈I ⊂ S. Then:

(a) If semigroup S satisfies the condition (v) then S satisfies the condition (tvG) if and
only if for every finite the set I and x ∈ G we have

sup
i∈I

(ai + x) = sup
i∈I

ai + x.

(b) Semigroup S satisfies the condition (sG) with respect to a subset G if and only if S
satisfies the conditions (s*G) and (tsupG).

(c) If a subset G is a subgroup of semigroup S and 0G is a zero of S then Ssatisfies the
conditions (tsupG).

Proof. (a) It is obvious from the condition (tvG). (b) Let a = supi∈I ai. Since ai ≤ a for
i ∈ I, ai + x ≤ a + x. Now let ai + x ≤ b, for i ∈ I then by the condition (sG) we have

ai ≤ b
.
−x, which implies a ≤ b

.
−x. Hence a+x ≤ (b

.
−x)+x ≤ b and supi∈I(ai+x) = a+x.

Conversely, if D(a, b) ̸= ∅, b ∈ G then supD(a, b) ∈ S. For x ∈ D(a, b) we have x + b ≤ a.
Now by (tsupG) we get sup(D(a, b) + b) = supD(a, b) + b ≤ a. Hence supD(a, b) ∈ D(a, b).

Statement (c) follows from (b) and Theorem 3.8. �
In view of Proposition 3.10 (b) properties (v) and (s) imply (tv).

Example 3.11. Let Z = Z∪{−∞} and S = (Z ,+,≤) be a commutative ordered semigroup.
Then G = {−∞} is a trivial subgroup of S and −∞ is a zero of subgroup G but not a zero
of S. Moreover for {ai}i∈I ⊂ S, supi∈I ai ∈ S if and only if a set {ai}i∈I is bounded. If
supi∈I ai ∈ S exists then −∞+ supi∈I ai = supi∈I(−∞+ ai) = −∞. Hence S satisfies the
condition (tsupG). Semigroup S also satisfies the condition (v) but it does not satisfy the
condition (s*G).
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Semigroup Z+ from Example 3.2 satisfies conditions (v) and (s*G) but it does not satisfy
the condition (tvG) for a subset G = {1}.

Example 3.12. Let X = R2 and S be a family of all closed balls in Euclidean norm. The
family S with Minkowski addition and inclusion is an ordered semigroup. In S the property
(s) and order law of cancellation (olc) are satisfied. However, if a ball A is not contained in
a ball B, and B ̸⊂ A then supremum A∨B does not exist. In Figure 2.1 no ball containing
balls M and N contains balls A and B.

A B

M

N

Figure 2.1

A commutative partially ordered semigroup S with zero which satisfies the conditions (olcT ),
(v) and (tvT ) is called q-semigroup with respect to T . If S = T then semigroup S is called
q-semigroup.

A commutative partially ordered q-semigroup S with respect to T which satisfies condition
(s), is called a q̇-semigroup with respect to T . If S = T then semigroup S is called q̇-
semigroup.

For a general representation theorem of q-semigroups we refer also to the paper of H. Ratschek
and G. Schröder [17].

4 Embedding of A Commutative Semigroup

Let S = (S,+) be a commutative semigroup satisfying the law of cancellation (lcT ) with
respect to its subsemigroup T . We define the relation of equivalence ”∼” in S × T by

(a, b) ∼ (c, d) if and only if a+ d = b+ c.

For (a, b) ∈ S × T let us denote

[a, b] = {(c, d) ∈ S × T | (c, d) ∼ (a, b)},

and S̃ = S × T/∼. For a ∈ S let j(a) = [a+ b, b], b ∈ T .

We define an addition in S̃ by

[a, b] + [c, d] = [a+ c, b+ d].
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We say that a commutative semigroup S is an abstract convex cone if there is a given
mapping (t, a) 7→ ta of R+ × S into S such that

1a = a, t(sa) = (ts)a, t(a+ b) = ta+ tb, (t+ s)a = ta+ sa

for all a, b ∈ S and t, s ∈ R+ = [0,∞).

We say that an abstract convex cone S = (S,+, ·) satisfies the law of cancellation (lcT ) with
respect to its abstract convex subcone T if S as a commutative semigroup satisfies the law of
cancellation (lc) with respect to T . Since 0b = 0b+ 0b, b ∈ T , we have a+ 0b = a+ 0b+ 0b,
a ∈ S and by the law of cancellation with respect to T , a = a + 0b. Then 0b, b ∈ T is a
neutral element in S with respect to the addition.

