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and

Dapp := Dx2 :=
3∑

i,j=1

Dijxixj ;

MD := D11 +D22 +D33;

Wx4 :=
3∑

i,j,k,l=1

Wijklxixjxkxl.

Qi, Wang and Wu [22] proposed the concept of D-eigenvalues for diffusion kurtosis tensor
W in the following way: a real number λ, together with a real vector x ∈ ℜ3, is called a
D-eigenvalue of W, and the real vector x is called a D-eigenvector of W associated with the
D-eigenvalue λ, if x is a critical point of the following optimization problem and 1

2λ is the
associated Lagrange multiplier:

max Wx4

s.t. Dx2 = 1.
(1.2)

The following theorem is established in [22].

Theorem 1.1 ( [22, Theorem 1]). D-eigenvalues always exist for any given diffusion kurtosis
tensor W . If x is a D-eigenvector associated with a D-eigenvalue λ, then

λ = Wx4.

The largest AKC value is equal to M2
Dλmax, and the smallest AKC value is equal to M2

Dλmin,
where λmax and λmin are the largest and the smallest D-eigenvalues of W respectively.

Since the extreme AKC values are important clinical indicators, the extreme D-eigenvalues
of the diffusion kurtosis tensor are of great significance. As the D-eigenvalues are defined
through the optimality conditions of problem (1.2), we can resolve it by algorithms and
techniques for nonlinear complementarity problems (NCPs) [14,21]. In the fashion of recent
investigations [4,8,9,11], in this paper, we first introduce a new family of generalized NCP-
functions. Many favorite properties of this new family of NCP-functions are investigated.
This new family of NCP-functions includes many existing NCP-functions as special cases.
By the numerical experiments of [4, 8, 11], it is expected that algorithms for the reformula-
tions of NCPs based on this family of NCP-functions perform very well. So, we reformulate
the D-eigenvalue problem of the diffusion kurtosis tensor as a system of non-smooth equa-
tions, and then a Newton method is applied to such a system of equations. Such a method
is faster than the method proposed in [22]. While a fast algorithm is a basic requirement
for clinical applications, it deserves investigation.

Definition 1.2. A fourth-order n-dimensional tensor W is called a nonsingular (NS) tensor,
if given any 0 ̸= x ∈ ℜn, there is 1 ≤ i ≤ n, satisfying xi(Wx3)i ̸= 0.

Remark 1.3. It is easy to see that the concept of NS tensor is not vacuous. For example, it
contains the class of positive definite tenors defined in [23], i.e., W is called positive definite
if and only if Wx4 > 0 for all nonzero x.

Assumption 1.4. We assume in the following that the fourth-order three-dimensional
tensor W is an NS tensor.
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In fact, we find that the assumption is reasonable and always holds in practice.
The rest of this paper is organized as follows: a family of generalized NCP-functions

is proposed in the next section, and its many properties are discussed. In Section 3, we
reformulate the D-eigenvalue problem of diffusion kurtosis tensor as a system of non-smooth
equations, and then introduce a smoothing Newton method to solve such a system of equa-
tions based on the proposed NCP-functions in Section 2. Some preliminary numerical results
for randomly generated data are presented in Section 4. Some final remarks are given in the
last section.

2 A Family of Generalized NCP-Functions

In this section, we propose a family of generalized NCP-functions, and discuss its many
properties which are important for smoothing algorithms.

First, we notice that for any given x ∈ ℜn and 1 < p1 < p2, we have ∥x∥p2 ≤ ∥x∥p1 ≤
n( 1

p1
− 1

p2
)∥x∥p2 , and ∥x∥1 ≤

√
n∥x∥2, where we denote ∥ · ∥p the p-norm of vector for any

given p > 1. Then, we state the following lemma.

Lemma 2.1. For every 1 < p ≤ 2, θ ∈ (0, 2] and (a, b) ∈ ℜ2, the following inequality holds:

θ(|a|p + |b|p) + (1− θ)|a+ b|p ≥ 0.

Proof. If 1 < p ≤ 2, and θ ∈ (0, 1], then the result is obvious. Now, we assume that
1 < p ≤ 2 and θ ∈ (1, 2]. Let γ = θ− 1, then γ ∈ (0, 1], and θ(|a|p + |b|p) + (1− θ)|a+ b|p is
reduced as

(1 + γ)(|a|p + |b|p)− γ|a+ b|p.

With the observations before this lemma, we have

|a+ b|p ≤ (
√
2∥(a, b)∥2)p ≤ (

√
2∥(a, b)∥p)p ≤ 2∥(a, b)∥pp = 2(|a|p + |b|p).

Hence,

(1 + γ)(|a|p + |b|p)− γ|a+ b|p ≥ 2γ(|a|p + |b|p)− γ|a+ b|p

≥ 2γ(|a|p + |b|p)− 2γ(|a|p + |b|p)
= 0.

