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full-Newton steps are used, one is feasibility step and the other is centering step. Starting
at strictly feasible iterates of a perturbed pair (perturbation of the given problem and its
dual problem), which is close to its central path, feasibility step serves to generate strictly
feasible iterate for the next perturbed pair. By accomplishing a few centering steps for the
new perturbed pair, it obtains strictly feasible iterates close enough to the central path of the
new perturbed pair. The iteration bound for getting an ϵ-solution of the problem method
is O(n log(n/ϵ)), which coincides with the best-known bound for IIPM.

It worths noting that, the search direction used in [10] for feasibility step is designed
for keeping the iterates feasible for the next perturbed pair, moreover, the iterates target
the central path of the old perturbed pair. Mansouri et al., [6, 5] change the direction by
targeting the old iterate pair (the iterate point before feasibility step). Later on, Gu et al.,
[2, 3] improve the method by targeting the central path of the new perturbed pair. All the
above methods target some special points.

Different with all the existed variants of IIPM, our motivations come from the two fact:
let δ(x, s;µ) be a quantity that measures proximity of the feasible triple (x, y, s) to the
µ-center (x(µ), y(µ), s(µ)), then one has the following results [11]:

1. Denote (x+, s+) as the iterates obtained from one classic-Newton step, and if δ :=
δ(x, s;µ) < 1, then the primal-dual Newton step is strictly feasible. Moreover, if
δ := δ(x, s;µ) ≤ 1/

√
2, then δ(x+, s+;µ) ≤ δ2, i.e., quadratically convergent.

2. Denote ρ(δ) = δ +
√
1 + δ2, one has 1/ρ(δ) ≤

√
xisi/µ ≤ ρ(δ), i = 1, . . . , n.

The first result illustrates a gap between the feasibility condition and the quadratically
convergent condition, i.e., δ < 1 and δ < 1/

√
2, respectively. The second result shows that

to obtain the lower-upper bound for the composite element
√
xisi/µ, one needs to solve an

inequality which is quite complicated.
Considering that, for the full-Newton step IIPM, there are three key issues, the feasibility

step, the centering step and the proximity measure. In this paper, we relax the searching
target for feasibility step, and make it targeting a small neighborhood of the central path
with respect to the next perturbed pair. As the aim of feasibility step is to calculate a
feasible solution for the next pair of perturbed problems, which should also lie in a small
neighborhood to its new center, our search direction for feasibility step is more intuitive.
Moreover, we adopt a new system for centering steps, by which the neighborhood for the
feasibility steps can be determined. The feasibility condition and the quadratically conver-
gent condition obtained from this new centering step system keep consistent, thus the gap
vanishs. Besides these, by using a simple proximity measure, the analysis for the improved
method is much simplified, largely because the lower-upper bound for the composite element
can easily be obtained according to the simple proximity measure. We derive the complexity
for the algorithm and obtained the iteration bound which is as good as the best-known for
IIPMs.

The paper is organized as follows. As a preparation for the rest of the paper, in section
2 we first recall some basic results for full-Newton step IIPM, which include central path,
perturbed problems and the description for an iteration of full Newton step IIPM. Then, in
Section 3, we specify our new search directions for full-Newton step IIPM in details. Section
4 deals with the analysis of our new IIPM. The analysis is much simplified, one of the main
reasons is that we adopt a simple proximity measure, by which the element of vector can be
easily estimated. We end the paper with a conclusion in Section 5.

In the whole paper: ∥ · ∥ denotes the 2-norm of a vector, ∥ · ∥1 and ∥ · ∥∞ denote the
1-norm and infinity-norm, respectively. Furthermore, xmin denotes the smallest and xmax
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denotes the largest value of the components of x, respectively. xs is the coordinate-wise

product of the vectors x and s, i.e., xs = [x1s1;x2s2; . . . ;xnsn]. Similarly, we use
x

s
to

denote

[
x1

s1
; . . . ;

xn

sn

]
, for each vector x and s such that si ̸= 0, i = 1, . . . , n.

2 Preliminaries

In preparation for dealing with our IIPM, we recall briefly the notions of central path and
of perturbed problems. Furthermore, we describe and present the full-Newton step IIPM
for LO.

2.1 The central path

It is well known that finding an optimal solution of (P ) and (D) is equivalent to solving the
following system:

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

xs = 0,

where the last equation is called complementarity condition.

The basic idea of primal-dual IPMs is to replace the complementarity condition by the
parameterized equation xs = µe, with µ > 0. This yields the system:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0, (2.1)

xs = µe.