We introduce multiplication in S̃ as a mapping (t, [a, b]) 7→ [ta, tb] of R+ × S̃ into S̃.

Example 4.1. (a) Let S = {a, b} be a commutative group where the addition is defined by
the following equalities: a+a = b+b = b, a+b = a. In fact S is an additive group of integers
modulo 2. Let multiplication by scalars be defined by equalities: ta = tb = b, t ∈ R+. In S
last three conditions for abstract convex cone are fulfilled. However, 1a = b ̸= a.

(b) Let R = R∪{∞} be a commutative group where a+∞ = ∞ for a ∈ R. Let multiplication
by non-negative scalars satisfy 0 · ∞ = 0 and t · ∞ = ∞ for t > 0. Then R is an abstract
convex cone satisfying the law of cancellation with respect to R.

The following theorem follows immediately.

Theorem 4.2. ([12], [20]) (a) If S is a commutative semigroup satisfying the law of can-

cellation (lcT ) with respect to its subsemigroup T , then the pair (S̃,+) is a commutative

semigroup with neutral element 0̃ = [b, b], b ∈ T , the subset T̃ = T 2/∼ is a subgroup of S̃

with −[a, b] = [b, a] and j defines an isomorphic embedding of S in S̃; T̃ = j(T ) − j(T ).
Furthermore, if G is a commutative group such that T is embedded in G in an isomorphic
way then T̃ is isomorphic to some subgroup of G.

(b) If, additionally, S is an abstract convex cone and T is an abstract convex subcone, then

the triplet (S̃,+, ·) is an abstract convex cone, the subset T̃ = T 2/∼ is both a subgroup and

an abstract convex subcone of S̃ and j defines an isomorphic embedding of cone S in S̃.
Furthermore, if V is a vector space such that T is embedded in V in an isomorphic way then
T̃ with multiplication extended to negative scalars t by t[a, b] = [(−t)b, (−t)a] is isomorphic
to some subspace of V .

Let S be a commutative ordered semigroup satisfying the order law of cancellation (olcT )

with respect to its subsemigroup T . We introduce an ordering in S̃ in the following way:

[a, b] ≤ [c, d] if and only if a+ d ≤ b+ c.

Notice, that [a, b] ≤ [c, d] ≤ [e, f ] imply the following inequalities: a + d + f ≤ c + b + f =
c+ f + b ≤ e+ d+ b. Cancelling d ∈ T , we obtain [a, b] ≤ [e, f ]. It is easy to observe that
the definition does not depend on the choice of representatives.

Immediately by Proposition 3.10 (c) we have the following proposition.
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Proposition 4.3. Let S be a commutative ordered semigroup satisfying the order law of can-
cellation (olcT ) with respect to its subsemigroup T . Then S̃ satisfies the condition (tsupT̃ ),
i.e. if (x̃i)i∈I ⊂ S̃ and supi∈I x̃i ∈ S̃, then for every x̃ ∈ T̃ ,

sup
i∈I

(x̃i + x̃) = sup
i∈I

x̃i + x̃.

Lemma 4.4. Let S = (S,+,≤) be a commutative ordered semigroup satisfying the order
law of cancellation (olcT ) with respect to its subsemigroup T and (ci)i∈I ⊂ S, supi∈I ci ∈ S.
If

(i) S satisfies the condition (sT ) or

(ii) S satisfies the conditions (v) and (tvT ) and the set of indices I is finite

then for x̃i = [ci + t, t], i ∈ I, t ∈ T

sup
i∈I

x̃i =

[
sup
i∈I

ci + t, t

]
.

Proof. Let a = supi∈I ci, x̃ = [a+t, t]. Since ci ≤ a for i ∈ I, x̃i ≤ x̃. Now let x̃i ≤ ỹ = [c, d],
then ci + d ≤ c for i ∈ I and by Proposition 3.9 we have supi∈I(ci + d) = a+ d ≤ c, which
imply x̃ ≤ ỹ. Hence x̃ = supi∈I x̃i. �

It is easy to observe that for x̃ ∈ T̃ , ỹ ∈ S̃ the equality ỹ
.
− x̃ = ỹ − x̃ is satisfied.

Theorem 4.5. Let S = (S,+,≤) be a commutative ordered semigroup satisfying the order
law of cancellation (olcT ) with respect to its subsemigroup T and (x̃i)i∈I ⊂ S̃, x̃i = [ci +
c, d], i ∈ I, [c, d] ∈ T̃ , supi∈I ci ∈ S. If

(i) S satisfies the condition (sT ) or

(ii) S satisfies the conditions (v) and (tvT ) and the set of indices I is finite

then

sup
i∈I

x̃i = [sup
i∈I

ci + c, d].