Here, the first inequality follows from γ ∈ (0, 1]. The proof is complete. �
For the convenience of the subsequent analysis, we define

ηθp(a, b) :=
p
√
θ(|a|p + |b|p) + (1− θ)|a+ b|p, p ∈ (1, 2], θ ∈ (0, 2), (a, b) ∈ ℜ2. (2.1)

Definition 2.2. A function is called an NCP-function, if for all (a, b) ∈ ℜ2, we have that

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

We now introduce a family of generalized NCP-functions as follows:

ϕθp(a, b) = p
√

θ(|a|p + |b|p) + (1− θ)|a+ b|p − a− b,

p ∈ (1, 2], θ ∈ (0, 2], (a, b) ∈ ℜ2. (2.2)
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Remark 2.3. We note that the same formula of ϕθp in the framework of second order
cone is proposed in [9], while parameters are chosen as θ ∈ (0, 2), p = 2 or θ ∈ (0, 1], p ∈
(1, 2)

∪
(2,+∞) in that paper. Consequently, the function defined by (2.2) is different from

that of [9] even if the latter reduces to the framework of ℜn
+. We also note that only

smoothness of ϕθp in [9] is investigated, so the properties discussed in the subsequence are
new even for the cases θ ∈ (0, 1], p ∈ (1, 2].

Proposition 2.4. The function ϕθp defined by (2.2) is an NCP-function.

Proof. According to the definition of the NCP-function, we divide the proof into two parts.
Firstly, we assume that a ≥ 0, b ≥ 0, ab = 0. Without loss of generality, we assume that

a = 0. With the expression of ϕθp, we can get ϕθp = 0 easily.

Secondly, we assume that ϕθp = 0, i.e., p
√
θ(|a|p + |b|p) + (1− θ)|a+ b|p = a+ b. Hence,

a+ b ≥ 0. Furthermore, we get

θ(|a|p + |b|p) + (1− θ)|a+ b|p = (a+ b)p,

that is to say
θ(|a|p + |b|p) = θ(a+ b)p.

Since θ ∈ (0, 2], we have |a|p + |b|p = (a + b)p. From this and [4, Proposition 3.1], we get
a ≥ 0, b ≥ 0, ab = 0.

Consequently, the function ϕθp is an NCP-function for all 1 < p ≤ 2, θ ∈ (0, 2]. �
Moreover, applying the Minikowski inequality, the following relation

ηθp((a, b) + (c, d))

= p
√
θ(|a+ c|p + |b+ d|p) + (1− θ)|a+ c+ b+ d|p

=
p
√

|θ
1
p a+ θ

1
p c|p + |θ

1
p b+ θ

1
p d|p + |(1− θ)

1
p (a+ b) + (1− θ)

1
p (c+ d)|p

≤
p
√

|θ
1
p a|p + |θ

1
p b|p + |(1− θ)

1
p (a+ b)|p + p

√
|θ

1
p c|p + |θ

1
p d|p + |(1− θ)

1
p (c+ d)|p

=
p
√

θ(|a|p + |b|p) + (1− θ)|(a+ b)|p + p
√

θ(|c|p + |d|p) + (1− θ)|(c+ d)|p

= ηθp(a, b) + ηθp(c, d)

holds for any (a, b), (c, d) ∈ ℜ2, and 1 < p ≤ 2, θ ∈ (0, 1]. Thus, it is easy to see that ηθp is a
norm on ℜ2 for all 1 < p ≤ 2, θ ∈ (0, 1].

The concept of semismoothness of functions is somewhat the core of generalized Newton
method or smoothing Newton method. It was first introduced by Miffin [19] for functions,
and then extended to vector valued functions by Qi and Sun [21].

Definition 2.5. A locally Lipschitz continuous function F : ℜn → ℜn is semismooth
(respectively, strongly semismooth) at x ∈ ℜn, if it satisfies

(i) F is directionally differentiable at x ∈ ℜn.

(ii) For all V ∈ ∂F (x+h), F (x+h)−F (x)−V h = o(∥h∥2)(respectively,O(∥h∥22)), where
∂F (·) denotes the generalized Jacobian in the sense of Clarke [5].

Theorem 2.6. For all 1 < p ≤ 2, θ ∈ (0, 1], we have

(i) ϕθp is sub-additive, i.e., for all (a, b), (c, d) ∈ ℜ2, it holds ϕθp((a, b)+(c, d)) ≤ ϕθp(a, b)+
ϕθp(c, d).
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(ii) ϕθp is positive homogenous, i.e., for all (a, b) ∈ ℜ2 and α > 0, it holds ϕθp(α(a, b)) =
αϕθp(a, b).

(iii) ϕθp is a convex function.

(iv) ϕθp is Lipschitz continuous on ℜ2.

Proof. By the fact that ϕθp(a, b) = ηθp(a, b)− (a+ b) and ηθp(a, b) is a norm, we can obtain
that the results (i), (ii), and (iii) hold immediately.

We now consider the result (iv). Since ηθp is a norm on ℜ2 and any two norms in finite
dimensional space are equivalent, there exists a positive constant κ such that

ηθp(a, b) ≤ κ∥(a, b)∥2, ∀(a, b) ∈ ℜ2,

Hence, for any (a, b), (c, d) ∈ ℜ2,

|ϕθp(a, b)− ϕθp(c, d)| = |(ηθp(a, b)− (a+ b))− (ηθp(c, d)− (c+ d))|
≤ |ηθp(a, b)− ηθp(c, d)|+ |(a− c) + (b− d)|
≤ ηθp(a− c, b− d) + |a− c|+ |b− d|
≤ κ∥(a− c, b− d)∥2 +

√
2∥(a− c, b− d)∥2

= (κ+
√
2)∥(a− c, b− d)∥2.

