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for the switching times so that the switched system under consideration operates in the
best possible manner. This problem is called the switching time optimization problem (STO
problem).

The STO problem is a type of nonlinear optimization problem in which a finite number of
decision variables (the switching times) need to be chosen to minimize a given cost function
(typically a function of the final state reached by the system). In principle, this problem can
be solved using standard nonlinear optimization methods—for example, sequential quadratic
programming. However, such methods rely on the gradient of the cost function, which is
difficult to compute in the STO problem because of the presence of dynamic constraints. In
fact, it is often claimed in the literature that the gradient of the cost function in the STO
problem is “discontinuous” [5,8,17] and “not effective for numerical computation” [9,12,14].
For this reason, a novel time-scaling transformation was developed in [8] for converting
the STO problem into an equivalent problem that is easier to solve. The time-scaling
transformation is now widely used to optimize switching times in a variety of different
problem settings [6, 13,22,23].

Despite its popularity, the rationale for applying the time-scaling transformation is poorly
understood in the literature. The common perception is that the time-scaling transformation
is necessary because “the gradient of the cost function [in the STO problem] is discontinuous”
[8], yet there is no proof of this claim in the literature. In fact, as we will show later,
this claim is actually false—a surprising result that raises the issue of whether the time-
scaling transformation really is superior to the direct optimization approach. The purpose
of this paper is to investigate this important issue. We will show that the time-scaling
transformation is indeed superior to direct optimization, but for different reasons than those
commonly given in the literature.

2 The Switching Time Optimization Problem

A typical nonlinear switched system can be described mathematically as follows:

ẋ(t) = f i(t,x(t)), t ∈ (τi−1, τi), i = 1, . . . , p, (2.1)

x(τ+i ) = x(τ−i ), i = 1, . . . , p− 1, (2.2)

x(0+) = x0, (2.3)

where p ≥ 2 is the number of system modes; x(t) ∈ Rn is the state vector ; τ0 = 0 is the
initial time; τi, i = 1, . . . , p− 1, are the switching times or switching instants; τp = T > 0 is
a given terminal time; x0 ∈ Rn is a given initial state; and f i : R× Rn → Rn, i = 1, . . . , p,
are given functions.

System (2.1)-(2.3) is controlled by manipulating the switching times τi, i = 1, . . . , p− 1.
These switching times must satisfy the following ordering constraints:

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp = T. (2.4)

Note that it is possible to remove “non-optimal” subsystems in (2.1)-(2.3) by merging two or
more adjacent switching times (this may be necessary when the optimal number of switches
is unknown). For example, subsystem i can be removed by setting τi−1 = τi.

Let T denote the set of all vectors τ = [τ1, . . . , τp−1]
⊤ ∈ Rp−1 satisfying inequality (2.4).

Such vectors are called admissible switching time vectors.
Throughout this paper, we assume that system (2.1)-(2.3) satisfies the following condi-

tions.
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Assumption 2.1. The given functions f i : R × Rn → Rn, i = 1, . . . , p, are continuously
differentiable.

Assumption 2.2. There exists a positive constant L1 > 0 such that the following linear
growth inequality is satisfied:

∥f i(η, ξ)∥ ≤ L1(1 + |η|+ ∥ξ∥), (η, ξ) ∈ R× Rn, i = 1, . . . , p,

where ∥ · ∥ denotes the Euclidean norm.

Assumptions 2.1 and 2.2 ensure that for each admissible switching time vector τ ∈
T , there exists a unique absolutely continuous function x(·|τ ) : [0, T ] → Rn satisfying
the dynamics (2.1) almost everywhere, the intermediate conditions (2.2), and the initial
condition (2.3) (see references [1,2] for the proof). The function x(·|τ ) is called the solution
or state trajectory of (2.1)-(2.3).

