
2014

578 Z. WANG, W. HONG AND D. HE

graph and the objective is to minimize the makespan [30]. They denoted the problem by
Pm|vertex cover|Cmax, and revealed that it may lead to an inefficient solution if we simply
solve the two subproblems successively. They proposed an LLR algorithm that incorporates
the LPT (Longest Processing Time) rule for parallel machine scheduling and the local ratio
method for the vertex cover problem by introducing a replacement policy, and proved that
the LLR algorithm is (3− 2

m+1)-approximate. This study connects two fundamental combi-
natorial optimization problems, and inspires us to consider a wide range of new combinations
of combinatorial optimization problems. There are some natural extensions of this work, for
instance we can consider the parallel machines to be uniformly related, and the vertex cover
problem can be replaced by one of its extensions, for example the prize collecting vertex
cover problem or the hitting set problem. The purpose of this paper is to propose a unified
combination problem containing all of these extensions.

We say a combinatorial optimization problem is a covering problem if it is a minimiza-
tion problem with binary variables, and it minimizes a linear objective function under some
constraints. The covering problem generalizes many classic combinatorial optimization prob-
lems, e.g. the shortest path problem, the vertex cover problem and the hitting set problem.
In fact, the combinatorial optimization problem defined by Wolsey coincides with our cov-
ering problem [31]. Our combination problem is to assign some of the jobs on m uniformly
related parallel machines such that the jobs correspond to a feasible solution of the cov-
ering problem and the makespan is minimized. We denote the combination problem by
Qm|covering|Cmax. The combination problem is usually not easier than any of the indi-
vidual problems, and it needs to investigate the properties of the individual problems and
integrate them to develop an efficient algorithm for the combination problem. We first give
a short review on scheduling problems. The covering problem and the combination problem
will be further discussed after we formally define them in the next section.

Scheduling problems have wide applications in many areas, including computer and man-
ufacturing systems, agriculture, hospital, transport and so on [26]. Scheduling problems are
usually specified by the machine environment, the optimally criterion and the job character-
istics [5]. In a uniformly related parallel machine scheduling problem, denoted by Qm||Cmax,
each machine has a processing speed and the objective is to minimize the makespan, i.e. the
last completion time. If the speeds are the same for all machines, Qm||Cmax becomes the
identical parallel machine scheduling problem, denoted by Pm||Cmax. Both of Pm||Cmax and
Qm||Cmax are NP-hard [11], and they have been extensively studied. In the first paper on
the worst-case analysis of an approximation algorithm, Graham showed that the LS (List
Scheduling) algorithm, which assigns the first available job on the least load machine, is
(2− 1

m)-approximate for Pm||Cmax [13]. If the jobs are ordered of non-increasing processing
times, then the LS algorithm is known as the LPT rule. Graham proved that the LPT
rule has a worst case ratio 4

3 −
1

3m for Pm||Cmax [14]. Morrison applied the LPT rule to
Qm||Cmax and obtained a max{σ2 , 2}-approximation algorithm in which σ is the ratio of
the maximum machine speed to the minimum machine speed [28]. Gonzalez and Ibarra
presented a modified LPT rule that assigns the current job to the machine with the smallest
completion time, and showed that its worst-case ratio is 2− 2

m+1 [12]. A constant ratio 19
12

for Qm||Cmax was obtained in [9] and [10]. Recently the result was improved by Kovács
[25]. Each of Pm||Cmax and Qm||Cmax has PTAS [17, 18], and FPTAS exists if the number
of the machines is fixed [29, 20].

The contributions of this paper include: (1) we formally describe the considered prob-
lem; (2) given that there is an algorithm with worst-case ratio r for the covering problem,
we present two approximation algorithms for Qm|covering|Cmax with worst-case ratios

r + (m−1)λm∑m
i=1 λi

and
r+
√

r2+4r(m−1)

2 respectively where λi is the speed of machine i; (3) if

COMBINATION OF PMS AND THE COVERING PROBLEM 579

the machines are identical or the covering problem is specified, e.g. shortest path, price
collecting vertex cover or hitting set, some explicit or better results are obtained.

The rest of this paper is organized as follows. We formally define the covering problem
and the combination problem in Section 2. In Section 3, we propose and analyze the LArR
algorithm for Qm|covering|Cmax, and some improved results are obtained in Section 4.
In Section 5, we apply our results to some specific combination problems, and Section 6
concludes our work.

2 Preliminaries

We first give the definition of a covering problem.

Definition 2.1. Given a set of feasibility constraints C, a nonnegative weight vector w =
(w1, . . . , wn), a problem is called a covering problem if it minimizes w ·x by finding a vector
x ∈ {0, 1}n such that x satisfies the constraints in C, in which · denotes the inner product
of two vectors.