Surprisingly enough, if system (2.1) has a solution for some µ > 0, then a solution exists for
every µ > 0, and this solution is unique [11]. This happens if and only if problems (P ) and
(D) satisfy the interior-point condition (IPC), i.e., there exists (x0, s0, y0) such that

Ax0 = b, x0 > 0 and AT y0 + s0 = c, s0 > 0.

If the IPC is satisfied, then the solution of (2.1) is denoted by (x(µ), y(µ), s(µ)) and called
the µ-center of (P ) and (D). The set of all µ-centers gives a homotopy path, which is called
the central path of (P ) and (D). If µ → 0, then the limit of the central path exists and since
the limit points satisfy the complementarity condition, the limit yields optimal solutions for
(P ) and (D).

If we are given a positive feasible pair (x, s), and some µ > 0, our aim is to define search
directions (△x,△y,△s) that move in the direction of the small neighborhood of the µ-center
(x(µ), y(µ), s(µ)). In fact, we want the new iterates x+△x, y +△y and s+△s to satisfy
system (2.1) and be positive with respect to µ. After substitution this yields the following
conditions on (△x,△y,△s)

A (x+△x) = b, x+△x > 0,
AT (y +△y) + (s+△s) = c, s+△s > 0,

(x+△x) (s+△s) = µe.
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If we neglect for the moment the inequality constraints and the quadratic term △x△s, then,
since Ax = b and AT y + s = c, this system can be rewritten as follows

A△x = 0,
AT△y +△s = 0,
x△s+ s△x = µv − xs.

(2.2)

Since A has full row rank, the above system uniquely defines a search direction (△x,△y,△s)
for any x > 0 and s > 0. This Newton direction are called as centering step in the imple-
mentations of full-Newton step IIPM.

2.2 The perturbed problems

In the case of an IIPM, if the 2-norms of the residual vectors b−Ax and c−AT y− s do not
exceed ϵ and the duality gap satisfies xT s ≤ ϵ, then we call the triple (x, y, s) an ϵ-optimal
solution of (P ) and (D) .

Denote that the initial residual vectors r0b and r0c , respectively, as

r0b = b−Ax0,
r0c = c−AT y0 − s0,

where x0 and s0 are positive point. For any ν with 0 < ν ≤ 1, we consider the following
perturbed problem,

(Pν) min{(c− νr0c )
Tx : Ax = b− νr0b , x ≥ 0}, (2.3)

and its dual problem (Dν)

(Dν) max{(b− νr0b )
T y : AT y + s = c− νr0c , s ≥ 0}. (2.4)

Note that if ν = 1 then x = x0 yields a strictly feasible solution of (Pν), and (y, s) = (y0, s0)
a strictly feasible solution of (Dν), which implies that if ν = 1, then (Pν) and (Dν) satisfy
the IPC. Furthermore, we point out the following result.

Lemma 2.1 ([12, Theorem 5.13]). The original problems, (P ) and (D), are feasible if and
only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) satisfy the IPC.

Assuming that problems (P ) and (D) are feasible. It follows from Lemma 2.1 that the
perturbed problem pair (Pν) and (Dν) satisfy the IPC, for each ν ∈ (0, 1], and hence their
central paths exist. This means that the system

Ax = b− νr0b , x ≥ 0,

AT y + s = c− νr0c , s ≥ 0, (2.5)

xs = µe,

has a unique solution for every µ > 0. Denoting this unique solution in the sequel as
(x(ν), y(ν), s(ν)). As a consequence, (x(ν), y(ν), s(ν)) is the µ-center of (Pν) and (Dν).

If we want to find the new iterates xf , yf and sf that satisfy (2.5) with ν replaced by
ν+ := (1 − θ)ν, as it will be seen, by taking θ small enough this can be realized by one
feasibility step. That is

xf = x+∆fx, yf = y +∆fy, sf = s+∆fs,
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the search directions ∆fx, ∆fy and ∆fs which are (uniquely) defined by the system

A∆fx = θνr0b ,

AT∆fy +∆fs = θνr0c , (2.6)

s∆fx+ x∆fs = µe− xs.

It can be easily understood that if (x, y, s) is feasible for the perturbed problems (Pν)
and (Dν), then after the feasibility step the iterates satisfy the feasibility conditions for (P+

ν )
and (D+

ν ), provided that they satisfy the nonnegativity conditions.
As usual for IIPMs, let us assume that the initial iterates

x0 = s0 = ξe, y0 = 0 and µ0 = ξ2, (2.7)

µ0 is the initial dual gap and ξ > 0 is such that

∥x∗ + s∗∥∞ ≤ ξ, (2.8)

for some optimal solutions (x∗, y∗, s∗). Due to this notation, by taking ν = 1, one has

(x(1), y(1), s(1)) = (x0, y0, s0) = (ξe, 0, ξe).