It follows from Lemma 6.4.2 in [20] that x(·|τ ) is uniformly bounded on [0, T ] with
respect to the switching time vector τ ∈ T . Hence, there exists a positive constant L2 > 0
such that

∥x(t|τ )∥ ≤ L2, t ∈ [0, T ], τ ∈ T . (2.5)

Therefore, by Assumption 2.1, there exists another positive constant L3 > 0 such that∥∥f i(t,x(t|τ ))
∥∥ ≤ L3, t ∈ [0, T ], τ ∈ T , i = 1, . . . , p, (2.6)

and∥∥∥∥∂f i(t,x(t|τ ))
∂t

∥∥∥∥ ≤ L3,

∥∥∥∥∂f i(t,x(t|τ ))
∂x

∥∥∥∥ ≤ L3, t ∈ [0, T ], τ ∈ T , i = 1, . . . , p,

(2.7)
where ∥ · ∥ in the second inequality in (2.7) denotes the natural matrix norm on Rn×n. The
bounds in (2.7) ensure that the functions f i, i = 1, . . . , p, satisfy the following Lipschitz
condition: for any t1, t2 ∈ [0, T ] and τ1, τ2 ∈ T ,∥∥f i(t1,x(t1|τ1))− f i(t2,x(t2|τ2))

∥∥ ≤ L3|t1 − t2|+ L3

∥∥x(t1|τ1)− x(t2|τ2)
∥∥, i = 1, . . . , p.

(2.8)
Our goal is to choose the switching time vector τ ∈ T to minimize the following cost function:

J(τ ) = Φ(x(T |τ )), (2.9)

where Φ : Rn → R is a given function. Thus, our STO problem can be stated formally as
follows: Find an admissible switching time vector τ ∗ ∈ T such that

J(τ ∗) = inf
τ∈T

J(τ ).

This STO problem can be easily generalized to include state jumps, nonlinear constraints,
and additional control parameters in the functions f i, i = 1, . . . , p. However, since we focus
solely on the optimization of switching times in this paper, the simple formulation given
here is sufficient for our purposes.

Before concluding this section, we make the following assumption regarding the cost
function (2.9).

Assumption 2.3. The given function Φ : Rn → R is continuously differentiable.
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3 Direct Optimization Approach

The STO problem is a nonlinear optimization problem in which the cost function J depends
implicitly on the decision vector τ . To compute the value of J(τ ), we must first solve (2.1)-
(2.3) for the given switching time vector τ , and then substitute the resulting final state
x(T |τ ) into equation (2.9). Since τ influences J implicitly through the governing switched
system (2.1)-(2.3), computing the gradient of J is a difficult task. However, if an explicit
formula for computing the gradient of J is known, then the STO problem can be solved via
the following gradient-based optimization algorithm:

1. Choose an initial switching time vector τ ∈ T .

2. Compute J(τ ).

3. Compute ∂J(τ )/∂τ .

4. Use J(τ ) (obtained in Step 2) and ∂J(τ )/∂τ (obtained in Step 3) to determine an
appropriate search direction.

5. Perform a line search along the search direction determined in Step 4 to obtain a new
switching time vector τ ′ ∈ T .

6. Set τ ′ → τ and return to Step 2.

There are many well-known methods for computing the search direction in Step 4 and per-
forming the line search in Step 5 (see [15,16]). Thus, the main challenge with implementing
the above algorithm is to determine the gradient of J in Step 3. As we mentioned in the
introduction, it is often claimed in the literature that the gradient of J with respect to the
switching times is not suitable for numerical computation. We will show in this section that
these claims are incorrect: it is possible to derive implementable formulae for the gradient
of J with respect to the switching times, and these formulae can be readily incorporated
into the above algorithm to solve the STO problem effectively.

3.1 Gradient Computation: Variational Method

For each j = 1, . . . , p− 1, consider the following variational system:

ϕ̇j(t) =
∂f i(t,x(t|τ ))

∂x
ϕj(t), t ∈ (τi−1, τi), i = j + 1, . . . , p, (3.1)

ϕj(τ+i ) =

{
f j(τj ,x(τj |τ ))− f j+1(τj ,x(τj |τ )), if i = j,

ϕj(τ−i ), if i ∈ {j + 1, . . . , p} and τi > τj ,
(3.2)

ϕj(t) = 0, t ∈ [0, τj), (3.3)

where τ+i = T in (3.2) if τi = T . By virtue of Assumptions 2.1 and 2.2, for each τ ∈ T ,
there exists a unique right-continuous function ϕj(·|τ ) : [0, T ] → Rn satisfying the dynamics
(3.1) almost everywhere, the intermediate conditions (3.2), and the initial condition (3.3)
(see [1, 2]).