In the rest of the paper, we always use covering(w) to denote a covering problem with
certain constraints C in which w denotes the non-negative weight vector. When there is
no danger of confusion, we also simply write covering(w) as covering. The covering
problem generalizes many classic combinatorial optimizations. For example, in the vertex
cover problem, we are given an undirected graph G = (V,E), in which each vertex i has
a non-negative weight wi, the objective is to find a set of vertices U ⊆ V with minimum
total weight such that for each edge (i, j) of E, at least one of i and j belongs to U . Let
xi = 1 if the vertex i is chosen and xi = 0 otherwise, and then a set of vertices is a feasible
solution if and only if the corresponding variables satisfy xi + xj ≥ 1 for each edge (i, j) of
E, that specify the constraints of C. Assume |V | = n, and then the vertex cover problem is
to minimize w · x by finding a vector x ∈ {0, 1}n such that x satisfies the constraints of C.
Similarly, we can verify that the shortest spanning tree problem, the shortest path problem,
the Steiner tree problem and the extensions of the vertex cover problem, for example the
prize collecting vertex cover problem and the hitting set problem, are all covering problems.
Since the related bibliography on covering problems is vast, we will only mention some
related results in Section 5 when we apply our general result to some specific combination
problems, and the readers are referred to [24] for comprehensive reviews.

Now we can define the combination problem of Qm||Cmax and a covering problem
covering.

Definition 2.2. Given a covering problem covering with n variables, each variable xi of
covering corresponds to a job Ji with processing time pi. Let p = (p1, . . . , pn) be the
vector of processing times. Define Sx to be a set of jobs such that Ji ∈ Sx if and only if
xi = 1. The Qm|covering|Cmax problem is to find a feasible solution x of covering and
assign the jobs of Sx on m uniformly related parallel machines to minimize the makespan.

Throughout this paper, we generally assume that the covering problem covering has
a feasible solution since otherwise Qm|covering|Cmax will have no feasible solution. In
Qm|covering|Cmax, covering provides the feasibility constraints and the scheduling prob-
lem Qm||Cmax decides the final objective. The weight vectors w and p are not necessarily
the same in the definition. It seems that the objective of covering does not appear in
Definition 2.2, but we define the covering problem to be an optimization problem other
than a feasibility problem because of two reasons. First, if we set w = p and m = 1, then

580 Z. WANG, W. HONG AND D. HE

Qm|covering|Cmax is indeed the covering problem. It implies that the optimization prob-
lem covering is inherent in the considered problem though the objective of covering does
not directly act on Definition 2.2. Secondly, and the most important reason is that to design
and analyze an efficient algorithm for the combination problem, we need covering have
the following property, which only applies to an optimization problem.

Assumption 2.1. Assume that there exists a polynomial-time r-approximation algorithm
Ar for the covering problem covering.

We define the covering problem in a general way such that many combinatorial opti-
mization problems are special cases of it. Assumption 2.1 provides some useful information
on the covering problem. In the later discussion, we will iteratively adopt a r-approximation
algorithm Ar for a specific covering problem to obtain an efficient solution for the com-
bination problem obtained by combining the parallel machine scheduling problem and the
covering problem.

The Pm|vertex cover|Cmax problem studied in [30] is a special case ofQm|covering|Cmax

in which the parallel machines are identical and covering is the vertex cover problem. We
know that the vertex cover problem has (2− log logn

2 logn)-approximation algorithm based on the

local ratio method [3] and a (2−Θ(1√
logn

))-approximation algorithm by an SDP approach

[22].
Qm||Cmax is another subproblem of our combination problem. Let the m uniformly

related parallel machines be {M1,M2 . . . ,Mm} with processing speeds {λ1, λ2, . . . , λm}. If
λ1 = λ2 = · · · = λm, then Qm||Cmax is reduced to Pm||Cmax. Without loss of generality,
assume that 1 = λ1 ≤ λ2 ≤ · · · ≤ λm. Let J = {J1, J2 . . . , Jn} be a set of jobs with
the vector of processing times p = (p1, . . . , pn). The following LPT rule is a practical and
efficient algorithm for Pm||Cmax.

Algorithm 1 The LPT rule for Pm||Cmax

1: sort the jobs in order of non-increasing processing times,
2: whenever a machine becomes idle, assign the first available job to it.

For Qm||Cmax, the LPT rule is stated as follows.

Algorithm 2 The LPT rule for Qm||Cmax

1: sort the jobs in order of non-increasing processing times,
2: assign the first available job to the machine on which it will finish first.

The LPT rule will be frequently used as subroutines in our algorithms.