We measure proximity of iterates (x, y, s) to the µ-center of the perturbed problems (Pν)
and (Dν) by σ(x, s;µ) as follows:

σ(x, s;µ) = σ(v) = ∥e− v∥, where v =

√
xs

µ
. (2.9)

Thus, initially x0 = s0 = ξe and µ0 = ξ2, whence v0 = e and σ(x0, s0;µ) = 0. In the sequel,
we assume σ(x, s;µ) is smaller than or equal to a (small) threshold value τ > 0 at the start
of each iteration. So this is certainly true at the start of the first iteration.

2.3 One main iteration of the full-Newton step IIPM

Now we describe one main iteration of full-Newton step IIPM. Each main iteration consists
of a feasibility step, a µ-update, and a few centering steps, respectively. Suppose that for
some ν ∈ (0, 1], the iterates (x, s) satisfy the first and the second equation of system (2.5),
xT s ≤ nµ and σ(x, s;µ) ≤ τ, where µ = νξ2 and τ is a small threshold.

With ν replaced by ν+ = (1 − θ)ν, the feasibility step serves to get iterates
(xf , yf , sf ) that are strictly feasible for (Pν+) and (Dν+) and close to their µ+-centers
(x(ν+), y(ν+), s(ν+)). In fact, the feasibility step is designed in such a way that
σ(xf , sf ;µ+) < η, where η ≤ 1 is a bound for keeping the iteration quadratic convergence,
i.e., (xf , yf , sf ) lies in the quadratic convergence neighborhood with respect to the µ+-center
of (P+

ν ) and (D+
ν ). Then, just by performing a few centering steps starting at (xf , yf , sf )

and targeting at the µ+-centers of (P+
ν ) and (D+

ν ), one can easily get iterates (x+, y+, s+)
that are strictly feasible for (P+

ν ) and (D+
ν ) and such that σ(x+, s+;µ+) ≤ τ .

Now we give a more formal description of the algorithm.

Generic full-Newton step IIPM for LO

Input:
A threshold parameter τ > 0;
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an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
bound parameter ξ;
begin

x := ξe; y := 0; s := ξe;µ := ξ2; ν := 1;
while max{xT s, ∥b−Ax∥, ∥c−AT y − s∥} ≥ ε do
begin
feasibility step: solving (2.6) and obtain

(x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);
µ-update: µ := (1− θ)µ, ν := (1− θ)ν;
centering steps:

while σ(x, s;µ) > τ do
solving (2.2) and obtain
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);

end
end

end

Note that after each iteration the residuals and the duality gap are reduced by a factor
1 − θ. The algorithm stops if the norms of the residuals and the duality gap are less than
the accuracy parameter ϵ.

3 A New Full-Newton Step IIPM

In this section, we give a new full-Newton step IIPM, which has different feasibility step and
different centering step with the method in [10, 6, 5, 2, 3].

3.1 The new feasibility step

Suppose we have strictly feasible iterate (x, y, s) for (Pν) and (Dν). This means that (x, y, s)
satisfies the first two equations of system (2.5). With ν replaced by ν+ = (1− θ)ν, denoting

xf = x+∆fx, yf = y +∆fy, sf = s+∆fs,

to find new iterates (xf , yf , sf ) feasible for (Pν+) and (Dν+), we need search directions ∆fx,
∆fy and ∆fs satisfy the first two equations in the following system.

A∆fx = θνr0b ,

AT∆fy +∆fs = θνr0c , (3.1)

s∆fx+ x∆fs = (1− θ)µ
1
2 (xs)

1
2 − xs.

Since matrix A has full row rank, for any x > 0 and s > 0, the coefficient matrix in the
linear system (3.1) is nonsingular, the system uniquely defines (∆fx,∆fy,∆fs).

We specify our motivation for the third equation of (3.1) in detail. The following lemma
shows that the components of the vector v can be estimated simply by the proximity measure
σ(v).

Lemma 3.1. Let σ(v) be defined as (2.9). Then one has

1− σ(v) ≤ vi ≤ 1 + σ(v), i = 1, . . . , n.



AN IMPROVED IIPM WITH FULL-NEWTON STEP FOR LO 637

Proof. Since
|1− vi| ≤ ∥e− v∥ = σ(v), i = 1, . . . , n,

the result easily follows. �

Remember that at the start of one main iteration, the condition σ(v) ≤ τ must be
satisfied, where τ is (much) smaller than 1. By Lemma 3.1, one has

(1− τ)e ≤ v ≤ (1 + τ)e. (3.2)

Since the third equation in system (3.1) is the linearization of xfsf = (1− θ)µv = µ+v,
i.e., neglecting the quadratic term ∆fx∆fs. By (3.2), one has

(1− τ)µ+e ≤ xfsf ≤ (1 + τ)µ+e,

which means the new iterates are now targeting a small neighborhood of the µ+-center of
(Pν+) and (Dν+).