If, additionally, supi∈I ci ∈ T then

inf
i∈I

(−x̃i) = [d, sup
i∈I

ci + c].

Proof. Denote ỹi = [ci + t, t] and x̃ = [c, d]. Then by Proposition 4.3 and Lemma 4.4, we
obtain

sup
i∈I

x̃i = sup
i∈I

(ỹi + x̃) = sup
i∈I

ỹi + x̃ = [sup
i∈I

ci + c, d].

From the equations infi∈I x̃i = − supi∈I −x̃i, we obtain the second formula. �
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Corollary 4.6. Let S = (S,+,≤) be a commutative ordered semigroup satisfying the order
law of cancellation (olcT ) with respect to its subsemigroup T , S satisfy the conditions (v)
and (tvT ) and the set of indices I be finite. If ([ai, bi])i∈I ⊂ S̃ then

sup
i∈I

[ai, bi] =

∨
i∈I

ai +
∑

k∈I\{i}

bk

 ,
∑
i∈I

bi

 .

If ([ai, bi])i∈I ⊂ T̃ then

inf
i∈I

[ai, bi] =

∑
i∈I

ai,
∨
i∈I

bi +
∑

k∈I\{i}

ak

 .

Proof. We observe that x̃i = [ai, bi] = [ai +
∑

k∈I\{i} bk,
∑

i∈I bi]. Then by Theorem 4.5 we
obtain the first formula.

Since−x̃i = [bi, ai] = [bi+
∑

k∈I\{i} ak,
∑

i∈I ai]. From the equations infi∈I x̃i = − supi∈I −x̃i,
we obtain the second formula. �

Corollary 4.7. Let S = (S,+,≤) be a commutative ordered semigroup satisfying the order
law of cancellation (olcT ) with respect to its subsemigroup T and S satisfy the conditions

(v) and (tvT ). Then S̃ = (S̃,+,≤) is a lattice such that for x̃ = [a, b], ỹ = [c, d] ∈ S̃ we have

x̃ ∨ ỹ = sup{x̃, ỹ} = [(a+ d) ∨ (b+ c), b+ d].

If x̃, ỹ ∈ T̃ then

x̃ ∧ ỹ = inf{x̃, ỹ} = [a+ b, (a+ d) ∨ (b+ c)].

5 Applications to the Minkowski–R̊adström–Hörmander Cone

Let X = (X, τ) be a Hausdorff topological vector space over the field R and W(X) ⊃
C(X) ⊃ B(X) ⊃ K(X) be the families of all nonempty and, respectively, convex, closed
convex, bounded closed convex and compact convex subsets of X.

For A,B,C,D ⊂ X we have
A+B = {a+ b | a ∈ A, b ∈ B}, A

.
+B = A+B,

A∨̊B = conv (A ∪B), A ∨B = A∨̊B, A−̇B = {x ∈ X | x+B ⊂ A}.

The following proposition is well known [20]. We provide a short proof of it.

Proposition 5.1. If A,B and C are subsets of X, B is nonempty bounded and C is closed
and convex, then

A+B ⊂ B
.
+ C =⇒ A ⊂ C.

Proof. Let b ∈ B. The inclusion A+B ⊂ B
.
+C is equivalent to the inclusion A+(B− b) ⊂

(B− b)
.
+C. Further we may assume that 0 ∈ B. Let U be a base of neighbourhoods of 0 in
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X. Let U ∈ U and V ∈ U such that V +V ⊂ U . From A+B ⊂ B
.
+C and by the convexity

of C it follows that for every n ∈ N we have nA+B ⊂ B
.
+ nC. Hence

A ⊂ A+
1

n
B ⊂ 1

n
B

.
+ C for any n ∈ N.

By boundedness of B for sufficiently large n, we have A ⊂ V
.
+ C ⊂ V + C + V ⊂ C + U .

Thus A ⊂ C + U for all U ∈ U. Then A ⊂ C. �
The following proposition holds true even if C is not a closed set.

Proposition 5.2. A,B and C are subsets of Rn, B is nonempty compact and C is convex,
then

A+B ⊂ B + C =⇒ A ⊂ C.