3 Approximation Algorithm for the Combination Problem

For Pm|vertex cover|Cmax, Wang and Cui developed the LLR algorithm that incorporates
the LPT rule for Pm||Cmax and the local ratio method for the vertex cover problem by
a replacement policy [30]. The LLR algorithm first adopts the local ratio method for the
vertex cover problem to obtain a feasible solution, and then schedules the corresponding jobs
by the LPT rule. While the last completed job occupies one machine, the LLR algorithm
considers to replace it by its neighbors and schedules the jobs by the LPT rule iteratively.
The work on Pm|vertex cover|Cmax inspires the current study, but the main ideas of the

COMBINATION OF PMS AND THE COVERING PROBLEM 581

LLR algorithm do not work for Qm|covering|Cmax because it uses a specific algorithm
and some underlying properties of the vertex cover problem whereas our covering problem is
abstract and we only know it has a r-approximation algorithm. Notice that different choices
of the weight vector w in covering do not act on any feasible solution. We can first set
w = p and adopt the Ar algorithm to find a r-approximation solution x for covering, and
then schedule the jobs of Sx by the LPT rule. To improve the current solution, we can revise
the weight vector w, and obtain another feasible solution by the Ar algorithm, and then run
the LPT rule again. We can expect a good solution by iteratively running this procedure
if we can establish an appropriate policy to determine when and how to revise the weight
vector. Our optimism comes from the fact that we will iteratively run the Ar algorithm for
covering whereas the LLR algorithm only runs the local ratio method once for the vertex
cover problem. We propose the LArR algorithm that iteratively runs the Ar algorithm for
covering and the LPT rule for Qm||Cmax by adopting the following revision policy: in a
current schedule, if a job, namely Js, whose processing time ps is big enough with respect to
the current makespan, we will set ws to a big enough value to evade Js’s appearance again.

Before formally giving the LArR algorithm, we first define some symbols and notations.
Let p(S) be the total weights of jobs in a job set S. Use (S′

1, S
′
2, . . . , S

′
m) to record a current

schedule with makespan C ′
max and use (S1, S2, . . . , Sm) to record a best schedule so far with

makespan Cmax in which Si is a set of jobs that are assigned on machine i. Let S∗
i be the set

of jobs that are assigned on machine i in an optimal solution. Denote by (S∗
1 , S

∗
2 , . . . , S

∗
m)

an optimal solution with makespan C∗
max, and let x∗ be the corresponding feasible solution

for covering. Define S = ∪mi=1Si and S∗ = ∪mi=1S
∗
i . In our algorithm, we use D to record a

set of jobs such that Jj ∈ D if and only if wj has been revised. Let k > 0 be a constant, and
its exact expression will be given later. The algorithm LArR can be described as follows.

Algorithm 3 The LArR algorithm for Qm|covering|Cmax

1: set w = p, apply the Ar algorithm for covering(w) to obtain a solution x, and construct
Sx.

2: schedule the jobs of Sx by the LPT rule, obtain a schedule {S′
1, S

′
2, . . . , S

′
m} with

makespan C ′
max and let Js be the job with the largest processing time in Sx.

3: let {S1, S2, . . . , Sm} = {S′
1, S

′
2, . . . , S

′
m}, Cmax = C ′

max, K = r
∑n

i=1 |pi|+ 1 and D = ∅.
4: while ps ≥ C′

max

k and w · x < K do
5: ws ← K, D ← D ∪ {Js}.
6: apply the Ar algorithm to obtain a solution x for covering(w), and construct Sx.
7: schedule the jobs of Sx by the LPT rule, obtain (S′

1, S
′
2, . . . , S

′
m), C ′

max and let Js be
the job with the largest processing time in Sx.

8: if C ′
max < Cmax then

9: (S1, S2, . . . , Sm)← (S′
1, S

′
2, . . . , S

′
m), Cmax ← C ′

max.
10: end if
11: end while
12: return (S1, S2, . . . , Sm) and Cmax.

Let Cmax be the makespan returned by the LArR algorithm. A simple observation is
that Cmax ≤ C ′

max always holds for any current schedule with makespan C ′
max since the

schedule returned is the best one during the LArR algorithm.

The feasibility of covering does not change if we revise the weight vector w. Since
we have assumed that covering has a feasible solution, the LArR algorithm will return a
feasible solution for Qm|covering|Cmax. In the algorithm, if w ·x ≥ K, then the algorithm

582 Z. WANG, W. HONG AND D. HE

stops. It implies that each weight of w can be revised at most once, and hence there are at
most n iterations in which the Ar algorithm and the LPT rule are called. The LPT rule can
be realized in O(n log n+mn) time. Assume that the time complexity of the Ar algorithm
is Tr, and then the time complexity of the LArR algorithm is O(nTr + n2 log n+mn2).

Before analyzing the performance of the LArR algorithm, we prove two useful lemmas.

Lemma 3.1. If D ∩ S∗ ̸= ∅, then the LArR algorithm is kλm-approximate for
Qm|covering|Cmax.

Proof. Suppose Ji ∈ D ∩ S∗, then

C∗
max ≥

pi
λm

. (3.1)

Since Ji ∈ D, there must be a current schedule with makespan C ′
max such that

pi ≥
C ′

max

k
, (3.2)

and then Ji is put into D. Noticing that Cmax ≤ C ′
max for any current schedule with

makespan C ′
max, we have

kλmC∗
max ≥ Cmax, (3.3)

and the result follows.

Lemma 3.2. Let Sx be the set of jobs in the last current schedule, and w be the corresponding
weight vector of covering. If D ∩ S∗ = ∅, then p(Sx) = w · x ≤ rp(S∗).