The variational system (3.1)-(3.3) includes an instantaneous jump at t = τj . Since
ϕj(·|τ ) is right-continuous,

ϕj(τj |τ ) = ϕj(τ+j |τ ) = f j(τj ,x(τj |τ ))− f j+1(τj ,x(τj |τ )).
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Thus, ϕj(·|τ ) assumes its right limit at t = τj .
Recall that x(t|τ ), the state vector in the STO problem, is a function of both t and τ .

Our goal in this section is to investigate the partial derivatives of the state vector with respect
to the switching times. The following fundamental result shows that ϕj(·|τ ) coincides with
the left partial derivative of the state vector with respect to τj .

Theorem 3.1. Let j ∈ {1, . . . , p − 1} and τ = [τ1, . . . , τp−1]
⊤ ∈ T . Furthermore, suppose

that τj−1 < τj. Then

lim
ϵ→0−

x(t|τ + ϵej)− x(t|τ )
ϵ

= ϕj(t|τ ), t ∈ [0, T ], (3.4)

where ej is the jth unit basis vector in Rp−1.

Proof. We prove the theorem in three steps.

Step 1: Preliminaries

For notational simplicity, let x(·) denote x(·|τ ), and let xϵ(·) denote x(·|τ + ϵej). Further-
more, let Ω denote the set of all ϵ such that τ + ϵej ∈ T .

For each ϵ ∈ Ω, define

φϵ(η) = xϵ(η)− x(η), η ∈ [0, T ],

and

ωϵ
i (η, α) =

{
∂f i(η,x(η) + αφϵ(η))

∂x
− ∂f i(η,x(η))

∂x

}
φϵ(η), (η, α) ∈ [0, T ]× [0, 1],

i = 1, . . . , p.

In Appendix A, we show that there exists a positive constant M1 > 0 such that for all ϵ ∈ Ω,

∥φϵ(η)∥ ≤ M1|ϵ|, η ∈ [0, T ]. (3.5)

Note that ∂f i/∂x is continuous (recall Assumption 2.1) and xϵ is uniformly bounded with
respect to ϵ (recall inequality (2.5)). Hence, there exists a compact convex set X ⊂ Rn such
that xϵ(η) ∈ X for all η ∈ [0, T ] and ϵ ∈ Ω. It follows that ∂f i/∂x is uniformly continuous
on [0, T ]×X .

Now, let γ > 0 be arbitrary. Since ∂f i/∂x is uniformly continuous on [0, T ] × X and
φϵ → 0 uniformly on [0, T ] as ϵ → 0 (recall inequality (3.5)), there exists a positive constant
ϵ′ > 0 such that for all ϵ ∈ Ω with |ϵ| < ϵ′,∥∥∥∥∂f i(η,x(η) + αφϵ(η))

∂x
− ∂f i(η,x(η))

∂x

∥∥∥∥ < γ, (η, α) ∈ [0, T ]× [0, 1], i = 1, . . . , p.

Thus, from (3.5),

∥ωϵ
i (η, α)∥ ≤

∥∥∥∥∂f i(η,x(η) + αφϵ(η))

∂x
− ∂f i(η,x(η))

∂x

∥∥∥∥ · ∥φϵ(η)∥ ≤ M1γ|ϵ|,

(η, α) ∈ [0, T ]× [0, 1], i = 1, . . . , p,

(3.6)
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which holds whenever ϵ ∈ Ω satisfies |ϵ| < ϵ′. Now, for each ϵ ∈ Ω ∩ (−∞, 0], define

ρϵ
j =

∫ τj

τj+ϵ

{
f j(η,x(η))− f j(τj ,x(τj))

}
dη,

ρϵ
j+1 =

∫ τj

τj+ϵ

{
f j+1(η,xϵ(η))− f j+1(τj ,x(τj))

}
dη.

In Appendix B, we show that there exists a positive constant M2 > 0 such that

∥ρϵ
j∥ ≤ M2ϵ

2, ∥ρϵ
j+1∥ ≤ M2ϵ

2. (3.7)

We now complete the proof of (3.4) by considering two cases: (i) t < τj ; and (ii) t ≥ τj .