Proof. Suppose that A + B ⊂ B + C and a ∈ A \ C. Then 0 /∈ C − a. Since C − a
is convex, there exists a system of coordinates in Rn such that x ≺ 0 for all x ∈ C − a,
where ’≺’ is the lexicographic ordering in Rn. Since B is compact, the ordering attains its
supremum at some point b ∈ B. Then by A+B ⊂ B + C we have B ⊂ B + (C − a), while
y + x � supB + 0 = b ∈ B for all y ∈ B and x ∈ C − a. �

Remark 5.3. Proposition 5.1 is equivalent to the following equation (B
.
+ C)−̇B = C, for

all C ∈ C(X) and bounded B ⊂ X. In a similar way, Proposition 5.2 is equivalent to the
equation (B + C)−̇B = C, for all C ∈ W(Rn) and compact B ⊂ Rn.

Proposition 5.2 does not hold true in the case of dimX = ∞.

Example 5.4. Let X = l1 with ∗−weak topology generated by c0. Then the unit ball
B of the space l1 is compact in the ∗−weak topology. There exists a functional f on l1

such that ∥f∥1 = 1 and f does not attain supremum on B. Now we consider a convex set
C = {x ∈ l1 | f(x) < 0}. Then B + C = {x ∈ l1 | f(x) < 1}, B ⊂ B + C but 0 /∈ C.
We obtain similar example in Hilbert space l2 by embedding the sets B and C with help of
operator F : l1 −→ l2 defined by F ((an)n∈N) = (2−nan)n∈N.

Corollary 5.5. The order law of cancellation (olcT from section 3) holds true in an ordered

cone (C(X),
.
+,⊂) for T = B(X) and in the cone (W(Rn),+,⊂) for T = K(Rn).

For abstract convex cones (C(X),
.
+, ·) and (W(Rn),+, ·) let us denote the following quotient

sets:
X̃cb = C(X)×B(X)/∼, X̃ck = C(X)×K(X)/∼

and R̃n
wk = W(Rn)×K(Rn)/∼.

For abstract convex cones (B(X),
.
+, ·) and (K(X),+, ·) let us denote the following quotient

sets:
X̃b = B2(X)/∼, X̃k = K2(X)/∼.

Last two quotient sets are vector spaces called Minkowski–R̊adström–Hörmander spaces
(MRH) which were studied in a number of papers (e.g. [11], [16] and [20]).

By Theorem 4.2, Propositions 5.1 and 5.2 the following theorem holds true.
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Theorem 5.6. The triplets (X̃cb,+, ·), (X̃ck,+, ·) and (R̃n
wk,+, ·) are abstract convex cones

having, respectively, X̃b, X̃k and R̃n
k as a vector subspace with multiplication defined for

negative numbers by t[A,B] = [(−t)B, (−t)A].

By Proposition 4.3, 4.5 and Corollary 4.6 the following theorem holds true.

Theorem 5.7. Let X be a Hausdorff topological vector space. Then X̃cb, X̃ck and R̃n
wk are

ordered cones where ordering ≤ satisfies the following properties:

(a) If supi∈I [Ai, Bi] = [A,B] then

supi∈I [Ai

.
+ C,Bi

.
+D] = [A

.
+ C,B

.
+D]

for every [C,D] (translation of supremum).

(b) If C ∈ B(X) then

supi∈I [Ci

.
+ C,D] =

[∨
i∈I Ci

.
+ C,D

]
.

(c) If
∨

i∈I Ci ∈ B(X), C ∈ B(X) then

infi∈I [D,Ci

.
+ C] =

[
D,

∨
i∈I Ci

.
+ C

]
.

(d) If |I| < ∞ then

supi∈I [Ai, Bi] =
[∨

i∈I

(
Ai

.
+
∑

k ̸=i Bk

)
,
∑

i∈I Bi

]
.

(e) If |I| < ∞, Ai ∈ B(X) then

infi∈I [Ai, Bi] =
[∑

i∈I Ai,
∨

i∈I

(
Bi

.
+
∑

k ̸=i Ak

)]
.

6 Existence of Minimal Representative of Elements
in the Minkowski–R̊adström–Hörmander Cone

Lemma 6.1. Let X be a topological vector space and subsets A and Bi, i ∈ I of X be
closed. Moreover, let A be compact or Bi be compact for some i ∈ I. If one of the following
conditions holds true

(i) the family {Bi}i∈I is directed with respect to inclusion ”⊃”

(ii) all the sets A,Bi are convex and the family {Bi}i∈I is a family of pairwise convex sets
(that is for all i, j ∈ I the union Bi ∪Bj is convex)

then
A+

∩
i∈I

Bi =
∩
i∈I

(A+Bi).