Proof. We obtain x by applying the Ar algorithm for covering(w). Assume that x̃ is the
optimal solution for covering(w), and then w·x ≤ rw·x̃. IfD∩S∗ = ∅, we know the weights
of jobs in S∗ is not changed during the algorithm, and thus x∗ satisfies p(S∗) = p·x∗ = w ·x∗.
Since we set K = r

∑n
i=1 |pi|+ 1, we have

w · x ≤ rw · x̃ ≤ rp(S∗) < K, (3.4)

which implies that the weights of jobs in Sx are not changed, i.e. w · x = p · x. Notice that
p(Sx) = p · x, and the result follows.

Now we can present our main result.

Theorem 3.3. Set k = r
λm

+ m−1∑m
i=1 λi

in the LArR algorithm, and then the LArR algorithm

is kλm-approximate for Qm|covering|Cmax.

Proof. We analyze the performance of the LArR algorithm under two cases.
Case 1: D ∩ S∗ ̸= ∅

Lemma 3.1 implies that the LArR algorithm is kλm-approximate.
Case 2: D ∩ S∗ = ∅

In this case, let (S′
1, S

′
2, . . . , S

′
m) be the last current schedule with job set Sx and makespan

C ′
max. Since D ∩ S∗ = ∅, from Lemma 3.2, we know w · x = p(Sx) = p · x < K must hold.

Therefore, we have ps <
C′

max

k in the last current schedule since otherwise the “while”
iteration will continue. Let Jl be the last completed job in this schedule. Obviously, we
have

pl <
C ′

max

k
. (3.5)

COMBINATION OF PMS AND THE COVERING PROBLEM 583

On the other hand, noticing that C∗
max ≥

p(S∗)∑m
i=1 λi

, by lemma 2, we have

C∗
max ≥

p(Sx)

r
∑m

i=1 λi
. (3.6)

Suppose Jl is assigned on the hth machine with completion time C ′
max, the LPT rule implies

that ∀i ̸= h,

p(S′
i) + pl
λi

≥ C ′
max. (3.7)

Therefore, we have

p(Sx) =
m∑
i=1

p(S′
i) ≥

∑
i ̸=h

(λiC
′
max − pl) + λhC

′
max =

m∑
i=1

λiC
′
max − (m− 1)pl. (3.8)

Putting (3.6) and (3.8) together, we have

C∗
max ≥

∑m
i=1 λiC

′
max − (m− 1)pl

r
∑m

i=1 λi
, (3.9)

and thus

C ′
max

C∗
max

≤
r
∑m

i=1 λiC
′
max∑m

i=1 λiC ′
max − (m− 1)pl

. (3.10)

From (3.5) and (3.10), we have

C ′
max

C∗
max

≤
rk

∑m
i=1 λi

k
∑m

i=1 λi − (m− 1)
. (3.11)

We have indicated that Cmax ≤ C ′
max, and then we can conclude that the LArR algo-

rithm has a worst-case ratio max{kλm,
rk

∑m
i=1 λi

k
∑m

i=1 λi−(m−1)}. Simple calculation implies that

the two terms are all equal to r + (m−1)λm∑m
i=1 λi

when k = r
λm

+ m−1∑m
i=1 λi

. Therefore, the LArR

algorithm is kλm-approximate for Qm|covering|Cmax.

4 Improved Approximation Algorithms

In this section, we propose two improved approximation algorithms for Qm|covering|Cmax

and Pm|covering|Cmax respectively. The first approximation algorithm is based on a
simple observation that the LArR algorithm may perform badly if the speed of the last
machine, namely λm, is big enough with respect to

∑m
i=1 λi. It is possible to obtain an

improved solution for this case if we simply assign all jobs of a feasible solution to the
last machine. For Pm|covering|Cmax, we can directly adopt the result of Theorem 3.3 by
setting λ1 = · · · = λm = 1, but we make use of the property of identical parallel scheduling
to obtain improved result.

4.1 The LLArR Algorithm for Qm|covering|Cmax

We first present an algorithm, named the LAZY algorithm, that runs in a simple way.
Obviously, the time complexity of the LAZY algorithm is O(Tr(n)+m+n). The analysis

of this algorithm is also simple. Actually we have

584 Z. WANG, W. HONG AND D. HE

Algorithm 4 The LAZY algorithm for Qm|covering|Cmax

1: set w = p, apply the Ar algorithm for covering(w) to obtain a solution x, and construct
Sx.

2: assign all jobs in Sx to the mth machine.
3: return {0, . . . , 0, Sx}, Cmax = p(Sx)/λm.

Theorem 4.1. The LAZY algorithm is
r
∑m

i=1 λi

λm
-approximate for Qm|covering|Cmax.

Proof. The solution x is obtained by applying the Ar algorithm for covering(p), and thus

p(Sx) ≤ rp(S∗). Since Cmax = p(Sx)/λm and C∗
max ≥

p(S∗)∑m
i=1 λi

, we have

Cmax

C∗
max

=
p(Sx)

λmC∗
max

≤
∑m

i=1 λip(Sx)

λmp(S∗)
≤

r
∑m

i=1 λi

λm
, (4.1)

and then the result follows.