Hence, ϕθp is Lipschitz continuous, and the Lipschitz constant is κ +
√
2. Thus, the result

(iv) holds. The proof is complete. �
Theorem 2.7. For all 1 < p ≤ 2, θ ∈ (0, 2), ϕθp satisfies

(i) ϕθp is continuously differentiable on ℜ2\{(0, 0)}.

(ii) ϕθp is locally Lipschitz continuous.

(iii) ϕθp is strongly semismooth on ℜ2.

Proof. (i) When (a, b) ̸= (0, 0), we get ηθp(a, b) > 0 . By a direct calculation, we have

∂ϕθp(a, b)

∂a
=

θsgn(a)|a|p−1 + (1− θ)sgn(a+ b)|a+ b|p−1

ηp−1
θp (a, b)

− 1; (2.3)

∂ϕθp(a, b)

∂b
=

θsgn(b)|b|p−1 + (1− θ)sgn(a+ b)|a+ b|p−1

ηp−1
θp (a, b)

− 1, (2.4)

where sgn(·) is the signum function. Now, it is obvious from (2.3) and (2.4) that the result
(i) holds.

(ii)ϕθp is continuously differentiable on ℜ2\{(0, 0)}, so ϕθp is locally Lipschitz continuous.
Consequently, it is sufficient to prove that ϕθp is locally Lipschitz continuous at (0, 0).

For all 1 < p ≤ 2, θ ∈ (0, 2), ∀(h, k) ∈ ℜ2\{(0, 0)},

|ϕθp(h, k)− ϕθp(0, 0)| = | p
√
θ(|h|p + |k|p) + (1− θ)|h+ k|p − (h+ k)|

≤ | p
√
θ(|h|p + |k|p) + |1− θ∥h+ k|p|+ |h+ k|

≤
p
√
θ(21/p−1/2∥(h, k)∥2)p + |1− θ|(

√
2∥(h, k)∥2)p + ∥(h, k)∥2

≤ κ∥(h, k)∥2
= κ∥(h, k)− (0, 0)∥2,



618 Y. WANG, S. HU AND H. NI

where κ is a positive constant. So, it is easy to get that ϕθp is locally Lipschitz continuous
at (0, 0).

(iii)Based on the results of (i) and (ii), noticing that ϕθp is continuously differentiable
except (0, 0), it is easy to see that ϕθp is strongly smeismooth on ℜ2\{(0, 0)}. Consequently,
it is sufficient to prove that ϕθp is strongly semismooth at (0, 0). For any (h, k) ∈ ℜ2\{(0, 0)},
ϕθp is differentiable at (h, k), and hence,

∇ϕθp(h, k) = (∂aϕθp(h, k), ∂bϕθp(h, k)),

So, we have

ϕθp((0, 0) + (h, k))− ϕθp(0, 0)− (∂aϕθp(h, k), ∂bϕθp(h, k))(h, k)
T

= p
√
θ(|h|p + |k|p) + (1− θ)|h+ k|p − (h+ k)

−(
θsgn(h)|h|p−1 + (1− θ)sgn(h+ k)|h+ k|p−1

ηp−1
θp (h, k)

− 1)h

−(
θsgn(k)|k|p−1 + (1− θ)sgn(h+ k)|h+ k|p−1

ηp−1
θp (h, k)

− 1)k

= p
√
θ(|h|p + |k|p) + (1− θ)|h+ k|p

−θ(sgn(h)|h|p−1h+ sgn(k)|k|p−1k) + (1− θ)sgn(h+ k)|h+ k|p−1(h+ k)

ηp−1
θp (h, k)

= p
√
θ(|h|p + |k|p) + (1− θ)|h+ k|p − θ(|h|p + |k|p) + (1− θ)|h+ k|p

ηp−1
θp (h, k)

=
ηpθp(h, k)− θ(|h|p + |k|p)− (1− θ)|h+ k|p)

ηp−1
θp (h, k)

= 0 = O(∥(h, k)∥22).

Thus, we obtain that ϕθp is strongly semismooth at (0, 0). The proof is complete. �
The following theorems deal with the related coerciveness property of ϕθp and Φθp defined

below, which is important to analyze the convergence of smoothing algorithms [12].

Theorem 2.8. Let ϕθp be defined by (2.2) for p ∈ (1, 2] and θ ∈ (0, 2). Then, |ϕθp(a
k, bk)| →

+∞ if the sequence {(ak, bk)} ⊆ ℜ2 satisfies one of the following conditions:
(i) ak → −∞; (ii) bk → −∞;

(iii) ak → +∞, bk → +∞ and limk→+∞
|ak|p+|bk|p
|ak+bk|p < 1.

Proof. (i) Suppose that ak → −∞. If there exists a constant M such that bk ≤ M for
sufficiently large k, then |ϕθp(a

k, bk)| → +∞ is obvious. Now, we suppose bk → +∞.

a) When {ak + bk} is bounded from above, it is easy to see from the definition of ϕθp

that |ϕθp(a
k, bk)| → +∞.

b) When ak + bk → +∞, it follows that |ak + bk|p ≤ |ak − bk|p for sufficiently large k.