Step 2: Case t < τj

If t < τj , then for all ϵ < 0 of sufficiently small magnitude,

xϵ(t) = x(t).

Thus, by (3.3),

lim
ϵ→0−

xϵ(t)− x(t)

ϵ
= 0 = ϕj(t|τ ).

This proves equation (3.4) for t < τj .

Step 3: Case t ≥ τj

Let ς ∈ {j + 1, . . . , p} be such that t ∈ [τς−1, τς ]. Furthermore, choose ϵ so that

max{−γ,−ϵ′, τj−1 − τj} < ϵ < 0, (3.8)

where γ and ϵ′ are as defined in Step 1.
It is clear that ϵ ∈ Ω. Thus, since τj−1 < τj + ϵ < τj ,

x(t) = x(τj + ϵ) +

∫ τj

τj+ϵ

f j(η,x(η))dη +

ς∑
i=j+1

∫ min{t,τi}

τi−1

f i(η,x(η))dη (3.9)

and

xϵ(t) = xϵ(τj + ϵ) +
ς∑

i=j+1

∫ min{t,τi}

τi−1+ϵδi,j+1

f i(η,xϵ(η))dη, (3.10)

where δi,j+1 denotes the Kronecker delta function defined by

δi,j+1 =

{
1, if i = j + 1,

0, otherwise.

Equation (3.10) can be written as

xϵ(t) = xϵ(τj + ϵ) +

∫ τj

τj+ϵ

f j+1(η,xϵ(η))dη +
ς∑

i=j+1

∫ min{t,τi}

τi−1

f i(η,xϵ(η))dη. (3.11)
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Since ϵ < 0, it is easy to see that xϵ(τj + ϵ) = x(τj + ϵ). Thus, combining equations (3.9)
and (3.11) gives

φϵ(t) = xϵ(t)− x(t)

=

∫ τj

τj+ϵ

{
f j+1(η,xϵ(η))− f j(η,x(η))

}
dη

+

ς∑
i=j+1

∫ min{t,τi}

τi−1

{
f i(η,xϵ(η))− f i(η,x(η))

}
dη.

Therefore,

φϵ(t) = ρϵ
j+1 − ρϵ

j − ϵf j+1(τj ,x(τj)) + ϵf j(τj ,x(τj))

+

ς∑
i=j+1

∫ min{t,τi}

τi−1

{
f i(η,xϵ(η))− f i(η,x(η))

}
dη,

(3.12)

where ρϵ
j and ρϵ

j+1 are as defined in Step 1.
Using the fundamental theorem of calculus, equation (3.12) can be written as

φϵ(t) = ρϵ
j+1 − ρϵ

j − ϵf j+1(τj ,x(τj)) + ϵf j(τj ,x(τj))

+

ς∑
i=j+1

∫ min{t,τi}

τi−1

∫ 1

0

∂

∂α

{
f i(η,x(η) + αφϵ(η))

}
dαdη.

Hence,

φϵ(t) = ρϵ
j+1 − ρϵ

j − ϵf j+1(τj ,x(τj)) + ϵf j(τj ,x(τj))

+
ς∑

i=j+1

∫ min{t,τi}

τi−1

∫ 1

0

∂f i(η,x(η) + αφϵ(η))

∂x
φϵ(η)dαdη.

Rearranging this equation gives

φϵ(t) = ρϵ
j+1 − ρϵ

j − ϵf j+1(τj ,x(τj)) + ϵf j(τj ,x(τj))

+
ς∑

i=j+1

∫ min{t,τi}

τi−1

∂f i(η,x(η))

∂x
φϵ(η)dη

+
ς∑

i=j+1

∫ min{t,τi}

τi−1

∫ 1

0

ωϵ
i (η, α)dαdη,

(3.13)

where ωϵ
i is as defined in Step 1. Now, the right-continuous solution of the variational system

(3.1)-(3.3) is

ϕj(t) = f j(τj ,x(τj))− f j+1(τj ,x(τj)) +
ς∑

i=j+1

∫ min{t,τi}

τi−1

∂f i(η,x(η))