Although the LAZY algorithm is much simpler than the LArR algorithm, it may perform
better in case λm is big enough. A natural idea is to run the two algorithms consecutively
and output the better solution, that leads to the LLArR algorithm.

Algorithm 5 The LLArR algorithm for Qm|covering|Cmax

1: apply the LAZY algorithm to get a solution (S1, S2, . . . , Sm) with makespan Cmax.
2: apply the LArR algorithm to get a solution (S′

1, S
′
2, . . . , S

′
m) with makespan C ′

max.
3: if Cmax ≤ C ′

max then
4: return (S1, S2, . . . , Sm) and Cmax.
5: else
6: return (S′

1, S
′
2, . . . , S

′
m) and C ′

max.
7: end if

The time complexity of the LLArR algorithm is O(n(Tr(n)+n log n+mn)). Combining
the results of Theorems 3.3 and 4.1, we have

Theorem 4.2. The LLArR algorithm is min{ r
∑m

i=1 λi

λm
, r + (m−1)λm∑m

i=1 λi
}-approximate for

Qm|covering|Cmax.

Let α = min{ r
∑m

i=1 λi

λm
, r + (m−1)λm∑m

i=1 λi
}, and then we have

α ≤ r +
r(m− 1)

α
, (4.2)

which implies that

α ≤
r +

√
r2 + 4r(m− 1)

2
. (4.3)

This result gives another worst case ratio of the LLArR algorithm for Qm|covering|Cmax,
which is independent of the machine speeds.

Corollary 4.3. The LLArR algorithm is
r+
√

r2+4r(m−1)

2 -approximate for Qm|covering|Cmax.

COMBINATION OF PMS AND THE COVERING PROBLEM 585

4.2 The LArR Algorithm for Pm|covering|Cmax

For Pm|covering|Cmax, if we adopt the result of Theorem 3.3 by setting λ1 = · · · =
λm = 1 and k = r + 1 − 1

m , we know the worst case ratio of the LArR algorithm for
Pm|covering|Cmax will be r + 1 − 1

m . In this subsection, we reduce the approximation
factor by investigating the property of identical parallel machine scheduling. We also adopt
the LArR algorithm for Pm|covering|Cmax, but the choice of k is different. We first
give a lemma concerned with the LPT rule for identical parallel machine scheduling. Let
J = {J1, J2 . . . , Jn} be a set of jobs with the vector of processing times p = (p1, . . . , pn).
Without loss of generality, assume that p1 ≥ p2 ≥ · · · ≥ pn. Let Cmax be the makespan
of the schedule obtained by applying the LPT rule to the jobs of J on m identical parallel
machines, and Jl be the last completed job.

Lemma 4.4. For Pm||Cmax, let Cmax be the makespan returned by the LPT rule. Given
any positive integer k, if p1 < Cmax

k , then we have

pl ≤
Cmax

k + 1
. (4.4)

Proof. Let Mi be the machine on which Jl is processed, i.e. the completion time of Mi is
Cmax. Since p1 < Cmax

k and p1 ≥ p2 ≥ · · · ≥ pn, at least k + 1 jobs are processed on Mi.
Since Jl is the last completed job on Mi, the LPT rule implies that the processing time of
Jl must be the smallest among all jobs processed on Mi. Therefore, we have pl ≤ Cmax

k+1 .

Using this property of the LPT rule, we can obtain an improved result for
Pm|covering|Cmax.

Theorem 4.5. Given any positive integer k in the LArR algorithm, the LArR algorithm

is max{k, r(k+1)m
km+1 }-approximate for Pm|covering|Cmax.

Proof. Notice that Pm|covering|Cmax is actually a special case of Qm|covering|Cmax,
and then all results for Qm|covering|Cmax hold when we apply the LArR algorithm for
Pm|covering|Cmax.
Case 1: D ∩ S∗ ̸= ∅

In this case, we have concluded that LArR algorithm is kλm-approximate in Theorem
3.3. For our case, the approximation factor is k because of λm = 1.
Case 2: D ∩ S∗ = ∅

Let (S′
1, S

′
2, . . . , S

′
m) be the last current schedule with job set Sx and makespan C ′

max.
Let Js be the job with the largest processing time in Sx and Jl be the last completed job.

The argument in the proof of Theorem 3.3 implies that ps <
C′

max

k if D∩S∗ = ∅. By lemma
4.4, we have

pl ≤
C ′

max

k + 1
. (4.5)

Notice that (3.10) also holds for this case. Substituting 1 = λ1 = λ2 = · · · = λm into
(3.10), we have

C ′
max

C∗
max

≤ rmC ′
max

mC ′
max − (m− 1)pl

. (4.6)

Combining (4.5) and (4.6), we have

C ′
max

C∗
max

≤ rm(k + 1)

mk + 1
. (4.7)

586 Z. WANG, W. HONG AND D. HE

Since Cmax ≤ C ′
max, we conclude that the LArR algorithm is max{k, r(k+1)m

km+1 }-
approximate for Pm|covering|Cmax.