Remark 3.2. For the third equation in system (3.1), the linearization of xfsf = µe is
used in [10] (targeting the µ-center). While in [6, 5], the linearization of xfsf = xs is used
(targeting the old xs) and in [2, 3, 7], the linearization of xfsf = µ+e is used (targeting the
µ+-center).

We conclude that after the feasibility step we have iterates (xf , yf , sf ) which satisfy the
affine equations of the new perturbed problem pair (Pν+) and (Dν+). In the analysis we
should also guarantee that xf and sf are positive and belong to the region of quadratic
convergence to their µ+-centers. On this occasion, we adopt the full-Newton step system of
Darvay [1], which will be given in the next subsection.

3.2 The new centering step

After the feasibility step, if necessary, the new IIPM proceeds to operate centering steps.
Starting from (xf , yf , sf ), several full Newton steps are needed to restore the condition
σ(x, s;µ) ≤ τ . On this occasion, we use the following system for centering step search
direction.

A△x = 0,

AT△y +△s = 0, (3.3)

x△s+ s△x = 2
(
µ

1
2 (xs)

1
2 − xs

)
.

Since A has full rank, and the vectors x and s are positive, one may easily verify that the
coefficient matrix in the linear system (3.3) is nonsingular. Hence this system uniquely
defines the search directions △x, △y and △s.

Remark 3.3. In [1], system (3.3) is represented as

Ādx = 0,

ĀT △y
µ + ds = 0,

dx + ds = 2(e− v),

where

dx =
v△x

x
, ds =

v△s

s
, Ā = AV −1X, V = diag(v) and X = diag(x).
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Let
x+ = x+△x, y+ = y +△y, s+ = s+△s

be the vectors obtained after a full-Newton step. In the following lemma Darvay [1] inves-
tigates the effect of the full Newton step on the duality gap.

Lemma 3.4 ([1, Lemma 5.3]). Let σ = σ(x, s;µ) and suppose that the vectors x+ and s+

are obtained after a full-Newton step. We have

(x+)T s+ = µ(n− σ2),

hence (x+)T s+ ≤ µn.

Darvay [1] also gives a condition which guarantees the feasibility of the full-Newton step
by the following lemma.

Lemma 3.5 ([1, Lemma 5.1]). Let σ = σ(x, s;µ) < 1. Then

x+ > 0 and s+ > 0,

thus the full-Newton step is strictly feasible.

The quadratically convergent property of the full-Newton step (3.3) is presented as fol-
lows.

Lemma 3.6 ([1, Lemma 5.2]). Let σ = σ(x, s;µ) < 1. Then

σ(x+, s+;µ) ≤ σ2

1 +
√
1− σ2

.

Immediately, we have the following corollary.

Corollary 3.7. If σ = σ(x, s;µ) < 1, then σ(x+, s+;µ) ≤ σ2.

Proof. It directly follows from the fact that
σ2

1 +
√
1− σ2

is a monotonically decreasing

function. �

Remark 3.8. Corollary 3.7 defines a neighborhood of the µ-center where the quadratic
convergence occurs, namely σ(x, s;µ) < 1.

After the feasibility step, assuming an upper bound for σ(xf , sf ;µ+) can be obtained
and denoting this bound as η, we perform the centering steps in order to get the iterates
(x+, y+, s+) that satisfy (x+)T s+ ≤ nµ+ and σ(x+, s+;µ+) ≤ τ . By Corollary 3.7, the
required number of centering steps can easily be obtained.

Indeed, assuming we have σ(xf , sf ;µ+) ≤ η < 1 after the feasibility step, hence after k
centering steps the iterates (x, s) satisfy

σ(x, s;µ+) ≤ η2
k

.

Therefore, σ(x+, s+;µ+) ≤ τ will hold if k satisfies

η2
k

≤ τ.

This implies that at most ⌈
log2

(
log2 τ

log2 η

)⌉
(3.4)

centering steps are needed.
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4 Analysis of the New IIPM

As we have seen in section 3, the feasibility step generates new iterates (xf , yf , sf ) that
satisfy the feasibility conditions for (Pν+) and (Dν+). Except the nonnegativity constraints,
another crucial thing in the analysis is to show that after the feasibility step σ(xf , sf ;µ+) <
1, i.e., the iterate (xf , yf , sf ) is within the neighborhood where the Newton process targeting
the µ+-centers of (Pν+) and (Dν+) is quadratically convergent.

