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If Y ∈ D∗
F can be detected in polynomial time, then problem (1.1) can be solved in

polynomial time. In fact, when F is n-dimensional real space, an ellipsoid or a second order
cone, whether Y belongs to D∗

F can be determined in polynomial time [9, 21]. However,
in general, checking whether a matrix belongs to DF or D∗

F is NP-hard. For example,
Murty and Kabadi [18] proved that checking whether a given matrix is copositive over Rn

+

is co-NP-complete. In order to solve the linear conic programming problems over DF or
D∗

F , finding computable cones to approximate DF or D∗
F becomes a promising research

topic. Based on the fact that the cone of nonnegative quadratic forms over an ellipsoid
is computable, Deng et al. [6] and Lu et al. [15] proposed conic approximation methods
for detecting copositivity of a symmetric matrix and for the box constrained quadratic
programming problem, respectively. Zhou et al. [24] solved the 0-1 quadratic knapsack
problem based on that the cone of nonnegative quadratic forms over the intersection of
an ellipsoid and a linear inequality is computable. Furthermore, Tian et al. [22] derived
the computable representation of the cone of nonnegative quadratic forms over a general
second-order cone for solving the completely positive programming problem. Inspired by
these results and the decomposition methods introduced in [21], a union of second order
cones is chosen to approximate the p-th order cone in this paper.

As a generalization of the second order cone programming, the p-th order cone con-
strained optimization problem has received increasing attention. Several papers [1, 14, 23]
considered problems with p-th order cone constraints. Also, Burer [5] proposed a p-th order
cone sequential relaxation procedure for solving 0-1 integer constrained linear programming
problem. In practice, some problems are formulated into models with a quadratic objec-
tive function over p-th order cones. For instance, the problem proposed by Meinshausen
and Bühlmann [17] in the learning sparse networks can be formulated as the p-th order
cone constrained quadratic programming problem with p = 1. Furthermore, the lp distance
location-allocation problem [20] can be casted into a quadratic programming problem with
several p-th order cones and linear constraints. By using the conic reformulation method,
all these problems can be reformulated or relaxed as a linear conic programming problem
over DF or D∗

F where F is a p-th order cone. Therefore, efficiently detecting whether a
matrix is copositive over a p-th order cone becomes critical.

By the definition of DF , detection of a copositive matrix over a p-th order cone, which
is briefly named the detection problem in this paper, can be formulated as:

Vdetect-P = min

[
t
x

]T
M

[
t
x

]
,

s.t.

[
t
x

]
∈ Fdetect-P, (detect-P)

where

Fdetect-P =

{[
t
x

]
∈ R× Rn

∣∣∣∣∥x∥p = (

n∑
i=1

|xi|p)1/p ≤ t

}

is a p-th order cone and M =

[
M11 (M21)T

M21 M22

]
with M11 ∈ R, M21 ∈ Rn and M22 ∈ Sn.

Notice that M ∈ DFdetect-P
if and only if Vdetect-P ≥ 0.

When p = 2, problem (detect-P) can be solved in polynomial time [9, 22], and thus we
can detect whether M ∈ DFdetect-P

in polynomial time. However, as far as we know, there
is no known complexity result for 1 ≤ p ̸= 2.

In this paper, we prove that M ∈ DFdetect-P
if and only if the optimal value of the
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following problem

Vdetect-CS = min

[
1
x

]T
M

[
1
x

]
s.t.

[
1
x

]
∈ Fdetect-CS, (detect-CS)

where Fdetect-CS =

{[
1
x

]
∈R×Rn

∣∣∣∣∥x∥p = (
∑n

i=1 |xi|p)1/p ≤ 1

}
is a cross-section of Fdetect-P

at t = 1, is no less than 0. Problem (detect-CS) is NP-hard when p = 1 [8], and it is still
NP-hard [13] when p > 2 under the “unique games conjecture” [11], which is a commonly
used assumption in complexity theory. Hence we do not expect to solve the detection prob-
lem by solving problem (detect-CS) directly. Nevertheless, there are some polynomial-time
solvable subclasses. For example, based on the results in [19], we can show that detecting
whether M ∈ DFdetect-P

can be solved in polynomial time when M11 = 0 and p > 2. In
addition, we can identify other polynomial-time solvable subclasses of the detection problem
by using the equivalence of different norms.

For the detection problems not belonging to the proposed polynomial-time solvable sub-
classes, a conic approximation algorithm is developed. Redundant constraints based on the
special structure of the p-th order cone are introduced in order to improve the efficiency
of approximation. Moreover, in every iteration of the proposed algorithm, one additional
redundant constraint is generated based on the solution obtained in the previous iteration.
All these redundant constraints could improve the tightness of the approximation. In order
to guarantee the proposed algorithm to be terminated in finite iterations, the definition of
ε-copositivity over a p-th order cone is given. The finiteness and validity of the proposed
algorithm is proved in theory.

The following notations are adopted in this paper. Let Rn
+ be the set of n dimensional

nonnegative vectors, Sn+ be the set of all n × n symmetric positive semidefinite matrices,
and Sn++ be the set of all n× n symmetric positive definite matrices. For a matrix A ∈ Sn,
A ≽ 0 means A ∈ Sn+ and A ≻ 0 means A ∈ Sn++. For A ≽ 0, if A = V ΛV T where V

is an orthogonal matrix and Λ is a diagonal matrix, then A
1
2 = V Λ

1
2V T . For a vector

x =
[
x1 . . . xn

]T ∈ Rn, Diag(x) represents the diagonal matrix with xi being its i-th di-

agonal elements and [x]2 =
[
x2
1 . . . x2

n

]T
. Mij represents the element in the i-th row and

the j-th column of an n×n real matrix M . For n×n real matrices A = (Aij) and B = (Bij),
A ·B =trace(ATB) =

∑n
i,j=1 AijBij . ∇∥x∥p means the gradient of ∥x∥p at the point x ̸= 0.

For a set F , int(F ) means the interior of F . For a constant c, cF = {cy | y ∈ F}.
1n = [1, 1, ..., 1]Tn and 0m×n represents the m × n matrix with all the elements being zero.
a < b means ai < bi for i = 1, . . . , n and a, b ∈ Rn.