If θ ∈ (0, 1], then

ϕθp(a
k, bk) =

p
√
θ(|ak|p + |bk|p) + (1− θ)|ak + bk|p − (ak + bk)

≤ p
√
θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p − (ak + bk).
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By [8, Proposition 2.4], we know that
p
√

θ(|ak|p + |bk|p) + (1− θ)|ak − bk|p−(ak+
bk) → −∞ and then |ϕθp(a

k, bk)| → +∞.

If θ ∈ (1, 2), let γ = θ− 1 ∈ (0, 1), then θ = γ+1. Since |ak + bk|p ≤ |ak|p+ |bk|p,
or −γ|ak + bk|p ≥ −γ(|ak|p + |bk|p), we have

ϕθp(a
k, bk) =

p
√
θ(|ak|p + |bk|p) + (1− θ)|ak + bk|p − (ak + bk)

=
p
√
(γ + 1)(|ak|p + |bk|p)− γ|ak + bk|p − (ak + bk)

≥ p
√
|ak|p + |bk|p − (ak + bk) ≥ |bk| − (ak + bk) = −ak → +∞.

Hence, |ϕθp(a
k, bk)| → +∞.

Thus, when a → −∞, b → +∞, and ak+bk → +∞, it follows that |ϕθp(a
k, bk)| → +∞.

(ii) For the case of bk → −∞, the proof is similar to that of (i).
(iii) Suppose that ak → +∞ and bk → +∞ as k → +∞, then |ak + bk| → +∞.

a) When θ ∈ (0, 1], if ak

bk
→ +∞ or ak

bk
→ 0, it is easy to see that these contradict the

condition that limk→+∞
|ak|p+|bk|p
|ak+bk|p < 1. Hence, ak

bk
→ c > 0, and then |ak|p+|bk|p

|ak+bk|p →
cp+1
(c+1)p ∈ (0, 1). Thus, we get that{∣∣∣∣∣ p

√
θ · |a

k|p + |bk|p
|ak + bk|p

+ (1− θ)− 1

∣∣∣∣∣
}

has a positive bounded from below. Furthermore, it follows

|ϕθp(a
k, bk)| = |ak + bk|

∣∣∣∣∣ p

√
θ · |a

k|p + |bk|p
|ak + bk|p

+ (1− θ)− 1

∣∣∣∣∣ → +∞

as k → +∞.

b) Let θ ∈ (1, 2), let γ = θ − 1 ∈ (0, 1), then θ = γ + 1. Since |ak + bk|p ≥ |ak|p + |bk|p,
or −γ|ak + bk|p ≤ −γ(|ak|p + |bk|p), we have

ϕθp(a
k, bk) =

p
√

θ(|ak|p + |bk|p) + (1− θ)|ak + bk|p − (ak + bk)

=
p
√

(γ + 1)(|ak|p + |bk|p)− γ|ak + bk|p − (ak + bk)

≤ p
√

|ak|p + |bk|p − (ak + bk).

By [8, Proposition 2.4], we know that
p
√

|ak|p + |bk|p − (ak + bk) → −∞ when (iii) is
satisfied and k → +∞. Therefore,

|ϕθp(a
k, bk)| → +∞ as k → +∞.

The proof is complete. �

Definition 2.9. Let ϕ : ℜn → ℜn be a vector valued function.
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• ϕ is said to be strongly monotone with modulus µ > 0 if (x − y)T (ϕ(x) − ϕ(y)) ≥
µ∥x− y∥22 for all x, y ∈ ℜn.

• ϕ is said to be a uniform P -function with modulus µ > 0 if max1≤i≤n(xi− yi)(ϕi(x)−
ϕi(y)) ≥ µ∥x− y∥22 for all x, y ∈ ℜn.

• ϕ is said to be coercive, if lim∥x∥2→+∞ ∥ϕ(x)∥2 = +∞.

Define the following function:

Φθp(x) :=


ϕθp(x1, F1(x))
ϕθp(x2, F2(x))

...
ϕθp(xn, Fn(x))

 , (2.5)

where F : ℜn → ℜn, 1 < p ≤ 2, θ ∈ (0, 2), ϕθp is defined by (2.2).

Theorem 2.10. Let Φθp be defined by (2.5) with 1 < p ≤ 2, θ ∈ (0, 2). If the continuous
function F is a uniform P -function with modulus µ > 0. and satisfies that

lim
∥xk∥2→+∞

max
1≤i≤n

|Fi(x
k)|

∥xk∥2
< +∞

for any {xk} ⊂ ℜn, and ∥xk∥2 → +∞. Then, Φθp is coercive.

Proof. Assume that {xk} ⊂ ℜn satisfies ∥xk∥2 → +∞. Set J := {i : |xk
i | → +∞}, then, J is

nonempty. Let {yk} ⊂ ℜn be defined as

yki :=

{
xk
i , i ̸∈ J
0, i ∈ J

∀k ∈ {1, 2, . . . }.

Then, {yk} is bounded. Since F is a continuous and uniform P -function with modulus
µ > 0, we have

µ
∑
i∈J

(xk
i )

2 = µ∥xk − yk∥22

≤ max
1≤i≤n

(xk
i − yki )(Fi(x

k)− Fi(y
k))

= max
i∈J

(xk
i − yki )(Fi(x

k)− Fi(y
k))

= max
i∈J

xk
i (Fi(x

k)− Fi(y
k))

= xk
i0(Fi0(x

k)− Fi0(y
k))

≤ |xk
i0 | · |Fi0(x

k)− Fi0(y
k)|

≤
√∑

i∈J

(xk
i )

2|Fi0(x
k)− Fi0(y

k)|.