4.1 The effect of the feasibility step

Let x, y and s denote the iterates at the start of an iteration. We define

dfx =
v∆fx

x
and dfs =

v∆fs

s
, (4.1)

where v is defined as (2.9). One has

△fx△fs = µdfxd
f
s .

We may write

xfsf = (x+△fx)(s+△fs)

= xs+ (s△fx+ x△fs) +△fx△fs

= (1− θ)µ
1
2 (xs)

1
2 +△fx△fs

= µ((1− θ)v + dfxd
f
s ). (4.2)

The condition for feasibility step is as follows.

Lemma 4.1. The new iterates (xf , yf , sf ) are strictly feasible if and only if (1−θ)v+dfxd
f
s >

0.

Proof. The ”only if” part of the statements in the lemma follows immediately from (4.2).
For the proof of the converse implication we introduce a step length α ∈ [0, 1], and define

xα = x+ α△fx, yα = y + α△fy, sα = s+ α△fs.

We then have x0 = x, x1 = xf and s0 = s, s1 = sf . Hence, we have x0s0 = xs > 0. We
write

xαsα = (x+ α△fx)(s+ α△fs) = xs+ α(x△fs+ s△fx) + α2△fx△fs.

Using s∆fx+ x∆fs = (1− θ)µ
1
2 (xs)

1
2 − xs and (4.1), we obtain

xαsα = xs+ α((1− θ)µ
1
2 (xs)

1
2 − xs) + α2△fx△fs

= µ[(1− α)v2 + α(1− θ)v + α2dfxd
f
s ].

Suppose (1− θ)v + dfxd
f
s > 0, i.e., dfxd

f
s > −(1− θ)v, substitution gives

xαsα > µ[(1− α)v2 + α(1− θ)v − α2(1− θ)v]
= µ(1− α)[v2 + α(1− θ)v].

Since v2 and v are positive it follows that xαsα > 0 for 0 ≤ α ≤ 1. Hence, none of the
entries of xα and sα vanish for 0 ≤ α ≤ 1. Since x0 and s0 are positive, and xα and sα

depend linearly on α, this implies that xα > 0 and sα > 0 for 0 ≤ α ≤ 1. Hence, the vectors
x1 and s1 must be positive. This completes the ”if” part of the statement. �
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Corollary 4.2. The new iterates (xf , yf , sf ) are strictly feasible if

∥dfxdfs∥∞ < (1− θ)vmin.

Proof. By Lemma 4.1, xf and sf are strictly feasible if and only if (1 − θ)v + dfxd
f
s > 0.

Since the inequality holds if ∥dfxdfs∥∞ < (1− θ)vmin, the corollary follows. �

In the sequel we denote

ω(v) =
1

2

√
∥dfx∥2 + ∥dfs∥2, (4.3)

this implies ∥dfx∥ ≤ 2ω(v) and ∥dfs∥ ≤ 2ω(v), and moreover,

∥dfxdfs∥ ≤ ∥dfx∥∥dfs∥ ≤ 1

2
(∥dfx∥2 + ∥dfs∥2) = 2ω(v)2, (4.4)

∥dfxdfs∥∞ ≤ ∥dfx∥∥dfs∥ ≤ 1

2
(∥dfx∥2 + ∥dfs∥2) = 2ω(v)2. (4.5)

Lemma 4.3. The new iterates (xf , yf , sf ) are strictly feasible if

ω(v)2 <
(1− θ)

2
(1− σ(v)). (4.6)

Proof. By Lemma 3.1, Corollary 4.2 and (4.5), the result easily follows. �

4.2 An upper bound of σ(vf )

Theorem 4.4. Assume that the new iterates (xf , yf , sf ) are strictly feasible, and denote

vf =

√
xfsf

µ+
. One has

σ(vf ) ≤ σ(v) +
2ω(v)2

(1− θ)
.

Proof.

(vf )2 =
xfsf

µ+
=

µ((1− θ)v + dfxd
f
s )

µ+
= v +

dfxd
f
s

1− θ
.