The layout of this paper is as follows. In Section 2, we prove the equivalence between
the detection problem and the decision problem of a quadratic programming problem over a
cross-section of the p-th order cone. Section 3 is devoted to presenting some polynomial-time
solvable subclasses of the detection problem. Section 4 presents the results related to conic
relaxations and decompositions. In Section 5, an adaptive approximation algorithm is de-
signed for the detection problem when it cannot be classified into one of the polynomial-time
solvable subclasses appeared in Section 3. In Section 6, some numerical examples and ex-
periments are provided to demonstrate the validity and efficiency of the proposed algorithm.
Conclusions are given in Section 7.
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2 The Relationship between the Detection Problem and a Decision
Problem

In this section, we prove the equivalence between detection of a copositive matrix over a
p-th order cone and the decision problem of (detect-CS).

Theorem 2.1. M ∈ DFdetect-P
if and only if Vdetect-CS ≥ 0.

Proof. Because 0(n+1)×1 ∈ Fdetect-P, the optimal value Vdetect-P ≤ 0. Denote y =

[
t
x

]
∈

R×Rn. If there is a feasible solution y ∈ Fdetect-P satisfying yTMy < 0, then λy ∈ Fdetect-P,
for all λ ≥ 0. Therefore, when λ → +∞, we have (λy)TM(λy) → −∞. In all, the optimal
value of (detect-P) is either zero or −∞. Hence, M ∈ DFdetect-P

if and only if Vdetect-P = 0
and M /∈ DFdetect-P

if and only if Vdetect-P = −∞.
On one hand, if M ∈ DFdetect-P

, then Vdetect-CS ≥ Vdetect-P = 0, because of Fdetect-CS ⊆
Fdetect-P.

On the other hand, if Vdetect-CS ≥ 0, then Vdetect-P = 0. Otherwise, there exists a feasible

solution

[
t
x

]
∈ Fdetect-P such that

[
t
x

]T
M

[
t
x

]
< 0 with t > 0. Then,

[
1
x
t

]T
M

[
1
x
t

]
< 0 and[

1
x
t

]
∈ DFdetect-CS

. This contradicts with Vdetect-CS ≥ 0.

Theorem 2.1 implies if we can solve problem (detect-CS) in polynomial time, then the
detection problem can be solved efficiently. However, problem (detect-CS) is an NP-hard
problem when p = 1 [8] and next lemma indicates that it is still an NP-hard problem under
the “unique games conjecture” when p > 2. To our best knowledge, there is no known
complexity result when 2 > p > 1.

Lemma 2.2 ([13]). Let p > 2 and δ > 0 be constants satisfying (1− δ)γ2
p > 1, where γp =

(
2

p
2 Υ( p+1

2 )√
π

)
1
p and Υ(p+1

2 ) =
∫∞
0

t
p+1
2 −1e−tdt. Then, under the “unique games conjecture”,

it is NP-hard to approximate the problem

max


n∑

i,j=1

aijxixj

∣∣∣x ∈ Rn,
n∑

i=1

|xj |p ≤ 1

 (2.1)

within a factor (1− δ)γ2
p.

The “unique games conjecture” has broad applications in the theory of hardness of
approximation [11,13]. If it is true, then it is not only too hard to obtain an exact solution,
but also too hard to obtain a good approximation for many problems.

Lemma 2.2 indicates that it is hard to detect whether M ∈ DFdetect-P
by solving problem

(detect-CS) directly. But Theorem 2.1 provides us an inspiration to seek some polynomial-
time solvable subclasses for the detection problem. These subclasses are introduced in the
next section.

3 Polynomial-Time Solvable Subclasses

Based on the equivalence between the detection problem and the decision problem of (detect-
CS), some polynomial-time solvable subclasses are presented in this section.



DETECTION OF A COPOSITIVE MATRIX OVER A P -TH ORDER CONE 597

Firstly, if M22 ∈ Sn+, then both the objective function and constraint of problem (detect-
CS) are convex and problem (detect-CS) can be solved in polynomial time [2, 3]. Further-
more, when M11 < 0, M /∈ DFdetect-P

because [1, 0, . . . , 0]T ∈ Fdetect-P and

[1, 0, . . . , 0]M [1, 0, . . . , 0]T = M11 < 0.

In order to discuss the polynomial-time solvable subclass when M11 = 0 and p > 2, we
consider the following relaxation of problem (detect-CS),

V1 = min

[
t
x

]T
M

[
t
x

]
s.t. ∥x∥p ≤ 1, (3.1)

|t| ≤ 1.

Theorem 3.1. If M11 = 0, then problem (detect-CS) is equivalent to problem (3.1) in the
sense that they have the same optimal value.

Proof. It is obvious V1 ≤ Vdetect-CS. We need to prove at least one optimal solution

[
t
x

]
of

problem (3.1) is achieved when t = 1.

If

[
t
x

]
∈ R × Rn is a feasible solution of problem (3.1) when −1 ≤ t ≤ 0, then

[
−t
−x

]
is also a feasible solution of problem (3.1) satisfying

[
t
x

]T
M

[
t
x

]
=

[
−t
−x

]T
M

[
−t
−x

]
. Hence,

we can assume one optimal solution of problem (3.1) is

[
t0
x0

]
∈ R × Rn, where ∥x0∥p ≤ 1

and 0 ≤ t0 ≤ 1. Without loss of generality, we can assume (M21)Tx0 ≤ 0. Otherwise,

(−x0)
TM22(−x0)+2(M21)T (−x0)t0 ≤ xT

0 M
22x0+2(M21)Tx0t0. We can replace

[
t0
x0

]
with[

t0
−x0

]
since

[
t0
−x0

]
is an optimal solution. Under these conditions, we have xT

0 M
22x0 +

2(M21)Tx0t0 ≥ xT
0 M

22x0 + 2(M21)Tx0. Therefore,

[
1
x0

]
is also an optimal solution, which

implies problem (detect-CS) is equivalent to problem (3.1) when M11 = 0 in the sense that
they have the same optimal value.

Theorem 3.1 shows that, when M11 = 0, we can determine the sign of the optimal
value of problem (3.1) instead of problem (detect-CS). In order to determine the sign of the
optimal value of problem (3.1), we consider the following two problems,

V2 = min

[
t
x

]T
M

[
t
x

]
s.t.