As
∑

i∈J (x
k
i )

2 → +∞, {yk} is bounded, and F is continuous, we can get that

∥F (xk)∥2 → +∞. Now, Furthermore, since F is a uniform P -function with modulus µ > 0,

we have that lim∥xk∥2→+∞ max1≤i≤n
|Fi(x

k)|
∥xk∥2

≥ µ > 0. Now, combining it with
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lim∥xk∥2→+∞ max1≤i≤n
|Fi(x

k)|
∥xk∥2

< +∞, it is easy to get that (iii) in Theorem 2.8 holds.

Hence, we get limk→+∞ ∥Φθp∥2 = +∞, that is , Φθp is coercive. �

By a similar analysis of the proof in Theorem 2.10, we could get the following result.

Theorem 2.11. Suppose that Φθp is defined as (2.5). If the continuous function F : ℜn →
ℜn is strongly monotone with modulus µ > 0 for all 1 < p ≤ 2 and θ ∈ (0, 2), and satisfies

lim∥xk∥2→+∞ max1≤i≤n
|Fi(x

k)|
∥xk∥2

< +∞ for any {xk} ⊂ ℜn and ∥xk∥2 → +∞. Then, Φθp is
coercive.

3 Smoothing Algorithm

We restate the D-eigenvalue problem:

max Wx4

s.t. Dx2 = 1,
(3.1)

then, a D-eigenvalue λ and the corresponding D-eigenvector x of W satisfy the optimality
conditions of (3.1) as follows:

Wx3 = λDx; Dx2 = 1. (3.2)

For the optimization problem (3.1), although it has a simple form, it is highly nonlinear and
nonconvex. Actually, without the restriction of the dimension of tensor W to be three, such
a problem is NP-hard [16, 26]. While what we need is the critical points of programming
(3.1) in the applications of medical imaging [22], it may be more suitable to solve the KKT-
system of some variants of the above programming. In the following, we construct a familiar
complementarity problem from the optimality conditions of (3.1) to get the D-eigenvalue
pairs. At first, we present the following results.

Theorem 3.1. Suppose that Assumption 1.4 holds. Then the D-eigenvalue λ and the cor-
responding D-eigenvector x of W can be obtained from the optimality conditions of the
following problem:

max Wx4

s.t. Dx2 ≤ 1,
Dx2 ≥ 0.5.

(3.3)

Proof. The optimality conditions of (3.3) are to find x ∈ ℜ3 and λ := (λ1, λ2) ∈ ℜ2 such
that

2Wx3 + λ1Dx− λ2Dx = 0;

1−Dx2 ≥ 0; Dx2 − 0.5 ≥ 0; λ1 ≥ 0; λ2 ≥ 0; (3.4)

λ1(1−Dx2) = 0; λ2(Dx2 − 0.5) = 0,

where Wx3 denotes a vector whose i-th component is
∑3

j,k,l=1 Wijklxjxkxl.

Suppose that (x∗, λ∗
1, λ

∗
2) ∈ ℜ3 × ℜ × ℜ is a solution to (3.4). The proof is divided into

three parts.
Part 1. Suppose that 1−D(x∗)2 = 0. In this case, it follows from (3.4) that λ∗

1 ≥ 0 and
λ∗
2 = 0. By the first equality of (3.4), we have

2W (x∗)3 + λ∗
1Dx∗ = 0.
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Thus, (x∗,−1
2λ

∗
1) solves the optimality conditions (3.2) of (3.1).

Part 2. Suppose that D(x∗)2−0.5 = 0. In this case, it follows from (3.4) that D( x∗
√
0.5

)2 =

1 and λ∗
2 ≥ 0, λ∗

1 = 0. By the first equality of (3.4), we have

2W (x∗)3 − λ∗
2Dx∗ = 0,

So, W ( x∗
√
0.5

)3 =
λ∗
2

2 · 1√
0.5

2D( x∗
√
0.5

) = λ∗
2D( x∗

√
0.5

). Thus, ( x∗
√
0.5

, λ∗
2) is a solution of (3.2).

Part 3. Suppose that 1−Dx2 > 0 and Dx2 − 0.5 > 0, then x∗ ̸= 0 and λ∗
1 = 0, λ∗

2 = 0.
Therefore, W (x∗)3 = 0, but 0 ̸= x∗ ∈ ℜ3, which contradicts Assumption 1.4.

Combining Part 1-Part 3, we complete the proof. �

Let F : ℜn → ℜn be a nonlinear mapping, the nonlinear complementarity problem (NCP
for short) is to find x ∈ ℜn such that

x ≥ 0; F (x) ≥ 0 and xTF (x) = 0.

For two functions G : ℜn × ℜm → ℜn and H : ℜn × ℜm → ℜm, the mixed nonlinear
complementarity problem (MNCP for short) is to find x ∈ ℜn, y ∈ ℜm such that

G(x, y) = 0; y ≥ 0; H(x, y) ≥ 0 and yTH(x, y) = 0.