Hence
σ(vf ) = ∥e− vf∥ ≤ ∥(e− vf )(e+ vf )∥

= ∥e− (vf )2∥ = ∥e− v − dfxd
f
s

1− θ
∥

≤ ∥e− v∥+ 1

1− θ
∥dfxdfs∥

≤ σ(v) +
2ω(v)2

1− θ
,

the last inequality follows from (4.4). This completes the proof. �

We hope the new iterate (xf , yf , sf ) is within the neighborhood where the Newton pro-
cess targeting the µ+-centers of (Pν+) and (Dν+) is quadratically convergent, ie., σ(vf ) < 1,
according to Theorem 4.4, it suffices if

σ(v) +
2ω(v)2

1− θ
< 1,

which gives

ω(v)2 <
(1− θ)

2
(1− σ(v)). (4.7)
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Lemma 4.5. If the iterate (xf , yf , sf ) is within the neighborhood where the Newton process
targeting the µ+-centers of (Pν+) and (Dν+) is quadratically convergent, then it is strictly
feasible.

Proof. Comparing Lemma 4.3 and (4.7), the result follows. �

We proceed by considering the value ω(v) in more details.

4.3 An upper bound for ω(v)

Defining
Ā = AV −1X, where V = diag(v), X = diag(x), (4.8)

one may easily check that the system (3.1), which defines the search directions
(∆fx,∆fy,∆fs), can be expressed as follows.

Ādfx = θνr0b ,

ĀT △fy
µ + dfs = θvνs−1r0c ,

dfs + dfx = (1− θ)e− v.

(4.9)

Denoting the null space of the matrix Ā as L, so

L := {ξ ∈ Rn : Āξ = 0}.

Obviously, the affine space {ξ ∈ Rn : Āξ = θνr0b} equals dfx + L. Note that due to a well-
known result from Linear Algebra the row space of Ā equals the orthogonal complement L⊥

of L. Therefore, dfs ∈ θvνs−1r0c +L⊥. Also note that L∩LT = 0, and as a consequence the
affine spaces dfx + L and dfs + LT meet in a unique point. This point is denoted by q.

Lemma 4.6. Let q be the (unique) point in the intersection of the affine spaces dfx +L and
dfs + L⊥. Then

2ω(v) ≤
√
∥q∥2 + (∥q∥+ σ(v) + θ

√
n)2.

Proof. To simplify the notation, we denote r = (1 − θ)e − v. Since L⊥ + L = Rn, there
exists q1, r1 ∈ L and q2, r2 ∈ L⊥ such that

q = q1 + q2, r = r1 + r2.

On the other hand, since dfx − q ∈ L and dfs − q ∈ L⊥, there must exist l1 ∈ L and l2 ∈ L⊥

such that
dfx = q + l1, dfs = q + l2.

From the third equation of (4.9), it follows that r = 2q + l1 + l2, which implies

(2q1 + l1) + (2q2 + l2) = r1 + r2.

Since the decomposition L⊥ + L = Rn is unique, we conclude that

l1 = r1 − 2q1, l2 = r2 − 2q2.

Hence we obtain
dfx = q + r1 − 2q1 = (r1 − q1) + q2,

dfs = q + r2 − 2q2 = (r2 − q2) + q1.
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Since the spaces L and L⊥ are orthogonal we conclude that

4ω(v)2 = ∥dfx∥2 + ∥dfs∥2 = ∥r1 − q1∥2 + ∥q2∥2 + ∥q1∥2 + ∥r2 − q2∥2 = ∥q − r∥2 + ∥q∥2.

Assuming q ̸= 0, as the right-hand side of ∥r∥ = ∥(1 − θ)e − v∥ reaches its maximal when

r = −∥(1−θ)e−v∥q
∥q∥ , thus we obtain

4ω(v)2 ≤
∥∥∥∥(1 + ∥(1− θ)e− v∥

∥q∥

)
q

∥∥∥∥2 + ∥q∥2

= (∥q∥+ ∥(1− θ)e− v∥)2 + ∥q∥2
≤ ∥q∥2 + (∥q∥+ σ(v) + θ

√
n)2,

which implies the inequality in the lemma if q ̸= 0. Since the inequality in the lemma holds
with equality if q = 0, this completes the proof. �

4.4 An upper bound for ∥q∥

We proceed to derive an upper bound for ∥q∥. Before doing this, we choose the initial point
in the usual way as defined in (2.7).

Recall Lemma 4.6 that q is the (unique) solution of the system

Āq = θνr0b ,
ĀT ξ + q = θνvs−1r0c ,

which is the same as the condition of Lemma 2.6 by Mansouri in [7].
We state the following lemma without further proof.

Lemma 4.7 ([7, Lemma 2.6]). Let (x0, y0, s0) be an initial point as defined in (2.7) and
(2.8), we have

∥q∥ ≤ θ

ξvmin
(∥x∥1 + ∥s∥1) .

The next Lemma is a part of the proof for Lemma 4.3 in [3], we also give a simple proof
here.