∥∥∥∥[tx
]∥∥∥∥

p

≤ 1, (3.2)

V3 = min ∥u∥q
s.t. Diag(u) ≽ −M, (3.3)
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where p > 2 and q = p
p−2 > 1. Lemma 2.2 shows problem (3.2) is NP-hard under the “unique

games conjecture”. However, problem (3.3) can be solved in polynomial time because the
objective and constraint functions are convex [2,3]. In fact, the following lemma shows that
the signs of optimal values of problems (3.1) and (3.2) can be determined by the optimal
value of problem (3.3).

Lemma 3.2. If p > 2 and M11 = 0, then 2
2
pV2 ≤ V1 ≤ V2, −V3 ≤ V2 ≤ − 1

p−1V3 and

−2
2
pV3 ≤ V1 ≤ − 1

p−1V3.

Proof. Let F1 and F2 be the feasible set of problem (3.1) and (3.2), respectively. Then it

is obvious that F2 ⊆ F1 and V1 ≤ V2.

∥∥∥∥[tx
]∥∥∥∥

p

≤ 2
1
p for any

[
t
x

]
∈ F1, then F1 ⊆ 2

1
p F2.

Let

[
t
x

]
= 2

1
p

[
t′

x′

]
, thus

min

{[
t
x

]T
M

[
t
x

] ∣∣∣ ∥∥∥∥[tx
]∥∥∥∥

p

≤ 2
1
p

}
= min

{
2

2
p

[
t′

x′

]T
M

[
t′

x′

] ∣∣∣ ∥∥∥∥[t′x′

]∥∥∥∥
p

≤ 1

}
= 2

2
pV2,

so 2
2
pV2 ≤ V1. By the result −V3 ≤ V2 ≤ − 1

p−1V3 in [19], we have −2
2
pV3 ≤ V1 ≤

− 1
p−1V3.

If p > 2 and M11 = 0, the sign of the optimal value of problem (3.1) is completely
decided by problem (3.3). Then we have the following theorem,

Theorem 3.3. When p > 2 and M11 = 0, detecting whether M ∈ DFdetect-P
can be solved in

polynomial time.

Proof. The conclusion follows from Theorems 2.1, 3.1 and Lemma 3.2.

Due to ∥x∥b ≤ ∥x∥a ≤ n
1
a− 1

b ∥x∥b for 0 < a < b and x ∈ Rn [10], we can derive some
polynomial-time solvable subclasses for both p > 2 and 1 ≤ p < 2.

For p > 2, assigning a = 2 and b = p leads to 1

n
1
2
− 1

p
∥x∥2 ≤ ∥x∥p ≤ ∥x∥2. Consider the

following two polynomial-time solvable problems [21],

V4 = min xTM22x+ 2(M21)Tx+M11

s.t. ∥x∥2 ≤ 1, (3.4)

V5 = min xTM22x+ 2(M21)Tx+M11

s.t. ∥x∥2 ≤ n
1
2−

1
p . (3.5)

Theorem 3.4. V5 ≤ Vdetect-CS ≤ V4. If V5 ≥ 0 or V4 < 0, then detecting whether M ∈
DFdetect-P

can be solved in polynomial time when p > 2.

Proof. Because
{
x ∈ Rn

∣∣∣∥x∥2 ≤ 1
}
⊆

{
x ∈ Rn

∣∣∣∥x∥p ≤ 1
}
⊆

{
x ∈ Rn

∣∣∣∥x∥2 ≤ n
1
2−

1
p

}
when

p > 2, V5 ≤ Vdetect-CS ≤ V4. If V5 ≥ 0, then the optimal value of problem (detect-P) is 0
and M ∈ DFdetect-P

. If V4 < 0, then the optimal value of problem (detect-P) is −∞ and
M /∈ DFdetect-P

.
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For 1 ≤ p < 2, assigning a = p and b = 2 leads to ∥x∥2 ≤ ∥x∥p ≤ n
1
p−

1
2 ∥x∥2. The

following problem can be solved in polynomial time [21],

V6 = min xTM22x+ 2(M21)Tx+M11

s.t. n
1
p−

1
2 ∥x∥2 ≤ 1 (3.6)

Similar to the proof for Theorem 3.4, the following theorem holds when 2 > p ≥ 1.

Theorem 3.5. V4 ≤ Vdetect-CS ≤ V6. If V4 ≥ 0 or V6 < 0, then detecting whether M ∈
DFdetect-P

can be solved in polynomial time when 2 > p ≥ 1.

Remark 3.6. If p = 2, then{
x ∈ Rn

∣∣∣n 1
p−

1
2 ∥x∥2 ≤ 1

}
=

{
x ∈ Rn

∣∣∣∥x∥p ≤ 1
}
=

{
x ∈ Rn

∣∣∣∥x∥2 ≤ 1
}
.

Thus, problems (3.4), (3.6) and (detect-CS) are actually the same and they can be solved
efficiently [21]. In this case, detecting whether M ∈ DFdetect-P

can be solved in polynomial
time.

However, not all instances belong to these polynomial-time solvable subclasses. A conic
approximation scheme is designed to estimate the sign of the optimal value of problem
(detect-CS) in the next two sections.

4 Conic Relaxations and Decompositions

In this section, we provide a conic reformulation for problem (detect-P). However, as far
as we know, there is no polynomial-time algorithm to check whether a matrix belongs to
D∗

Fdetect-P
. Nevertheless, Tian et al. [22] showed that checking whether a matrix belongs to

D∗
G , where G is a union of several nontrivial second order cones, can be solved in polynomial

time. The nontriviality means the cone contains at least one point other than origin point.
Inspired by this result, we derive a conic relaxation for problem (detect-P) where G is a
second order cone. In order to improve the conic relaxation, we change the cover G to a
collection of second order cones and provide a decomposition of the optimal solution of the
conic relaxation problem which is critical for the adaptive algorithm in Section 5.

Firstly, we will state six lemmas which will be used in the following conic approximation
method.

Lemma 4.1 ([15,21]). If F ⊆ G , then DG ⊆ DF and D∗
F ⊆ D∗

G .