Proof. We have x ∈
∩

i∈I(A+Bi) if and only if 0 ∈ A−x+Bi for all i ∈ I but it is equivalent
to (x−A)∩Bi ̸= ∅ for all i ∈ I. Since the family of compact sets {(x−A)∩Bi}i∈I has the
finite intersection property, we have

∩
i∈I((x− A) ∩ Bi) ̸= ∅. Hence (x− A) ∩

∩
i∈I Bi ̸= ∅

and x ∈ A+
∩

i∈I Bi. �
In Lemma 6.1 (i) it is enough to assume that X is a Hausdorff topological group. Moreover,
from Lemma 6.1 (i) it follows that if A is compact and B is a closed subset of X then A+B
is closed.
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Example 6.2. Let X = R2. Now we consider B1 = (−1, 0) ∨ (1, 0), B2 = (0,−1) ∨ (0, 1)
and the unit ball A = B((0, 0), 1). Then B1 ∩ B2 = {(0, 0)} and A + B1 ∩ B2 = A. But
(A+B1)∩ (A+B2) = A+B = (−1, 1)∨ (−1,−1)∨ (1,−1)∨ (1, 1). Hence Lemma 6.1 does
not hold true for the family {B1, B2} of compact convex subsets of X. The family {B1, B2}
has the finite intersection property but is not a family of pairwise convex sets [5] (see Figure
6.1).

-

6

B1

B2

A+B2

A+B1

0 1

1

−1

−1

Figure 6.1

Theorem 6.3. (Existence of minimal representative in X̃ck). Let X be a real Hausdorff
topological vector space. Then every class [A,B] ∈ C(X)×K(X)/∼ contains a minimal pair
(C,D) such that (C,D) ≤ (A,B).

Proof. Let {(Ai, Bi)}i∈I ⊂ [A,B] be a chain. Since the family {Bi}i∈I is a chain, B0 =∩
i∈I Bi ̸= ∅. By Lemma 6.1 (a) we have

A+
∩
i∈I

Bi =
∩
i∈I

(A+Bi) =
∩
i∈I

(B +Ai) = B +
∩
i∈I

Ai,

hence A0 =
∩

i∈I Ai ̸= ∅ and (A0, B0) ∈ [A,B]. Moreover (A0, B0) ≤ (Ai, Bi) for any i ∈ I.
By the Kuratowski-Zorn Lemma the class [A,B] has minimal element (C,D) ≤ (A,B). �

Theorem 6.3 generalizes the result proved in [14] for MRH space X̃k.

Corollary 6.4. (Existence of minimal representative in X̃cb). Let X be a reflexive locally
convex topological vector space. Then every class [A,B] ∈ C(X) × B(X)/∼ contains a
minimal pair (C,D) such that (C,D) ≤ (A,B).

Proof. Let Xτ = (X, τ) be a reflexive locally convex space. By σ = σ(X,X∗) we denote the
weak topology on X. Then Bτ (X) = Kσ(X) and Cτ (X) = Cσ(X). Hence Cτ (X)×Bτ (X) =
Cσ(X)×Kσ(X). �

Corollary 6.4 generalizes a result proved in [8] for MRH space X̃b. Similar theorem cannot

be proved for all X̃cb since for MRH space l̃∞b we have an example of a class [A,B] with

no minimal element [8]. Similar theorem cannot be proved for R̃wk due to the following
example. Let A = (0, 1) ∈ W(R) and B = [0, 1]. Then [A,B] = {((a, b), [a, b])|a < b}.
Obviously, the class [A,B] contains no minimal elements.
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7 Lattices Contained in the Minkowski–R̊adström–Hörmander Cone

Let A,B, S be nonempty subsets of a vector space X. Recall that S separates the sets A
and B if [a, b] ∩ S ̸= ∅ for every a ∈ A and b ∈ B. The following theorem characterizes
separation of sets with the help of convexity of the union of sets. Though this convexity
seems very restrictive, it gives a good enumerate of extreme points of symmetric interval in
MRH space [9]. It is also useful in characterizing an infimum of two elements of MRH space
in Lemma 7.3 and Theorem 7.4.

Theorem 7.1. Let X be a real Hausdorff topological vector space and A,B ∈ C(X). Then
the following statements are equivalent:

(a) The set A ∪B is convex.

(b) The set A ∩B separates the sets A and B.