Lemma 4.8. Let x and (y, s) be feasible for the perturbed problems (Pν) and (Dν) re-
spectively and (x0, y0, s0) as defined in (2.7). Then for any primal-dual optimal solution
(x∗, y∗, s∗), one has

ν(xT s0 + sTx0)

= sTx+ ν2(s0)Tx0 + ν(1− ν)
(
(s0)Tx∗ + (x0)T s∗

)
− (1− ν)(sTx∗ + xT s∗).

Proof. Let (x∗, y∗, s∗) be an optimal solution satisfying (2.8). Then from the first two
equation of system (2.5), ie., feasibility conditions of the perturbed problems (Pν) and (Dν),
it is easily seen that

A[x− νx0 − (1− ν)x∗] = 0,
AT [y − νy0 − (1− ν)y∗] + [s− νs0 − (1− ν)s∗] = 0.

This implies that x− νx0 − (1− ν)x∗ and s− νs0 − (1− ν)s∗ belong to the null space and
row space of A, respectively. Thus,

[x− νx0 − (1− ν)x∗]T [s− νs0 − (1− ν)s∗] = 0.

By expanding the above equality and using the fact that (x∗)T s∗ = 0, the result easily
follows. �
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Now we give an upper bound for ∥x∥1 + ∥s∥1 in terms of σ(v) as follows.

Lemma 4.9. Let x and (y, s) be feasible for the perturbed problems (Pν) and (Dν) respec-
tively, σ(v) as defined in (2.9) and x0 = s0 = ξe, where ξ > 0 is a constant such that
∥x∗ + s∗∥∞ ≤ ξ for some primal-dual optimal solution (x∗, y∗, s∗). Then we have

∥x∥1 + ∥s∥1 ≤
(
(1 + σ(v))2 + 1

)
nξ.

Proof. Since x, s, x∗ and s∗ are nonnegative, ν ≤ 1, Lemma 4.8 implies that

xT s0 + sTx0 ≤ sTx

ν
+ ν(s0)Tx0 + (1− ν)

(
(s0)Tx∗ + (x0)T s∗

)
. (4.10)

Since x0 = s0 = ξe and ∥x∗ + s∗∥∞ ≤ ξ, we have

(x0)T s∗ + (s0)Tx∗ = ξeT (x∗ + s∗) ≤ ξeT (∥x∗ + s∗∥∞)e = ξ∥x∗ + s∗∥∞(eT e) ≤ nξ2.

Also by using (x0)T s0 = nξ2 in (4.10), we get

xT s0 + sTx0 ≤ sTx

ν
+ nξ2 =

µ(eT v2)

ν
+ nξ2 = ξ2(eT v2) + nξ2,

where for the last equality we used ν = µ
µ0

and µ0 = ξ2. By the right part of inequality in
Lemma 3.1, we obtain

xT s0 + sTx0 ≤
(
(1 + σ(v))2 + 1

)
nξ2. (4.11)

Substitution x0 = s0 = ξe, we have

xT s0 + sTx0 = ξ(eTx+ eT s) = ξ(∥x∥1 + ∥s∥1).

Hence, by (4.11), it follows that

∥x∥1 + ∥s∥1 ≤
(
(1 + σ(v))2 + 1

)
nξ,

which proves the lemma. �

We conclude this part by the following lemma.

Lemma 4.10. One has

∥q∥ ≤
(
1 + (1 + σ(v))2

)
nθ

1− σ(v)
. (4.12)

Proof. Combining the Lemma 3.1, Lemma 4.7 and Lemma 4.9, the result easily follows. �

4.5 Fixing θ

From the analysis for inequality (4.7) in subsection 4.2, we know that if the inequality (4.7)
is satisfied, then σ(vf ) < 1 certainly holds, which means that after the feasibility step, the
iterate (xf , yf , sf ) is strictly feasible and within the neighborhood where the Newton process
targeting the µ+-centers of (Pν+) and (Dν+) is quadratically convergent.

The inequality (4.7) certainly holds by Lemma 4.6, if ∥q∥ satisfies

∥q∥2 + (∥q∥+ σ(v) + θ
√
n)2

4
<

(1− θ)

2
(1− σ(v)). (4.13)
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Since the left side of the inequality (4.13) is monotonically increasing with respect to σ(v),
while the right side is monotonically decreasing with respect to σ(v). Given a threshold τ ,
for σ(v) ≤ τ < 1, one has

∥q∥2 + (∥q∥+ σ(v) + θ
√
n)2

4
≤ ∥q∥2 + (∥q∥+ τ + θ

√
n)2

4

and
(1− θ)

2
(1− τ) ≤ (1− θ)

2
(1− σ(v)).