Lemma 4.2 ([22]). Let G = G1 ∪ G2 ∪ · · · ∪ Gm, and each Gi, i = 1, 2, . . . ,m, is nonempty,
then DG = DG1 ∩ DG2 ∩ · · · ∩ DGm and D∗

G = D∗
G1

+ D∗
G2

+ · · ·+ D∗
Gm

.

Lemma 4.3 ([22]). Let F ⊆ Rn+1. If F has an interior point, then DF and D∗
F are

proper cones.

Lemma 4.4 ([22]). Suppose that F ⊆ Rn+1 is a closed convex set, then DF = Dcone(F)

and D∗
F = D∗

cone(F).

Lemma 4.5 ([15]). If G is a bounded closed set, then D∗
G = cone

{
yyT

∣∣y ∈ G
}
.

Lemma 4.6. If Fdetect-CS ⊆ H1 ∪H2 ∪ · · · ∪Hm, then Fdetect-P ⊆ cone(H1) ∪ cone(H2)
∪ . . . ∪ cone(Hm).
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Lemma 4.6 can be proved by the definition of cone and Lemma 4.4.
Because Fdetect-P = cone(Fdetect-CS), Lemma 4.4 implies DFdetect-P

= DFdetect-CS
and

D∗
Fdetect-P

= D∗
Fdetect-CS

. Given the following problem,

VCR-P = min M · Y
s.t. Y11 = 1, (CR-P)

Y ∈ D∗
Fdetect-P

,

we have the following theorem,

Theorem 4.7. M ∈ DFdetect-P
if and only if VCR-P ≥ 0.

Proof. Because D∗
Fdetect-P

= D∗
Fdetect-CS

, problem (CR-P) is the conic reformulation of prob-
lem (detect-CS) and VCR-P = Vdetect-CS [21]. Hence, by Theorem 2.1, we come to the
conclusion.

However, checking whether Y ∈ D∗
Fdetect-P

is a hard problem in general, here we will
provide a conic relaxation for problem (CR-P):

VRLB = min M · Y
s.t. Y11 = 1, (RLB)

Y ∈ D∗
G ,

where G ⊇ Fdetect-P and DG , D∗
G have linear matrix inequality representations.

In what follows, we will introduce how to find such G . Because Fdetect-P = cone(Fdetect-CS)
and D∗

Fdetect-P
= D∗

Fdetect-CS
, we just need to find an H to cover Fdetect-CS such that the

cone of nonnegative quadratic forms over H has the linear matrix inequality representa-
tions. Then D∗

Fdetect-P
⊆ D∗

H . We know Fdetect-CS is a bounded, closed set and DH and
D∗

H have linear matrix inequality representations when H is an ellipsoid. Hence, we can

choose an ellipsoid to cover Fdetect-CS. Because Fdetect-CS =

{[
1
x

]
∈ R× Rn

∣∣∣∥x∥p ≤ 1

}
,

the box

R0 =

{[
1
x

]
∈ R× Rn

∣∣∣x ∈ [−1, 1]n
}

covers Fdetect-CS.

For a general box R =

{[
1
x

] ∣∣∣a ≤ x ≤ b

}
with a < b, define an ellipsoid

HR =


[
1
x

]
∈ R× Rn

∣∣∣
√[

1
x

]T [
cTPc − (Pc)T

− Pc P

] [
1
x

]
≤ 1

 .

where P = 4([Diag(b−a)]2)−1

n ≽ 0 and c = a+b
2 . Because HR can also be written as HR ={[

1
x

]
∈ R× Rn

∣∣∣∑n
i=1

(xi−
ai+bi

2 )2

(bi−ai)2
− n

4 ≤ 0

}
and

(xi−
ai+bi

2 )2

(bi−ai)2
− 1

4 ≤ 0 for ai ≤ xi ≤ bi, i =

1, . . . , n, HR covers R. Then HR0 is just HR with a = −1n and b = 1n. Define

GR0 =


[
t
x

]
∈ R× Rn

∣∣∣
√[

t
x

]T [
cTPc − (Pc)T

− Pc P

] [
t
x

]
≤ t


=

{[
t
x

]
∈ R× Rn

∣∣∣√(x− ct)TP (x− ct) ≤ t

}
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with P = 4([Diag(b−a)]2)−1

n ≽ 0, c = a+b
2 , a = −1n and b = 1n. The following theorem shows

that cone(HR0) = GR0 .

Theorem 4.8. If

H =

{[
1
x

]
∈ R× Rn

∣∣∣[1
x

]T
Q

[
1
x

]
≤ 1, Q =

[
cTPc −(Pc)T

−Pc P

]}

and

G =


[
t
x

]
∈ R× Rn

∣∣∣
√[

t
x

]T
Q

[
t
x

]
≤ t, Q =

[
cTPc −(Pc)T

−Pc P

] ,

with P ≻ 0, then Q ≽ 0, G is a second order cone, and G = cone(H ).

Proof. If c = 0, then Pc = 0, and P ≻ 0 implies Q ≽ 0. If c ̸= 0, then due to P ≻ 0, we
have cTPc > 0 and cTPc− (Pc)TP−1Pc = 0. Owing to the Schur-complementary theorem,
it means Q ≽ 0. So G is a second order cone.

For any y =

[
t
x

]
∈ G , if t = 0, then P ≻ 0 implies x = 0. So if

[
t
x

]
is not a zero

vector, then t > 0 and ȳ =

[
1
x
t

]
∈ H which implies y ∈ cone(H ). Hence, G ⊆ cone(H ).

Conversely,

cone(H ) =

{[
t
x

]
∈ R× Rn

∣∣∣ [t
x

]
=

m∑
i=1

λi

[
1
xi

]
, λi ≥ 0,

[
1
xi

]
∈ H , i = 1, . . . ,m

}

with m ∈ Z+. For any

[
t
x

]
∈ cone(H ),

√[
t
x

]T
Q

[
t
x

]
=

∥∥∥Q 1
2

[
t
x

] ∥∥∥
2
≤

m∑
i=1

λi

∥∥∥Q 1
2

[
1
xi

] ∥∥∥
2
≤

m∑
i=1

λi = t.

Therefore, cone(H ) ⊆ G . Consequently, G = cone(H ).