∂x
ϕj(η)dη, (3.14)

where ϕj(·) = ϕj(·|τ ). Combining (3.13) and (3.14) gives∥∥ϵ−1φϵ(t)− ϕj(t)
∥∥ ≤ |ϵ|−1∥ρϵ

j∥+ |ϵ|−1∥ρϵ
j+1∥+

∫ t

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη

+
ς∑

i=j+1

∫ min{t,τi}

τi−1

∫ 1

0

|ϵ|−1
∥∥ωϵ

i (η, α)
∥∥dαdη,
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where L3 is as defined in (2.7). Since |ϵ| < ϵ′ and |ϵ| < γ (see (3.8)), we can apply inequalities
(3.6) and (3.7) to obtain∥∥ϵ−1φϵ(t)− ϕj(t)

∥∥ ≤ 2M2|ϵ|+M1Tγ +

∫ t

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη

≤ 2M2γ +M1Tγ +

∫ t

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη.

This inequality holds for any t ≥ τj , uniformly with respect to ϵ. Thus, from the Gronwall-
Bellman inequality, ∥∥ϵ−1φϵ(t)− ϕj(t)

∥∥ ≤ (2M2 +M1T ) exp(L3T )γ,

which holds for all ϵ satisfying (3.8). Since γ > 0 was chosen arbitrarily, equation (3.4)
follows.

According to Theorem 3.1, the left partial derivative of the state vector with respect
to τj is equal to the solution of the variational system (3.1)-(3.3). Note that the condition
τj−1 < τj in Theorem 3.1 is essential: it ensures that the perturbed switching time vector
τ + ϵej satisfies the ordering constraints (2.4), and is therefore admissible for the STO
problem.

Our next result gives the right partial derivative of the state vector with respect to τj .

Theorem 3.2. Let j ∈ {1, . . . , p − 1} and τ = [τ1, . . . , τp−1]
⊤ ∈ T . Furthermore, suppose

that τj < τj+1. Then

lim
ϵ→0+

x(t|τ + ϵej)− x(t|τ )
ϵ

= ϕj(t|τ ), t ∈ [0, T ] \ {τj}, (3.15)

and

lim
ϵ→0+

x(τj |τ + ϵej)− x(τj |τ )
ϵ

= 0, (3.16)

where ej is the jth unit basis vector in Rp−1.

Proof. As with the proof of Theorem 3.1, we prove Theorem 3.2 in three steps.

Step 1: Preliminaries

Let Ω, x(·), xϵ(·), φϵ(·), and ωϵ
i (·, ·) be as defined in the proof of Theorem 3.1. Recall that

for all ϵ ∈ Ω,
∥φϵ(η)∥ ≤ M1|ϵ|, η ∈ [0, T ], (3.17)

where M1 > 0 is a constant independent of ϵ.
Also recall that for each γ > 0, there exists a corresponding real number ϵ′ > 0 such that

for all ϵ ∈ Ω satisfying |ϵ| < ϵ′,

∥ωϵ
i (η, α)∥ ≤ M1γ|ϵ|, (η, α) ∈ [0, T ]× [0, 1], i = 1, . . . , p. (3.18)

Now, for each ϵ ∈ Ω ∩ [0,∞), define

ρϵ
j =

∫ τj+ϵ

τj

{
f j(η,xϵ(η))− f j(τj ,x(τj))

}
dη,

ρϵ
j+1 =

∫ τj+ϵ

τj

{
f j+1(η,xϵ(η))− f j+1(τj ,x(τj))

}
dη.



SWITCHING TIME OPTIMIZATION FOR NONLINEAR SWITCHED SYSTEMS 545

Notice that these definitions for ρϵ
j and ρϵ

j+1 are slightly different from the definitions given
in the proof of Theorem 3.1. Nevertheless, inequality (3.7) still holds:

∥ρϵ
j∥ ≤ M2ϵ

2, ∥ρϵ
j+1∥ ≤ M2ϵ

2, (3.19)

where M2 > 0 is a constant independent of ϵ.
We now complete the proof by considering two cases: (i) t ≤ τj ; and (ii) t > τj .

Step 2: Case t ≤ τj

If t ≤ τj , then for all ϵ ∈ (0, τj+1 − τj),

xϵ(t) = x(t).

Therefore,

lim
ϵ→0+

xϵ(t)− x(t)

ϵ
= 0.

Equations (3.15) and (3.16) then follow immediately.