Therefore, letG(x, λ) = 2Wx3+λ1Dx−λ2Dx,H1(x, λ) = 1−Dx2,H2(x, λ) = Dx2−0.5, n =
3,m = 2, then the system (3.4) is an MNCP. Furthermore, if x ∈ ℜ3 is the optimal solution
of (3.1), then there is a λ ∈ ℜ2 satisfying (3.4).

Theorem 3.2. Suppose that D is positive definite. Then the solution set of (3.4) is
nonempty and bounded.

Proof. The object function of Theorem 3.1 is continuous and its feasible set is nonempty and
bounded. Hence, the solution set of Theorem 3.1 is nonempty from the classical results of
analysis. Consequently, the solution set of (3.4) is nonempty. From 1−Dx2 ≥ 0, Dx2−0.5 ≥
0 and the positive definiteness of D, we have that the set of all x satisfying (3.4) is nonempty
and bounded. Therefore, the sequence of λ satisfying 2Wx3+λ1Dx−λ2Dx = 0 is bounded.
The proof is complete. �

Since D is always positive definite in practice, we assume in the sequel that D is positive
definite, and hence the solution set of (3.4) is always nonempty and bounded.

Definition 3.3. A function Hε : ℜn → ℜm is called a smooth approximation of a function
H : ℜn → ℜm, if for any ε > 0, Hε is continuous and differentiable, and for any x ∈ ℜn,
when ε ↓ 0,

∥Hε −H∥2 → 0.

Theorem 3.4. For all 1 < p ≤ 2, θ ∈ (0, 2), the function defined as following

ϕε
θp(a, b) :=

p
√

θ(|a|p + |b|p) + (1− θ)|a+ b|p + 4ε− a− b, ∀(a, b) ∈ ℜ2,∀ε > 0 (3.5)

is a smooth approximation of ϕθp.

Proof. From Definition 3.3, the desired result can be easily checked. We omit the details.
�
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In general, we call ε in (3.5) a smoothing parameter, which can be regarded as a variable
similar to the argument x in some numerical algorithms. Now, we definite a function as
following:

ϕθp(ε, a, b) :=
p
√
θ(|a|p + |b|p) + (1− θ)|a+ b|p + 4ε− a− b, ∀(a, b) ∈ ℜ2, ∀ε > 0, (3.6)

where 1 < p ≤ 2, and θ ∈ (0, 2).
In the following, we reformulate the MNCP (3.4) into a parameterized smooth equations.

First of all, define

H(ε, x, s, λ) :=


2Wx3 + λ1Dx− λ2Dx

s1 − 1 +Dx2

s2 −Dx2 + 0.5
ϕθp(ε, s, λ)− εs

ε

 (3.7)

and Ψ(ε, x, s, λ) := ∥H(ε, x, s, λ)∥22. Then, it is easy to verify that for all 1 < p ≤ 2, θ ∈ (0, 2),
x ∈ ℜ3 and λ ∈ ℜ2 are the solutions of (3.4) if and only if H(ε, x, s, λ) = 0.

We state some notations for the convenience of the subsequent analysis. For a given
finite set C := {ci : i = 1, 2, . . . ,m}, we denote an m-dimension column vector with its i-th
component being ci as vec{ci : i = 1, 2, . . . ,m}, an m × m diagonal matrix with its i-th
diagonal element being ci as diag{ci : i = 1, 2, . . . ,m}. Set K := {0, 1, 2, . . .}.

Theorem 3.5. For all 1 < p ≤ 2, θ ∈ (0, 2), and ε > 0, the function H(ε, x, s, λ) defined by
(3.7) is continuously differentiable. Let z := (ε, x, s, λ), and H ′ denotes the Jacobian matrix
of H(z), then

H ′(z) =


03×1 6Wx2 + λ1D − λ2D 03×2 A
02×1 2A I2×2 02×2

d(z)− s 02×3 e(z)− εI2×2 f(z)
1 01×3 01×2 01×2

 .

where

A := [Dx −Dx], d(z) := vec

{
4

pηp−1
θp (ε,si,λi)

: i = 1, 2

}
,

e(z) := diag

{
θsgn(si)|si|p−1+(1−θ)sgn(si+λi)|si+λi|p−1

ηp−1
θp (ε,si,λi)

− 1 : i = 1, 2

}
,

f(z) := diag

{
θsgn(λi)|λi|p−1+(1−θ)sgn(si+λi)|si+λi|p−1

ηp−1
θp (ε,si,λi)

− 1 : i = 1, 2

}
,

ηθp(ε, s, λ) := p
√
θ(|si|p + |λi|p) + (1− θ)|si + λi|p + 4ε.

Proof. The results can be obtained by direct calculation. We omit the details. �

Next, we propose a non-interior-point smoothing Newton algorithm to solve the restruc-
turing model (3.7).

Algorithm 3.6 (A Non-interior-point Smoothing Newton Algorithm).

Step 0 Given real numbers 1 < p ≤ 2, δ, σ ∈ (0, 1), θ ∈ (0, 1], and ε0 > 0, x0 ∈ ℜ3, s0, λ0 ∈
ℜ2 are the initial parameters. Set z0 := (ε0, x0, s0, λ0). Choose β > 1 such that
∥H(z0)∥2 ≤ βε0. Set e0 := (1, 0, 0, 0) ∈ ℜ × ℜ3 ×ℜ2 ×ℜ2 and k := 0.
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Step 1 If ∥H(zk)∥2 = 0, stop.