According to Theorem 4.8, Fdetect-P = cone(Fdetect-CS) ⊆ cone(HR0) = GR0 , thus
D∗

Fdetect-P
⊆ D∗

GR0
and we can set G = GR0 .

Next we will derive the linear matrix inequality representations of D∗
H for H defined in

Theorem 4.8. For any M ∈ Sn+1, determing M ∈ DH is equivalent to determing whether
the optimal value of the following problem

V7 = min

[
1
x

]T
M

[
1
x

]
s.t.

[
1
x

]T [
cTPc −(Pc)T

−Pc P

] [
1
x

]
≤ 1, (4.1)

is no less than zero.
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The semidefinite reformulation of problem (4.1) is

V8 = min M · Y
s.t. Y11 = 1,[

cTPc− 1 −(Pc)T

−Pc P

]
· Y ≤ 0, (4.2)

Y ≽ 0.

Its conic dual problem becomes

V9 = max σ

s.t. M +

[
−σ + λ(cTPc− 1) −λ(Pc)T

−λPc λP

]
≽ 0, (4.3)

λ ≥ 0, σ ∈ R.

Theorem 4.9. Let

H =


[
1
x

]
∈ R× Rn

∣∣∣
√[

1
x

]T
Q

[
1
x

]
≤ 1, Q =

[
cTPc −(Pc)T

−Pc P

]
with P ≻ 0. Then for any M ∈ Sn+1, M ∈ DH if and only if it satisfies

M + λ

[
(cTPc− 1) −(Pc)T

−Pc P

]
≽ 0, (4.4)

λ ≥ 0.

For a given Y ∈ Sn+1, Y ∈ D∗
H if and only if[

cTPc− 1 −(Pc)T

−Pc P

]
· Y ≤ 0,

Y ≽ 0. (4.5)

Proof. Since P ≻ 0, we can find a sufficiently large λ and a sufficiently small σ such that

M +

[
−σ + λ(cTPc− 1) −λ(Pc)T

−λPc λP

]
≻ 0. Therefore, problem (4.3) is strongly feasible, and

there is no duality gap between problem (4.2) and (4.3). Also the gap between problem
(4.1) and (4.2) is zero [21], then V7 ≥ 0 if and only if V9 ≥ 0. Notice that V9 ≥ 0 if and only
if (4.4) is satisfied. Hence, M ∈ DH if and only if (4.4) is satisfied.

Y ∈ D∗
H if and only if Y ·M ≥ 0, for any M ∈ DH . Because M ∈ DH if and only if

there exists a matrix S ∈ Sn+1
+ and a λ ≥ 0 such that M = S − λ

[
(cTPc− 1) −(Pc)T

−Pc P

]
,

Y ·M ≥ 0 for any M ∈ DH if and only if (4.5) is satisfied.

Based on that DG and D∗
G have the linear matrix inequality representations, a lower

bound for problem (CR-P) can be obtained. Next we will provide two ways to improve
the lower bound of problem (CR-P). One way is adding redundant constraints defined as
follows.

Definition 4.10. Assumed that F is a nonempty set in Rn, if a constraint f(Y ) ≤ 0 holds
for any Y ∈ D∗

F , then we call f(Y ) ≤ 0 a redundant constraint for D∗
F .
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Let Y =

[
Y11 Y 12

Y 21 Y 22

]
with Y11 ∈ R, Y 21 ∈ Rn and Y 22 ∈ Sn, then we have the following

theorem,

Theorem 4.11. ∥Y 21∥p ≤ Y11 is a redundant constraint for D∗
Fdetect-P

when p ≥ 1. Espe-

cially, ∥Diag(Y 22)∥ p
2
≤ Y11 is also a redundant constraint for D∗

Fdetect-P
when p > 2.

Proof. Because D∗
Fdetect-P

= D∗
Fdetect-CS

and Fdetect-CS is bounded and closed, for any Y ∈
D∗

Fdetect-CS
, there exists a τ ∈ Z+ such that

Y =

τ∑
i=1

θi

[
1
xi

] [
1
xi

]T
=

[ ∑τ
i=1 θi

∑τ
i=1 θi(x

i)T∑τ
i=1 θix

i
∑τ

i=1 θix
i(xi)T

]
where θi ≥ 0 and ∥xi∥p ≤ 1. Because ∥θixi∥p ≤ θi and ∥x∥p is a convex function,
∥
∑τ

i=1 θix
i∥p ≤

∑τ
i=1 ∥θixi∥p ≤

∑τ
i=1 θi, that is ∥Y 21∥p ≤ Y11.

∥x∥ p
2

is a convex function for p > 2. For any

[
1
xi

]
∈ Fdetect-CS, we have (|xi

1|p +

· · · + |xi
n|p)

1
p ≤ 1, so (|(x1

i )
2|

p
2 + · · · + |(xi

n)
2|

p
2 )

2
p ≤ 1. That is ∥Diag(xi(xi)T )∥ p

2
≤ 1.

Hence, ∥
∑n

i=1 Diag(θix
i(xi)T )∥ p

2
≤

∑n
i=1 ∥Diag(θix

i(xi)T )∥ p
2

≤
∑n

i=1 θi, which implies

∥Diag(Y 22)∥ p
2
≤ Y11.

Therefore, we can add the redundant constraints proposed in Theorem 4.11 into problem
(RLB) to improve the lower bound. The other way to improve the lower bound is to
refine the cover G for Fdetect-P. The intuitive idea behind the refinement of the cover is
to divide the box R0 into a union of boxes Ri and generate corresponding ellipsoids Hi,
i = 1, ...,m. Let H = H1 ∪ H2 ∪ · · · ∪ Hm. Lemma 4.6 implies Fdetect-P ⊆ G with
G = cone(H1) ∪ · · · ∪ cone(Hm) being a union of second order cones. Then D∗

Fdetect-P
⊆

D∗
H1

+ · · ·+ D∗
Hm

. Define

Hi =


[
1
x

]
∈ R× Rn

∣∣∣∣∣
√[

1
x

]T
Qi

[
1
x

]
≤ 1, Qi =

[
cTi Pici −(Pici)