Notice that Theorem 4.2 holds for any positive integer k, and then we can calculate the

best k such that max{k, r(k+1)m
km+1 } is minimized. It may lead to a better result than r+1− 1

m
which is obtained directly by setting 1 = λ1 = λ2 = · · · = λm in Theorem 3.3. In fact, we
have the next theorem.

Theorem 4.6. There exists a positive integer k such that max{k, r(k+1)m
km+1 } ≤ r + 1− 1

m .

Proof. Set k = ⌊r + 1− 1
m⌋ where ⌊x⌋ denotes the largest integer not greater than x. Since

r is the worst case ratio of the Ar algorithm for a minimization problem, we know r ≥ 1

and thus k ≥ 1. Obviously, we have k ≤ r + 1 − 1
m . Let h(x) = r(x+1)m

xm+1 , and it is easy to

verify that h(x) is a decreasing function for x ≥ 1. Notice that k ≥ r − 1
m , and we have

h(k) ≤ h(r − 1

m
) =

r(r − 1
m + 1)m

m(r − 1
m) + 1

= r + 1− 1

m
. (4.8)

Therefore, the positive integer k satisfies max{k, r(k+1)m
km+1 } ≤ r + 1− 1

m .

Now we give the exact expression of positive integer k that minimizes max{k, r(k+1)m
km+1 }.

Let f(x) = x, which is a increasing function. Remember that h(x) is a decreasing function

for x ≥ 1. The equation f(x) = h(x) has a unique solution x∗ =
rm−1+

√
4rm2+(rm−1)2

2m for
x ≥ 1. We conclude that if f(⌊x∗⌋+1) ≥ h(⌊x∗⌋), then the optimal k is ⌊x∗⌋, and otherwise
the optimal k is ⌊x∗⌋+ 1.

5 Some Applications of Our Work

In this section, we apply the theoretical results to some specific combination problems.
We consider the combinations of identical parallel machine scheduling and three covering
problems, namely the shortest path problem, the prize collecting vertex cover problem and
the hitting set problem. Denote the three combination problems by Pm|shortest path|Cmax,
Pm|PCVC|Cmax and Pm|hitting set|Cmax respectively.

5.1 Pm|shortest path|Cmax

In a shortest path problem, we are given an undirected graph G = (V,E) and a non-negative
weight vector w of edges, and the objective is to find a path between two fixed vertices s
and t such that the sum of the weights of its constituent edges is minimized. The shortest
path problem is indisputably one of the fundamental problems in computer science. It is
well known that Dijkstra algorithm solves the shortest path problem with nonnegative edge
weights in polynomial time [7]. The readers are referred to the excellent textbook [1] for
more details.

In the LArR algorithm, let the Ar algorithm be Dijkstra algorithm in which r = 1, and
set k = 1 by Theorem 4.6. Theorem 4.5 implies that the LArR algorithm is 2m

m+1 -approximate
for Pm|shortest path|Cmax. The following instance shows the bound is tight.

Consider an undirected graph G = (V,E) with 2m + 1 nodes and 2m + 1 edges
such that V = {s, u1, u2, . . . , um, t, v1, v2, . . . , vm−1} and E = E1 ∪ E2 in which
E1 = {(s, u1), (u1, u2) . . . , (um−1, um), (um, t)} and E2 = {(s, v1), (v1, v2), . . . , (vm−2, vm−1),
(vm−1, t)}. Each edge (i, j) corresponds to a job Jij whose processing time is m if (i, j) ∈ E1

COMBINATION OF PMS AND THE COVERING PROBLEM 587

and is m + 1 + ϵ if (i, j) ∈ E2 where ϵ > 0 is a constant. The LArR algorithm first sets
the weights of edges equal to the processing times of corresponding jobs, and then finds the
s − t shortest path containing all edges of E1 by Dijkstra algorithm, and then assigns the
corresponding jobs on m machines by the LPT rule to obtain a schedule with C ′

max = 2m.

Since the largest processing time of these jobs is m and k = 1, we have m <
C′

max

k , and
thus the LArR algorithm will output the current schedule with Cmax = 2m. Obviously the
optimal makespan of this instance is m + 1 + ϵ. Thus Cmax

C∗
max
→ 2m

m+1 when ϵ → 0 for the

instance.

5.2 Pm|PCVC|Cmax

The prize collecting vertex cover problem (PCVC for short) is an extension of the classic
vertex cover problem (VC for short). In this problem, we are given an undirected graph
G = (V,E) just like the classic vertex cover problem, but now, not only each vertex but also
each edge has a nonnegative weight, our target is to find a set U consisting of some edges
and some vertices in V ∪E, such that for each edge in the graph, either the edge is in U , or
at least one of its two endpoints belong to U , and we aim to minimize the total weight of
the elements in U .