Step 2 Calculate δzk := (δεk, δxk, δsk, δλk) ∈ ℜ × ℜ3 ×ℜ2 ×ℜ2, satisfying

H(zk) +H ′(zk)δzk =
1

β
∥H(zk)∥2e0. (3.8)

Step 3 Find the smallest positive integer mk such that

∥H(zk + δmkδzk)∥2 ≤ (1− σ(1− 1

β
)δmk)∥H(zk)∥2. (3.9)

Step 4 Set lk := δmk , zk+1 := zk + lkδzk, k := k + 1 and go to step 1.

Remark 3.7. Since some properties for ϕθp are hard to get for all parameters, we use only
p ∈ (1, 2], θ ∈ (0, 1] in the above algorithm.

Theorem 3.8. For all 1 < p ≤ 2, θ ∈ (0, 1], ε > 0, s, λ ∈ ℜ, we have

θsgn(λ)|λ|p−1 + (1− θ)sgn(s+ λ)|s+ λ|p−1

ηp−1
θp (ε, s, λ)

− 1 < 0,

θsgn(s)|s|p−1 + (1− θ)sgn(s+ λ)|s+ λ|p−1

ηp−1
θp (ε, s, λ)

− 1 < 0.

Proof. The proof is similar to that of [8, Proposition 2.5]. �

Assumption 3.9. Set N(β) := {z ∈ ℜ++ × ℜ3 × ℜ2 × ℜ2 : ∥H(z)∥2 ≤ βε}, where β is a
given constant by Algorithm 3.6. Suppose that for every z ∈ N(β), H ′(z) is invertible.

Remark 3.10. It is easy to see from Theorem 3.5 that the invertibility of H ′(z) relates
to the invertibility of the term 6Wx2 + λ1D − λ2D. However, the invertibility of 6Wx2 +
λ1D − λ2D is difficult to characterize at present. We see from the practical computation
that Assumption 3.9 is always satisfied.

Definition 3.11. A function H : Ω ⊆ ℜn → ℜn is called a weak-univalent function, if there
is a continuous injective function sequence {Hk} which is uniformly convergent to H on any
bounded subset of Ω.

Thus, similar to the proof of [6, Theorem 7], we can get the following theorem.

Theorem 3.12. Suppose that Assumption 3.9 holds, then for all ε > 0, the function H
defined in (3.7) is a weak-univalent function.

Theorem 3.13. Suppose that Assumption 3.9 holds. If {zk} is a infinite sequence obtained
by Algorithm 3.6, then

(i) The sequence {∥H(zk)∥2} is monotone and decreasing.

(ii) For every k ∈ K, zk ∈ N(β), where N(β) is defined in Assumption 3.9.

(iii) The sequence {εk} is monotone and decreasing.

Proof. The proof is similar to [12, Lemma 3.1], and we omit the details. �

Theorem 3.14. Suppose that Assumption 3.9 holds, then Algorithm 3.6 is well-defined.
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Proof. First of all, we have

εk+1 = εk + lkδεk = (1− lk)εk + lk
1

β
∥H(zk)∥2 > 0.

Hence, according to Theorem 3.5, the Jacobian of H(zk) can be obtained.
Secondly, we will show that the Newton equation is solvable. Similar to [17, Lemma

4.1], with the assumption, we can easily get the nonsingularity of H(zk). Thus, Step 2 of
Algorithm 3.6 is well-defined.

Finally, the line search in Step 3 of Algorithm 3.6 is well-defined. In fact, set

R(zk) := H(zk + αδzk)−H(zk)− αH ′(zk)δzk,

then, by Step 2 of Algorithm 3.6, we have

∥H(zk + αδzk)∥2 = ∥R(zk) +H(zk) + αH ′(zk)δzk∥2

≤ ∥R(zk)∥2 + ∥H(zk)∥2 − α(1− 1

β
)∥H(zk)∥2

≤ ∥R(zk)∥2 + [1− α(1− 1

β
)]∥H(zk)∥2.

Since for all k ∈ K, εk > 0 holds, we can get that H is continuous and differentiable, and
then ∥R(zk)∥2 = o(α) holds.

Thus, Algorithm 3.6 is well-defined. The proof is complete. �

Theorem 3.15. For all {zk} satisfying ∥(si, λi)∥2 → +∞, and εk ∈ [ε1, ε2], where ε1 and
ε2 both are positive constant satisfying ε1 < ε2, there holds

Ψ(zk) → +∞.

Proof. The proof is similar to that of [13, Lemma 2.4], we omit it. �

Theorem 3.16. Suppose that Assumption 3.9 holds, and suppose that {zk} is the infi-
nite sequence generated by Algorithm 3.6, then the sequence {zk} is bounded, and its any
accumulation point is a solution to (3.4).

Proof. The proof is similar to that of [11, Theorem 4.1], see also the proof of [14, Theorem
2]. We omit it. �

4 Numerical Results

In this section, we report some preliminary numerical results of Algorithm 3.6 for randomly
generated data to get the corresponding D-eigenvalues.