T

−Pici Pi

]
with Pi ≻ 0, i = 1, 2, . . . ,m, then we can improve (RLB) as

VRLB2 = min M · Y
s.t. Y = Y 1 + · · ·+ Y m,

Y11 = 1, (RLB2)[
cTi Pici − 1 −(Pici)

T

−Pici Pi

]
· Y i ≤ 0, i = 1, 2, . . . ,m,

Y i ≽ 0, i = 1, . . . ,m,

fj(Y ) ≤ 0, j = 1, . . . , l,

gj(Y ) ≤ 0, j = 1, . . . , t,

where fj(Y ) ≤ 0, j = 1, . . . , l, and gj(Y ) ≤ 0, j = 1, . . . , t, represent the redundant
constraints. When 2 > p ≥ 1, l = 1 and f1(Y ) = ∥Y 21∥p − Y11. When p > 2, l = 2,
f1(Y ) = ∥Y 21∥p − Y11 and f2(Y ) = ∥Diag(Y 22)∥ p

2
− Y11. Moreover, gj(Y ) ≤ 0 is a linear

inequality for j = 1, . . . , t. gj(Y ) will be introduced in the next section.
Problem (RLB2) can be solved in polynomial time [2]. Denote its optimal solution as

Y ∗. Next theorem states that there is a method to decompose Y ∗ into the original space in
polynomial time.
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Theorem 4.12. Let Qi =

[
cTi Pici − 1 −(Pici)

T

−Pici Pi

]
with Pi ≻ 0, i = 1, 2, . . . ,m. For an

optimal solution Y ∗ = (Y 1)∗ + · · · + (Y m)∗ of problem (RLB2), there is a decomposition
running in polynomial-time

Y ∗ =

m∑
i=1

ri∑
j=1

ξij

[
1
xij

] [
1
xij

]T
(4.6)

satisfying

[
1
xij

]T
Qi

[
1
xij

]
≤ 1, ξij > 0, i = 1, . . . ,m, j = 1, . . . , ri and

∑m
i=1

∑ri
j=1 ξij = 1,

where ri = rank((Y i)∗).

Proof. There is a decomposition running is polynomial-time via Procedure 1 in [21]

Y ∗ =
m∑
i=1

ri∑
j=1

[
tij

yij

] [
tij

yij

]T

satisfying

[
tij

yij

]T
Qi

[
tij

yij

]
≤ 0, i = 1, . . . ,m, j = 1, . . . , ri. Because Pi ≻ 0, if

[
tij

yij

]
̸= 0,

then tij ̸= 0. Thus, Y ∗ =
∑m

i=1

∑ri
j=1(t

ij)2
[

1
yij/tij

] [
1

yij/tij

]T
. Denote ξij = (tij)2 and

xij = yij/tij , we have the decomposition as in (4.6).

5 Conic Approximation Algorithm

This section presents a specific partition method for the feasible set to improve the cover for
Fdetect-P. At the end of this section, an adaptive conic approximation algorithm is proposed
for solving problem (CR-P).

Before providing the partition process, we first give the following two definitions.

Definition 5.1. For a decomposition of the optimal solution of problem (RLB2) as in (4.6),
the sensitive point is defined as

y∗ =

[
1
x∗

]
= arg min1

x

∈J

[
1
x

]T
M

[
1
x

]
(5.1)

where J =

{[
1
xij

]
, i = 1, . . . ,m, j = 1, . . . , ri

}
. If the sensitive point is decomposed from

(Y k)∗, k ∈ {1, 2, . . . ,m}, then it belongs to the k-th ellipsoid, and the corresponding box is
called the sensitive box.

The sensitive point may be not unique. If there are multiple sensitive points, we choose
the one with the smallest index i ∈ {1, . . . ,m} and the smallest j ∈ {1, . . . , ri} as the
sensitive point.

Similar to the definition of ε-copositivity over Rn
+ which is proposed in [4], we give the

following definition.

Definition 5.2. For a given ε > 0, M ∈ Sn is called ε-copositivity over a p-th order cone if
VCR-P ≥ −ε. The ε-copositivity set is denoted as ε-DFdetect-P

.
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Assuming a partition R = R1 ∪ · · · ∪ Rm is obtained, we consider how to obtain a
better partition for a better approximation. By the continuity of the objective function of
problem (detect-CS), for any given error ε > 0, there exists an ηε (1 ≥ ηε > 0) such that
for any y1, y2 in the set {y ∈ Rn+1|∥y − z∥∞ ≤ 1, ∥z∥p ≤ 1}, if ∥y1 − y2∥∞ ≤ ηε, then
|(y1)TMy1 − (y2)TMy2| ≤ ε. If the length of the sensitive box’s longest edge is greater
than ηε, cut this longest edge to obtain two boxes and check whether each box is intersected
with Fdetect-CS. If not, drop that box. Generate the corresponding H which is the union
of ellipsoids based on the remained box(es).

Whether a box Rk = [a, b] is intersected with Fdetect-CS can be determined by the
following polynomial-time slovable problem

V10 = min ∥x− z∥2
s.t. a ≤ z ≤ b, (5.2)

∥x∥p ≤ 1.

If there exists a point belonging to Fdetect-CS ∩ Rk, then it is obvious V10 = 0 and we have
the following theorem:

Theorem 5.3. If V10 > 0, then Fdetect-CS ∩ Rk = ∅.

For a sensitive point y∗ =

[
1
x∗

]
∈ Rn+1, it is expected to add one additional cut such

that the new cover of the feasible domain of problem (detect-P) does not contain ty∗ for
any t > 0. Actually, the cut uTx ≤ vt satisfying the above requirement, where

u = ∇∥ x∗

∥x∗∥p
∥p and v = (∇∥ x∗

∥x∗∥p
∥p)T

x∗

∥x∗∥p
. (5.3)

Theorem 5.4. uTY 21 ≤ vY11 is a redundant constraint for D∗
Fdetect-P

, where u and v are
defined by (5.3).

Proof. Similar to the proof of Theorem 4.11, for a Y ∈ D∗
Fdetect-P

, there exists a τ ∈ Z+ such

that Y =

[∑τ
i=1 θi(t

i)2
∑τ

i=1 θit
i(xi)T∑τ

i=1 θit
ixi

∑τ
i=1 θix

i(xi)T

]
where θi ≥ 0,

[
ti

xi

]
∈ Fdetect-P and uTxi ≤ vti,

i = 1, . . . , τ , then uTY 21 =
∑τ

i=1 θit
iuTxi ≤ v

∑τ
i=1 θi(t

i)2 = vY11.