Hochbaum first introduced PCVC, and obtained 2-approximation algorithm [16]. Bar-
Yehuda and Rawitz [4] obtained the same approximation factor by the local ratio method,
which is remarkably simple and elegant. Since VC is a special case of PCVC, and hence the
following inapproximability results for VC also holds for PCVC. Dinur and Safra proved that
the vertex cover problem can not be approximated within a factor of 1.36 unless P = NP
[8]. Based on the unique games conjecture (UGC), Khot and Vygen showed that VC can
not be approximated within any constant factor better than 2 [23].

In the LArR algorithm, let the Ar algorithm be the local ratio method of Bar-Yehuda
and Rawitz in which r = 2, and set k = 2 by Theorem 4.6. Theorem 4.5 implies that the
LArR algorithm is 6m

2m+1 -approximate for Pm|PCVC|Cmax. Before giving an instance to
show the bound is tight, we describe the local ratio method of Bar-Yehuda and Rawitz.

Algorithm 6 The local ratio method for prize collecting vertex cover [4]

1: while there exists an edge e = (u, v) such that min{w(u), w(v), w(e)} > 0 do
2: ϵ = min{w(u), w(v), w(e)},
3: w(u)← w(u)− ϵ, w(v)← w(v)− ϵ, w(e)← w(e)− ϵ.
4: end while
5: return {v|w(v) = 0} ∪ {e = (u, v)|w(u) > 0, w(v) > 0}.

Consider a complete undirected graph with 2m+1 vertices. Each vertex i corresponds to
a job with processing time 2m, and each edge (i, j) corresponds to a job with processing time
1. The LArR algorithm first sets the weights of vertices and edges equal to the processing
times of corresponding jobs, and then finds a feasible cover containing all vertices by the
local ratio method, and then assigns the corresponding jobs on m machines by the LPT
rule to obtain a schedule with C ′

max = 6m. Since the largest processing time of these jobs

is 2m, we have 2m <
C′

max

2 , and thus the LArR algorithm will output the current schedule
with Cmax = 6m. The optimal solution is to select all of the m(2m + 1) edges that cover
the graph and then assign the corresponding 2m + 1 jobs of them on each machine. The
optimal makespan is 2m+ 1, and thus Cmax

C∗
max

= 6m
2m+1 for the instance.

Notice that VC is a special case of PCVC, and thus we conclude that the LArR algorithm

588 Z. WANG, W. HONG AND D. HE

is also 6m
2m+1 -approximate for Pm|vertex cover|Cmax. For the same problem, Wang and Cui

developed an LLR algorithm which is (3− 2
m+1)-approximate [30], and a recent work reduced

the approximation factor to 5
2 −

1
2m for m = 2, 3 and to 3 − 3

m+1 for m ≥ 4 [19]. It is not
strange that the result obtained in this paper is not better than that of [30, 19] since our
result is obtained under a unified framework, whereas the other approaches are dedicated to
a specific problem by investigating the underlying properties of the vertex covering problem,
parallel machine scheduling and their combination problem.

5.3 Pm|hitting set|Cmax

The hitting set problem (HS for short) is another extension of VC. In HS, we are given a
collection of nonempty sets {S1, S2, . . . , Sl} and a nonnegative weight vector w of the sets’

elements S =
∪l

i=1 Si. A set U ⊆ S is said to hit a given set Si if U ∩ Si ̸= ∅. Our target is
to find a minimum-cost subset of S that hits all the sets Si, where i = 1, 2, . . . , l.

Johnson [21] and Lovasz [27] first studied the unweighted case of HS, and presented a
greedy algorithm with approximation factor dmax, where dmax is the maximum degree of an
element. Chvatal [6] proved that this result holds for the general case. Based on linear pro-
gramming, Hochbaum proposed two f -approximation algorithms, where f = max1≤i≤l|Si|
[15]. Bar-Yehuda and Even developed the following linear time f -approximation algorithm
by the local ratio method.

Algorithm 7 The local ratio method for hitting set [2]

1: while there exists a set Si such that min{w(x)|x ∈ Si} > 0 do
2: ϵ = min{w(x)|x ∈ Si},
3: for each x ∈ Si, w(x) = w(x)− ϵ.
4: end while
5: return {x|w(x) = 0}.

In the LArR algorithm, let the Ar algorithm be the local ratio method of Bar-Yehuda
and Even in which r = f , and set k = f by Theorem 4.6. Theorem 4.5 implies that

the LArR algorithm is f(f+1)m
fm+1 -approximate for Pm|hitting set|Cmax. Different from the

previous two problems, this bound is not tight. In fact, we can reduce the approximation
factor to f + 1 − f

m(f−1)+1 by a careful analysis, but we omit its proof since it deviates

from our aim of demonstrating the theoretical results obtained in the last section. Based on
UGC, Khot and Vygen showed HS can not be approximated with any constant less than f

[23], and thus f is also a threshold for Pm|hitting set|Cmax. Though the bound f(f+1)m
fm+1 is

not tight, it is close to the threshold since f ≤ f(f+1)m
fm+1 < f + 1.