The randomly generated data are constructed in the following way: construct a 3-
dimensional positive definite matrix D (a second-order 3-dimensional symmetric positive
definite tensor) and a fourth-order 3-dimensional symmetric tensor W . We denote an n×m
matrix whose each element is generated uniformly in the interval [0, 1] as rand(n,m). All
the codes are written in Matlab, and all the tests are implemented on our PC with CPU
being 2.4GHZ and RAM being 256MB. The parameters of the numerical implementation
are selected as following:

δ := 0.5, σ := 0.001, ε0 := 0.1, β := max

{
2,

∥H(z0)∥2
ε0

}
.
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In the numerical experiments, we use ∥H(zk)∥2 ≤ 10−6 as the the stopping rule. We
implement Algorithm 3.6 with the following example:

Example 4.1. Let D := (rand(3, 3)T rand(3, 3) + I3×3 × 0.5)× 10−3 and select W ’s fifteen
independent variables as 0.2× rand(15, 1).

The initial points in each numerical computations are selected as the following:

x0 := 300× rand(3, 1), s01 := 1−D(x0)2, s02 := D(x0)2 − 0.5, λ0
1 := 0, λ0

2 := 0.

The numerical results are listed in Table 1. In Table 1, we denote by θ and p the
parameters specified for the corresponding case; x the found D-eigenvector; λ the found
D-eigenvalue; IT the iteration number when the algorithm terminates; CPU the cpu time
spent for the algorithm finding the corresponding D-eigenvalue. From Table 1, we have the
following observations:

(i) For the randomly generated example, we can find a D-eigenvalue and the corresponding
D-eigenvector effectively for every case (θ ∈ (0, 1] and p ∈ (1, 2]). And the proposed
algorithm can find the solutions within a few iteration steps and short CPU time.

(ii) For different values of θ or p, the found D-eigenvalue usually varies for different cases,
which indicates that the D-eigenvalue and the D-eigenvector of W are not unique.
In [20], the number of the D-eigenvalue of a fourth-order 3-dimensional symmetric
tensor is estimated to be no more than 13. However, not every tensor has exactly 13
D-eigenvalues. For example, only 12 D-eigenvalues for the example in [22].

(iii) From Table 1, we see that the algorithm works better when θ around 0.75.

(iv) It is easy to see that when θ = 1 and p = 2, Algorithm 3.6 corresponds to the case of
using classical FB function. In this case, we can also see from Table 1 that the number
of the iterate is more than two times that of the case with θ = 0.9 and p = 1.1, and
the cpu time is more than two times that of the case with θ = 0.25 and p = 1.1. In
addition, many cases show that the classical FB function is not the best choice, which
demonstrate that our proposed generalized NCP-functions are useful from the view of
improving the performance of the algorithm.

A method to find out all the D-eigenvalues of a given tensor by polynomial rooting
was proposed in [22]. We know that it is difficult to get all, or even one, roots/root of a
high-degree polynomial, but the smoothing algorithm of this paper can deal with high order
tensors efficiently. Hence, for higher order tensors like those in [24], the method in this paper
is applicable.

5 Final Results

In this paper, a family of generalized NCP-functions was proposed, and many favorite
properties for this class of NCP-functions were analyzed. Such a class of NCP-functions has
potential applications in designing efficient numerical algorithms for smoothing reformula-
tions of NCPs. Based on the proposed NCP-functions, we reformulated the D-eigenvalue
problem of diffusion kurtosis tensor as a system of non-smooth equations. A smoothing
Newton method was proposed then to try to find out the D-eigenvalues of a diffusion kur-
tosis tensor by varying the parameters of this family of generalized NCP-functions. The
numerical results show that the proposed numerical method is promising. This method has
the potential application in the computation of eigenvalues of higher order tensors, because
the sizes of the problems will not be changed after we reformulated them.
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Table 1: Numerical results

p θ x λ× 10−6 IT CPU

0.10 ( 11.91, -6.94,22.75) 0.0446 26 10.4844

0.25 (-20.35, 9.69,16.32) 0.17763 22 0.3594

1.1 0.50 (-20.35, 9.69,16.32) 0.17763 19 0.3750

0.75 ( 11.91,-6.94,22.75) 0.04462 20 0.5000

0.90 (-20.35, 9.69,16.32) 0.17763 16 0.4531

1.00 ( 12.24,31.63, 2.16) 0.39403 26 0.3906

0.10 ( 11.91,-6.94,22.75) 0.04462 100 3.7031

0.25 ( 11.91,-6.94,22.75) 0.04462 97 2.1875

1.5 0.50 ( 11.91,-6.94,22.75) 0.04462 26 0.6718

0.75 (-20.35, 9.69,16.32) 0.17763 19 0.5469

0.90 ( 11.91,-6.94,22.75) 0.04462 54 1.0469

1.00 ( 11.91,-6.94,22.75) 0.04462 27 0.67196

0.10 ( 11.91,-6.94,22.75) 0.04462 20 0.5313

0.25 ( 11.91,-6.94,22.75) 0.04462 34 0.8906

2.0 0.50 ( 11.91,-6.94,22.75) 0.044618 39 1.0000

0.75 ( 11.91,-6.94,22.75) 0.044618 27 0.8281

0.90 ( 12.24,31.63, 2.16) 0.39403 51 1.1719

1.00 ( 12.24,31.63, 2.16) 0.39403 37 0.7967