Based on above analysis, we present a conic approximation algorithm as follows.

A conic approximation algorithm for detecting whether M ∈ DFdetect-P
(p ≥ 1).

Initialization: Given an error ε, set ηε = −1 +
√
1 + ε∑n

i,j=1 |Mij | > 0, the sensitive

box R0 =

{[
1
x

]
∈ R× Rn

∣∣∣∣x ∈ [−1, 1]n
}
, and the corresponding ellipsoid HR0

={[
1
x

]
∈ R× Rn

∣∣√xT x
n ≤ 1

}
. Let l = −∞ be initial the lower bound. Set t = 0

and the iteration number k = 0.

Step 1. Check whether M satisfying the conditions in Theorem 3.3, 3.4 or 3.5. If yes, then
the problem is solved, stop. Otherwise, set k = 1, go to Step 2.
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Step 2. Solve problem (RLB2) and obtain an optimal value VRLB2 and an optimal solution
Y ∗. If 0 > VRLB2 ≥ −ε, then M ∈ ε-DFdetect-P

. Stop. If VRLB2 ≥ 0, then M ∈
DFdetect-P

. Stop. Otherwise, decompose Y ∗ as in (4.6), and check whether there exists
an xij ∈ Fdetect-P satisfying (xij)TMxij < 0. If so, then M /∈ DFdetect-P

. Stop. If not,
set l = max{l, VRLB2} and go to Step 3.

Step 3. Find the sensitive point y∗ and sensitive box Ri. If the length of the sensitive
box’s longest edge is smaller than 2ηε√

n
, stop. If (y∗)TMy∗ ≥ 0, then M ∈ DFdetect-P

. If

0 > (y∗)TMy∗ ≥ −ε, then M ∈ ε-DFdetect-P
. If (y∗)TMy∗ < −ε, then M /∈ DFdetect-P

.
Otherwise, bisect Ri along the longest edge such that Ri = Ri1 ∪Ri2. Solve problem
(5.2) to check whether Ri1∩Fdetect-CS = ∅ or Ri2∩Fdetect-CS = ∅. If Ri1∩Fdetect-CS =
∅, then R = R ∪Ri2 \Ri. If Ri2 ∩Fdetect-CS = ∅, then R = R ∪Ri1 \Ri. Otherwise,
R = R ∪ Ri1 ∪ Ri2 \ Ri. Generate corresponding HR. Calculate u and v in (5.3)
based on the sensitive point y∗, set t = t+1 and let gt(Y ) = uTY 21− vY11 in problem
(RLB2). Set k = k + 1 and go to step 2.

We have following results about the convergency of the proposed algorithm.

Theorem 5.5. If the proposed conic approximation algorithm doesn’t stop at Step 1 or 2,
then, for any given ε > 0, there exists a positive integer Nε, such that |VRLB2 − VCR-P| ≤ ε
at the Nε-th iteration. Hence, the algorithm stops at Step 3.

Proof. Due to the continuity of the objective function of problem (CR-P), for any given
error ε > 0, there exists 1 ≥ ηε > 0, such that |(y1)TMy1 − (y2)TMy2| ≤ ε for any y1, y2 in
the set {y ∈ Rn+1|∥y − z∥∞ ≤ 1, ∥z∥p ≤ 1} and ∥y1 − y2∥∞ ≤ ηε. From the description of
the proposed algorithm, there exists an integer Nε > 0, a sensitive point y∗ and a feasible
point y0 in the sensitive box such that the length of the longest edge of the sensitive box is
shorter than 2ηε√

n
. Following the structure of HR, the length of its j-th axis of HR is equal

to
√
n
2 times the length of its corresponding j-th edge of R. Then ∥y∗ − y0∥∞ ≤ ηε and

|VRLB2 − VCR-P| ≤ |M · y∗(y∗)T −M · y0(y0)T | ≤ ε.

Theorem 5.5 indicates at the Nε-th iteration, if VRLB2 ≥ 0, then VCR-P ≥ VRLB2 ≥ 0
which means M ∈ DFdetect-P

. If 0 > VRLB2 ≥ −ε, then VCR-P ≥ VRLB2 ≥ −ε which means
M ∈ ε-DFdetect-P

. Otherwise, VCR-P ≤ VRLB2 + ε < 0 which means M /∈ DFdetect-P
.

Remark 5.6. Because Fdetect-CS =

{[
1
x

]
∈ R× Rn

∣∣∣∥x∥p ≤ 1

}
, we can choose

R0 =

{[
1
x

]
∈ R× Rn

∣∣∣x ∈ [−1, 1]n
}

as the initial box. From the partition, we know that the length of each new box’s edge is
one half of the sensitive box’s longest edge length after each iteration. Therefore, the length

of the longest edge of the sensitive box Rt is shorter than 2ηε√
n

after at most Nε = (
√
n

2ηε
)n

iterations.

For any given ε > 0, we calculate ηε as follows. If ∥y0∥p ≤ 1 and ∥y∗ − y0∥∞ ≤ ηε, we
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have maxi=1,...,n y
0
i ≤ 1, maxi=1,...,n y

∗
i ≤ 1 + ηε and

|(y∗)TMy∗ − (y0)TMy0| =|(y∗)TMy∗ − (y0)TMy∗ + (y0)TMy∗ − (y0)TMy0|
=|(y0 + y∗)TM(y∗ − y0)|

=|
n∑

i,j=1

Mij(y
0
i + y∗i )(y

∗
j − y0j )|

≤
n∑

i,j=1

|Mij |ηε(1 + ηε + 1)

So ηε can be taken as −1 +
√
1 + ε∑n

i,j=1 |Mij | such that |(y∗)TMy∗ − (y0)TMy0| ≤ ε.

Consequently, in the worst case, we have

Nε ≤ (

√
n

2ηε
)n ≤

√
n(1 +

√
1 + ε∑n

i,j=1 |Mij | )

2ε∑n
i,j=1 |Mij |

n

.