6 Conclusions

In this paper, we have studied the combination of uniformly related parallel machine schedul-
ing and a generalized covering problem under a unified framework. In the combination
problem, the covering problem provides the feasibility constraints for the scheduling prob-
lem whereas the objective functions of the covering problem are decided by the scheduling
problem in our algorithms. We propose an approximation algorithm that incorporates the
LPT rule for uniformly related parallel machine scheduling and the approximation algo-
rithm for the covering problem by introducing a weight revision policy that connects the

COMBINATION OF PMS AND THE COVERING PROBLEM 589

two problems. We also improve our results for some special cases. We present some specific
combination problems of identical parallel machines scheduling and classic combinatorial
optimization problems to demonstrate our approach. Many valuable problems remain. For
instance, can we obtain improved results for the generalized or specific combination prob-
lems? How about the combination problem of the bin packing problem and a covering
problem or the combination of other classic combinatorial optimization problems? All these
questions deserve further investigation.

Acknowledgments

We would like to thank the anonymous referees for their helpful comments and suggestions.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

[2] R. Bar-Yehuda and S. Even, A linear time approximation algorithm for the weighted
vertex cover problem, J. Algorithms 2 (1981) 198–203.

[3] R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted
vertex cover problem, Ann. of Discrete Math. 25 (1985) 27–45.

[4] R.Bar-Yehuda and D. Rawitz, On the equivalence between the primal-dual schema and
the local-ratio technique, In 4th International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, 2001, pp. 24–35.

[5] B. Chen, C. Potts, and G. Woeiginger, A review of machine scheduling: Complexity,
algorithm and approximability, In Handbook of Combinatorial Optimization, D-Z. Du,
P. Pardalos (eds.), Kluwer Academic Publishers, 1998, pp. 21–169.

[6] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979)
233–235.

[7] E. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959)
269–271.

[8] I. Dinur and S. Safra, On the hardness of approximating minimum vertex-cover, Ann.
of Math. 162 (2005) 439–485.

[9] G. Dobson, Scheduling independent tasks on uniform processors, SIAM J. Comput. 13
(1984) 705–716.

[10] D. Friesen, Tighter bounds for LPT scheduling on uniform processors, SIAM J. Comput.
16 (1987) 554–660.

[11] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, WH Freeman, 1979.

[12] T. Gonzalez and O. Ibarra, Bounds for LPT schedules on uniform processors, SIAM J.
Comput. 6 (1977) 155–166.

590 Z. WANG, W. HONG AND D. HE

[13] R. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Jour-
nal 1 (1966) 1563–1581.

[14] R. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17
(1969) 416–426.

[15] D. Hochbaum, Approximation algorithms for the set covering and vertex cover prob-
lems, SIAM J. Comput. 11 (1982) 555–556.

[16] D. Hochbaum, Solving integer programs over monotone inequalities in three variables:
A framework of half integrality and good approximation, European J. Oper. Res. 140
(2002) 291–321.

[17] D. Hochbaum and D. Shmoys, Using dual approximation algorithms for scheduling
problems: Theoretical and practical results, J. ACM 34 (1987) 144–162.

[18] D. Hochbaum and D. Shmoys, A polynomial approximation scheme for machine schedul-
ing on uniform processors: Using the dual approximation approach, SIAM J. Comput.
17 (1988) 539–551.

[19] W. Hong and Z. Wang, Improved approximation algorithm for the combination of
parallel machine scheduling and vertex cover, Working Paper, Tsinghua University
(2012).

[20] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling noniden-
tical processors, J. ACM 23 (1976) 317–327.

[21] D. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System
Sci. 9 (1974) 256–278.

[22] G. Karakostas, A better approximation ratio for the vertex cover problem, ACM Trans.
Algorithms 5 (2009) 41:1–41:8.

[23] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2− ϵ, J.
Comput. System Sci. 74 (2008) 335–349.

[24] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (Fifth
Edition), Springer, 2012.

[25] A. Kovács, New Approximation Bounds for LPT Scheduling, Algorithmica 57 (2010)
413–433.

[26] J. Leung, Handbook of Scheduling, CRC Press, 2004.

[27] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math. 13
(1975) 383–390.

[28] J. Morrison, A note on LPT scheduling, Oper. Res. Lett. 7 (1988) 77–79.

[29] S. Sahni, Algorithms for scheduling independent tasks, J. ACM 23 (1976) 116–127.

[30] Z. Wang and Z. Cui, Combination of parallel machine scheduling and vertex cover,
Theoret. Comput. Sci. 460 (2012) 10–15.

[31] L.A. Wolsey, Integer Programming, Wisly, 1998.

COMBINATION OF PMS AND THE COVERING PROBLEM 591

Manuscript received 8 November 2013
revised 18 March 2014

accepted for publication 25 April 2014

Zhenbo Wang
Department of Mathematical Sciences
Tsinghua University, Beijing, China
E-mail address: zwang@math.tsinghua.edu.cn

Wenyi Hong
Department of Mathematical Sciences
Tsinghua University, Beijing, China
E-mail address: hongwy10@mails.tsinghua.edu.cn

Dong He
Department of Mathematical Sciences
Tsinghua University, Beijing, China
E-mail address: hedongtg@163.com