(c) C
.
+A ∩B = (A

.
+ C) ∩ (B

.
+ C) for every segment C in X.

(d) C
.
+A ∩B = (A

.
+ C) ∩ (B

.
+ C) for every C ∈ W(X).

(e) C +A ∩B = (A+ C) ∩ (B + C) for every C ∈ W(X).

Proof. Equivalence of the conditions (a) and (b) can be proved similarly as in paper [21].
Now let the condition (c) be satisfied. Let a ∈ A and b ∈ B. Then for C = a ∨ b we have

a+ b ∈ (A+ a ∨ b) ∩ (B + a ∨ b) = a ∨ b+A ∩B.

Therefore there exists α ∈ [0, 1] such that a+ b = αa+ (1− α)b+ c for a some c ∈ A ∩ B.
Hence A ∩B separates the sets A and B.

Now, let C ∈ W(X) and x ∈ (A
.
+C)∩(B

.
+C). Given any neighbourhood U ∈ U and balanced

V ∈ U such that V+V ⊂ U . Then x ∈ (A+C+V )∩(B+C+V ) and x = a+c1+v1 = b+c2+v2
for some a ∈ A, b ∈ B, c1, c2 ∈ C and v1, v2 ∈ V . Hence a = x − c1 − v1, b = x − c2 − v2.
If A ∩ B separates the sets A and B then αx − αc1 − αv1 + βx − βc2 − βv2 ∈ A ∩ B for
some α + β = 1, α, β ≥ 0. Hence x ∈ A ∩ B + C + V + V ⊂ A ∩ B + C + U this implies
x ∈ A ∩B

.
+ C. Hence (A

.
+ C) ∩ (B

.
+ C) ⊂ A ∩B

.
+ C. Therefore, (b) implies (d).

In a similar and even simpler way (b) implies (e). Independently, (d) and (e) implies (c). �

Example 7.2. In general for A,B ∈ C(X) and C ∈ W(X) the equality C
.
+ A ∩ B =

(A
.
+ C) ∩ (B

.
+ C) does not imply the equality C + A ∩ B = (A+ C) ∩ (B + C). Take for

example A = [0, 1]× [0, 1], B = [−1, 0]× [−1, 0] and C = (0, 1)× (0, 1)∪{(0, 0)}. Neither the
latter equality implies the first one. Take for example A = [0, 1], B = [2, 3] and C = (0, 1).
However, here the intersection A∩B is empty. The following example shows that even with
nonempty intersection A ∩ B the implication does not hold true. Let A ∈ B(R3) be the
epigraph of the following convex function f : R+ × R+ −→ R+:

f(x, y) =


1
xy if xy ≥ 3,

1− 2
√
xy

3
√
3

if xy ≤ 3.

Let B = {(x, y, z) ∈ R3|(−x, y, z) ∈ A} and C be the straight line x = z = 0. Then the set

(A+ C) ∩ (B + C) = A ∩B + C = A ∩B
.
+ C is a proper subset of (A

.
+ C) ∩ (B

.
+ C).
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In [15], [21], it was shown that for A,B ∈ B(X) the union A ∪ B is a convex set if and

only if A ∨ B is a summand of A
.
+ B. However, for unbounded closed convex sets this

condition is not sufficient. For instance, let A and B are two nonparallel lines in R2. Then
A+B = A ∨B = R2. But A ∪B is not convex set.

In general the convex hull ”∨̊” of two closed convex sets does not have to be closed. For
example, let A be x-axis in R2 and B = {(0, 1)}. Then A∨̊B = R× [0, 1) ∪B, which is not
a closed set.

Lemma 7.3. Let X be a real Hausdorff topological vector space and A,B ∈ C(X). Moreover

let x̃ = [A, {0}], ỹ = [B, {0}]. Then x̃ ∧ ỹ = [C,D] ∈ X̃cb if and only if the set (A
.
+D) ∪

(B
.
+D) is convex and C = (A

.
+D) ∩ (B

.
+D).

Proof. Since [C,D] ≤ x̃ and [C,D] ≤ ỹ, we have [C,D] ≤ [(A
.
+ D) ∩ (B

.
+ D), D] ≤

[A, {0}] ∧ [B, {0}] = x̃ ∧ ỹ = [C,D]. Hence C = (A
.
+ D) ∩ (B

.
+ D). Also for every

C ′ ∈ B(X) we have [C
.
+ C ′, D

.
+ C ′] = x̃ ∧ ỹ. Therefore for every C ′ ∈ B(X) we get

[(A
.
+ D

.
+ C ′) ∩ (B

.
+ D

.
+ C ′), D

.
+ C ′] = x̃ ∧ ỹ and (A

.
+ D

.
+ C ′) ∩ (B

.
+ D

.
+ C ′) =

(A
.
+D) ∩ (B

.
+D)

.
+ C ′. By Theorem 7.1 the set (A

.
+D) ∪ (B

.
+D) is convex.