To keep the new iterates (xf , yf , sf ) feasible and within the quadratic convergent region, by
(4.13), it suffices for

∥q∥2 + (∥q∥+ τ + θ
√
n)2

4
<

(1− θ)

2
(1− τ). (4.14)

At this stage, we assume

τ =
1

8
, θ =

α

2
√
n

and α ≤ 1. (4.15)

Substitute (4.15) into (4.14), which gives

∥q∥2 + (∥q∥+ 1

8
+

α

2
)2 <

7

4
(1− θ). (4.16)

We give an upper bound for ∥q∥, by Lemma 4.10 and (4.15), one has

∥q∥ ≤
(
1 + (1 + σ(v))2

)
nθ

1− σ(v)
≤
(
1 + (1 + 1

8 )
2
)
nθ

1− 1
8

= 2.5893nθ. (4.17)

Combining (4.17) with the inequality (4.16), to make the new iterate (xf , yf , sf ) within the
neighborhood where the Newton process targeting the µ+-centers of (Pν+) and (Dν+) is
quadratically convergent, it suffices for

6.7045n2θ2 + (2.5893nθ + 0.125 + 0.5α)2 <
7

4
(1− θ). (4.18)

Substitute θ =
α

2
√
n

into (4.18), we have

3.3523nα2 + 0.3237
√
nα+ 1.2947

√
nα2 + 0.125α+ 0.25α2 < 0.86. (4.19)

Let α = 1
2
√
2n

, then an upper bound for the left side of inequality (4.19) is 0.77, which

satisfies (4.19). According to (4.15), we obtain

θ =
1

4
√
2n

. (4.20)

4.6 Analysis of the centering step

In the previous subsection, we have fixed θ = 1
4
√
2n

and τ = 1
8 . To complete the algorithm,

we need to calculate the number of centering steps which are needed to restore the condition
σ(x, s;µ+) ≤ τ . Remember that the first centering step starts from the new iterate point
(xf , yf , sf ), thus an upper bound for σ(vf ) is needed.
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We specify an upper bound for ∥q∥ first. From (4.17) and (4.20), one has

∥q∥ ≤ 2.589nθ = 0.4576.

Thus an upper bound for ω(v)2 can be obtained by Lemma 4.6 as follows,

ω(v)2 ≤ 1

4

(
∥q∥2 +

(
∥q∥+ σ(v) +

1

4
√
2n

)2
)

≤ 0.1965. (4.21)

Then, after one feasibility step, we can derive an upper bound for σ(vf ) by Theorem 4.4,
(4.20) and (4.21), one has

σ(vf ) ≤ σ(v) +
2ω(v)2

(1− θ)
≤ 0.6024. (4.22)

Then, according to (3.4), with τ = 0.125 and η = 0.6024, after the feasibility step at
most ⌈

log2

(
log2 τ

log2 η

)⌉
= 3 (4.23)

centering steps suffice to get an iterate (x+, y+, s+) that satisfies σ(x, s;µ+) ≤ τ .

4.7 The iteration bound

In the previous sections, we have found that if at the start of an iteration, the iterates satisfy
σ(x, s;µ) ≤ τ with τ and θ as defined in (4.15) and (4.20), then after the feasibility step and
the µ-update are taken, the iterates satisfy σ(vf ) ≤ 0.6024.

According to (4.23), at most three centering steps suffice to get iterates that satisfy
σ(x, s;µ+) ≤ τ . So each iteration consists of one feasibility step and three centering steps.

In each iteration, both the duality gap and the norms of the residual vectors are reduced
by the factor 1 − θ. Hence, by (x0)T s0 = nξ2, the total number of main iterations are
bounded above by

1

θ
log

max{nξ2, ∥r0b∥, ∥r0c∥}
ϵ

.

Since θ =
1

4
√
2n

, the total number of inner iterations are bounded above by

16
√
2n log

max{nξ2, ∥r0b∥, ∥r0c∥}
ϵ

.

In the following we state our main result without further proof.

Theorem 4.11. If (P ) and (D) have optimal solutions x∗ and (y∗, s∗) such that ∥x∗ +
s∗∥∞ ≤ ξ, then after at most

16
√
2n log

max{nξ2, ∥r0b∥, ∥r0c∥}
ϵ

iterations the algorithm finds an ϵ-solution of (P ) and (D).
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5 Conclusions

We have presented a new full-Newton step IIPM for LO. In each main iteration, the method
operates one feasibility step and at most three centering steps. The iteration bound of the
method is as good as the best-known iteration results for IIPMs.

Our further research line may focus on two aspects. One is to design the IIPM with
large-updated feasibility step and full centering step, and the other is improve the algorithm
by adaptive-updating strategy.
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