6 Numerical Examples and Experiments

In this section, some numerical examples are provided in order to verify the efficiency of
our proposed algorithm. We used MATLAB 2012 on a computer with Intel Core 2 CPU,
2.26 Ghz and 3G memory to implement the proposed conic approximation algorithm. We
solve problem (RLB2) by the Matlab software package CVX [7]. The tolerance is set to

be 1e-3. The matrix M ∈ Sn is randomly generated as follows. We first generate n(n+1)
2

numbers with standard normal distribution, then multiply each number by 100 and round

it to the nearest integer. These n(n+1)
2 integers are put into in the upper triangular of the

symmetric matrix M row by row, and the lower triangular of M is filled symmetric to the
upper triangular.

When p > 2, we provide the following instance to demonstrate the process of our conic
approximation algorithm.

Example 1. Let p = 3, n = 3 and

M =


412 −125 37 189
−125 −33 39 −123
37 39 337 19
189 −123 19 −32

 .

M does not belong to the polynomial-time solvable subclasses, so we solve it with our
conic approximation algorithm. In the first iteration, we use the second order cone

GR =

{[
t
x

]
∈ R× Rn

∣∣√xTx

n
≤ t

}

to cover Fdetect-P. Then we solve problem (RLB2) and obtain an optimal solution Y ∗. After
that, Y ∗ is decomposed according to (4.6) and two solutions y1 = [1.0000 −0.7596 0.0614 −
1.5554]T and y2 = [1.0000 0.4721 − 0.1162 − 0.7060]T are obtained. y1 is not a feasible
solution for problem (detect-P), but y2 is a feasible solution with (y2)TMy2 = 80.5845 > 0.
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Hence, the algorithm enters Step 3 and we bisect the feasible set along the longest edge of
the sensitive box. Go back to Step 2 and repeat this process. Until the 43rd iteration, we
obtain a feasible solution y = [1.0000 0.2228 − 0.1049 − 0.9959]T from decomposition of
Y ∗ and yTMy = −0.8498 < 0 which indicates M /∈ DFdetect-P

. The CPU time is 45.3223
seconds.

In order to demonstrate the effectiveness of redundant constraints, we compute the same
example without the redundant constraints proposed in Theorem 4.11. It means that the
constraints fj(Y ) ≤ 0, j = 1, . . . , l, in problem (RLB2) are removed. Then in the 189th
iteration, we obtain a feasible solution y′ = [1.0000 0.3664 − 0.0973 − 0.9830]T satisfying
(y′)TMy′ < 0 and the CPU time is 156.2727 seconds.

Set p = 3 and n = 3. Firstly, we use the proposed conic approximation algorithm to solve
five randomly generated matrices not belonging to the polynomial-time subclasses. Then
we solve the same five matrices without the constraints fj(Y ) ≤ 0, j = 1, . . . , l, in problem
(RLB2). Iteration numbers and the CPU time compose the results in Table 1.

Table 1: Effectiveness of redundant constraints in Theorem 4.11
With the redundant constraints Without the redundant constraints
iterations CPU time(sec) iterations CPU time(sec)

13 12.6308 145 110.5474
1 0.5818 18 13.4114
1 0.5538 7 5.0131
19 17.9298 126 96.2440
5 4.6162 51 37.8957

Table 1 shows that the redundant constraints in Theorem 4.11 can reduce the number
of iterations and the CPU time significantly.

When 2 > p ≥ 1, we set the maximum iterations to be 1000. 5000 random matrices M
were generated for different dimension n. Computational results are provided in Tables 2 and
3. PS means the instances belong to the polynomial-time solvable subclasses while NPS
means they do not. ♯1 represents the number of problems which belong to the polynomial-
time solvable subclasses, ♯2 and ♯3 represent the number of instances which are solved in one
iteration and greater than one iteration, respectively, ♯4 represents the number of instances
which cannot be solved within 1000 iterations. If M is in the polynomial-time solvable
subclasses, then its iteration number is denoted as 0.

Table 2: Comparisons between different p when p < 2

p
PS NPS average

CPU(sec) for
all instances♯1 average CPU(sec) ♯2 ♯3 ♯4 average iterations average CPU(sec)

1 4613 0.1253 1 305 81 396.5943 288.6615 22.4580
1.2 4902 0.1268 3 67 28 391.0102 445.5849 8.8578
1.4 4984 0.1284 0 9 7 562.1875 639.5027 2.1744
1.6 4999 0.1367 0 1 0 246 242.4806 0.1851
1.8 5000 0.1290 0 0 0 0 0 0.1290

For 1 ≤ p < 2, Tables 2 and 3 show that a majority of the instances satisfy M11 < 0 or
can be solved in polynomial time according to Theorem 3.5, especially when p approaches
to 2. There is an explanation for this phenomenon. The smaller 2 − p is, the larger the
feasible region of problem (3.6) is while the feasible region of problem (3.4) is unchanged.
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Table 3: Comparisons between different n when p = 1.2

n
PS NPS average

CPU(sec) for
all instances♯1 average CPU(sec) ♯2 ♯3 ♯4 average iterations average CPU(sec)

10 4902 0.1268 3 67 28 391.0102 445.5849 8.8578
20 4956 0.1545 1 28 15 472.8182 837.4583 7.5228
30 4968 0.2008 0 11 21 793.0625 2961.6688 19.1542
40 4982 0.2868 0 2 16 920.8889 6851.1667 24.9500
50 4986 0.4123 0 2 12 930.0714 7981.7286 22.7600

Then the sign of V6 may change from positive to negative when p increases to 2, and more
matrices satisfy the conditions in Theorem 3.5. The increasing number ♯1 in column PS of
Table 2 precisely illustrates this point.

7 Conclusions and Future Work

We conjecture that the complexity of detecting M ∈ DFdetect-P
for 1 ≤ p ̸= 2 is NP-hard

although some polynomial-time solvable subclasses of the detection problem are identified
for 1 ≤ p ̸= 2. Based on the properties of the cone of nonnegative quadratic forms over a
second order cone, we used a conic approximation scheme to detect whether M ∈ DFdetect-P

for those instances not belonging to the proposed polynomial-time solvable subclasses. For
the future study, the complexity of the detection problem deserves our attention.
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