Obviously, [C,D] = [(A
.
+ D) ∩ (B

.
+ D), D] ≤ x̃ and [C,D] =≤ ỹ. Let [E,F ] ≤ x̃ and

[E,F ] ≤ ỹ. Hence E ⊂ (A
.
+ F ) ∩ (B

.
+ F ). By Theorem 7.1 we have [C,D] = [(A

.
+D

.
+

F ) ∩ (B
.
+D

.
+ F ), D

.
+ F ]. Since (A

.
+ F ) ∩ (B

.
+ F )

.
+D ⊂ (A

.
+D

.
+ F ) ∩ (B

.
+D

.
+ F ),

we have [E,F ] ≤ [(A
.
+ F ) ∩ (B

.
+ F ), F ] ≤ [(A

.
+D

.
+ F ) ∩ (B

.
+D

.
+ F ), D

.
+ F ] = [C,D].

Then [C,D] = x̃ ∧ ỹ. �

Theorem 7.4. Let X be a real Hausdorff topological vector space and B(X) ⊂ S ⊂ C(X) be
a cone. Then the cone (S×B(X)/∼,+, ·) is a lattice if and only if for every A,B ∈ S there

exists a set D ∈ B(X) such that (A
.
+D) ∪ (B

.
+D) is convex.

Proof. Suppose that S×B(X)/∼ is a lattice. Let A,B ∈ C(X) and x̃ = [A, {0}], ỹ = [B, {0}]
then there exists x̃∧ ỹ = [C,D]. Hence by Lemma 7.3 we have that (A

.
+D) ∪ (B

.
+D) is a

convex set.

Conversely, let x̃ = [A,B], ỹ = [C,D] ∈ S×B(X)/∼. Then we have x̃ = [A
.
+D,B

.
+D], ỹ =

[B
.
+C,B

.
+D] and there exists M ∈ B(X) such that (A

.
+D

.
+M)∪ (B

.
+C

.
+M) is convex.

By Lemma 7.3 we have [A
.
+ D, {0}] ∧ [B

.
+ C, {0}] = [(A

.
+ D

.
+ M) ∩ (B

.
+ C

.
+ M),M ].

Hence x̃ ∧ ỹ = [(A
.
+D

.
+M) ∩ (B

.
+ C

.
+M), B

.
+D

.
+M ]. �

In the case X = R it is easy to characterize minimal pairs of the cone R̃ck. We observe that
for every pair (A,B) ∈ R̃ck the interval A is a summand of B or vice versa. Then the pair

(A,B) ∈ R̃ck is minimal if and only if A or B is a singleton. From this characterization

immediately follows that minimal pairs in R̃ck have a translation property. For example
(R, {a})a∈R is a family of equivalent minimal pairs.

For any pair of intervals A,B ⊂ R there exists a bounded interval D ⊂ R such that (A+D)∪
(B +D) is convex. Hence, by Theorem 7.4 the cone R̃ck is a lattice. In fact the following

proposition links the cone R̃ck with the cone R defined in Example 4.1(b).
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Proposition 7.5. The lattice R̃ck is isomorphic to R× R.

Proof. Let i : R × R −→ R̃ck be a mapping given by i(1, 0) = [[0, 1], {0}], i(0, 1) =
[[−1, 0], {0}], i(a, b) = a · i(1, 0) + b · i(0, 1), where a, b ∈ R, ∞ · i(1, 0) = [[0,∞], {0}] and
∞ · i(0, 1) = [[−∞, 0], {0}]. The mapping i establishes an isomorphism of abstract convex
cones. �
For every A,B ∈ C(X) the set (A

.
+A ∨B) ∪ (B

.
+A ∨B) = 2(A ∨B) is convex. Hence, by

Theorem 7.4 the MRH space X̃b is a lattice.

Example 7.6. Let X = R2 and A = R×{0}, Bi = [(−i,−1), (i, 1)], i ∈ R. Then the family
(A,Bi) ∈ C(X)×K(X) forms a family of equivalent minimal pairs which are not connected
by translations (see Figure 7.1).

-

6
B0 B1 B2 B3B−1B−2B−3

0
1

1

−1

−1

A

Figure 7.1

8 Reduction Techniques

In short we extend two known basic techniques of reducing a pair (A,B) ∈ B2(X) to reducing
a pair (A,B) ∈ C(X)×B(X) [15].

Proposition 8.1. (Reduction by summand) If the sets A ∈ C(X), B ∈ B(X) have a com-

mon summand C ∈ B(X) then (A
.
− C,B

.
− C) ∈ [A,B].

Similarly as in [23] we can prove the following lemma.

Lemma 8.2. Let A,B be convex subsets of X and A ∪B be convex. Then

A
.
+B = A ∪B

.
+A ∩B.

Proposition 8.3. Let (A,B) ∈ C(X) × B(X), P ∈ B(X) and let A ∪ P,B ∪ P be convex,
A ∩ P = B ∩ P . Then (A ∪ P,B ∪ P ) ∼ (A,B).

Proof. By Lemma 6.2 we obtain A
.
+P = A∪P

.
+A∩P and B

.
+P = B∪P

.
+B∩P . Hence

A
.
+ P

.
+B ∪ P

.
+B ∩ P = B

.
+ P

.
+A ∪ P

.
+A ∩ P

and by the law of cancellation we get (A ∪ P,B ∪ P ) ∼ (A,B). �
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P A ∩ P B A

Figure 8.1

Corollary 8.4. (Cutting by a hyperplane) Let A ∈ C(X), B ∈ B(X) and H be a closed
hyperplane dividing the space X into two closed halfspaces H+ and H− such that A ∩H is
nonempty. Let A ∩H+ = B ∩H+ and A0 = A ∩H−, B0 = B ∩H−. Then the pairs (A,B)
and (A0, B0) are equivalent.

9 Appendix. Upper Exhauster and Quasidifferential

Let us consider Dini or Hadamard directionally differentiable functions. Directional deriva-
tive is a positively homogenous (p.h.) function. If (X, ∥ · ∥) is a normed space and p.h.
function h : X −→ R is upper semicontinous (u.s.c.) then h can be represented in the form

h(x) = inf
C∈E∗

pC(x),

where pC is a support function of C and E∗ = E∗(h) is a subfamily of the family B(X∗) of
all nonempty ∗-weakly bounded closed convex subsets of dual space X∗. Such family E∗(h)
is called an upper exhauster of the function h. Analogously if h is lower semicontinous (l.s.c.)
then it can be represented as

h(x) = sup
C∈E∗

(−p−C(x)) = − inf
C∈E∗

p−C(x).

If the function h is Lipschitz then h(x) = inf
C∈E∗

pC(x), where the family E∗ is totally bounded.

Let us notice that upper exhauster is not unique. Moreover, the example given in [7] shows
that in general a finite minimal exhauster is not unique.

The theory of exhausters was introduced by V. F. Demyanov and A. M. Rubinov [4] in qua-
sidifferential calculus and was subsequently studied in a series of papers by V. F. Demyanov,
A. M. Rubinov and V. Roshchina ([2], [3], [19] and others) and in the framework of lattices
and semigroups by J. Grzybowski, D. Pallaschke and R. Urbański [7].

If a function f is directionally differentiable and the directional derivative h at some point
can be represented as

h(x) = pA(x)− pB(x),

that is as a difference of support functions of nonempty ∗-weakly bounded closed convex
sets A,B ∈ B(X∗) then f is called quasidifferentiable at the given point. The pair (A,B)
is called the quasidifferential of f at the given point. The quasidifferential is never unique.
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Moreover, in general minimal quasidifferential is not unique up to translation for dimX ≥ 3
[6].

Until now, most of the study was dedicated to directional derivatives assuming finite values.
However, in optimization some directional derivatives of directionally differentiable functions
assume the value +∞ [18]. In such a case we need to extend our study to p.h. functions
represented as

h(x) = inf
C∈E∗

pC(x),

where E∗ is a subfamily of C(X∗), the family of all nonempty ∗-weakly closed convex subsets
of X∗.

E. Caprari and J. P. Penot in [1] investigated quasidifferentiable functions with directional
derivative h represented as

h(x) = pA(x)− pB(x),

where A ∈ C(X∗) and B ∈ B(X∗).
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Faculty of Science, Department of Mathematics, Anadolu University
Yunus Emre Campus, 26470, Eskişehir, Turkey
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