Step 3: Case t > τj

For each s > τj , let ς(s) ∈ {j+1, . . . , p} denote the unique integer such that s ∈ (τς(s)−1, τς(s)].
Furthermore, let γ ∈ (0, t− τj) be arbitrary but fixed and choose ϵ so that

0 < ϵ < min{γ, ϵ′, τj+1 − τj}, (3.20)

where ϵ′ is as defined in Step 1. Then clearly ϵ ∈ Ω and τj + ϵ < τj + γ < t. Thus, for all
s ∈ [τj + γ, t],

x(s) = x(τj) +

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

f i(η,x(η))dη (3.21)

and

xϵ(s) = xϵ(τj) +

∫ τj+ϵ

τj

f j(η,xϵ(η))dη +

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1+ϵδi,j+1

f i(η,xϵ(η))dη, (3.22)

where δi,j+1 is the Kronecker delta function defined in the proof of Theorem 3.1. Equa-
tion (3.22) can be written as

xϵ(s) = xϵ(τj) +

∫ τj+ϵ

τj

{
f j(η,xϵ(η))− f j+1(η,xϵ(η))

}
dη+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

f i(η,xϵ(η))dη.

(3.23)
Since xϵ(τj) = x(τj), subtracting (3.21) from (3.23) gives

φϵ(s) =

∫ τj+ϵ

τj

{
f j(η,xϵ(η))− f j+1(η,xϵ(η))

}
dη

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

{
f i(η,xϵ(η))− f i(η,x(η))

}
dη.
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Therefore,

φϵ(s) = ρϵ
j − ρϵ

j+1 + ϵf j(τj ,x(τj))− ϵf j+1(τj ,x(τj))

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

{
f i(η,xϵ(η))− f i(η,x(η))

}
dη,

(3.24)

where ρϵ
j and ρϵ

j+1 are as defined in Step 1. Using the fundamental theorem of calculus,
equation (3.24) can be written as

φϵ(s) = ρϵ
j − ρϵ

j+1 + ϵf j(τj ,x(τj))− ϵf j+1(τj ,x(τj))

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∫ 1

0

∂

∂α

{
f i(η,x(η) + αφϵ(η))

}
dαdη.

Hence,

φϵ(s) = ρϵ
j − ρϵ

j+1 + ϵf j(τj ,x(τj))− ϵf j+1(τj ,x(τj))

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∫ 1

0

∂f i(η,x(η) + αφϵ(η))

∂x
φϵ(η)dαdη.

Rearranging gives

φϵ(s) = ρϵ
j − ρϵ

j+1 + ϵf j(τj ,x(τj))− ϵf j+1(τj ,x(τj))

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∂f i(η,x(η))

∂x
φϵ(η)dη

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∫ 1

0

ωϵ
i (η, α)dαdη,

(3.25)

where ωϵ
i is as defined in the proof of Theorem 3.1. Now, for any s ∈ [τj + γ, t],

ϕj(s) = ϕj(τ+j ) +

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∂f i(η,x(η))

∂x
ϕj(η)dη,

where ϕj(·) = ϕj(·|τ ). Thus, from the intermediate conditions (3.2),

ϕj(s) = f j(τj ,x(τj))− f j+1(τj ,x(τj)) +

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∂f i(η,x(η))

∂x
ϕj(η)dη. (3.26)

Combining (3.25) and (3.26) yields

∥∥ϵ−1φϵ(s)− ϕj(s)
∥∥ ≤ ϵ−1∥ρϵ

j∥+ ϵ−1∥ρϵ
j+1∥+

∫ s

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη

+

ς(s)∑
i=j+1

∫ min{s,τi}

τi−1

∫ 1

0

ϵ−1
∥∥ωϵ

i (η, α)
∥∥dαdη,
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where L3 > 0 is as defined in (2.7). Hence, since ϵ satisfies (3.20), it follows from inequalities
(3.18) and (3.19) that

∥∥ϵ−1φϵ(s)− ϕj(s)
∥∥ ≤ 2M2ϵ+M1Tγ +

∫ s

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη,

which holds for all s ∈ [τj + γ, t]. Therefore, since ϵ < γ,

∥∥ϵ−1φϵ(s)− ϕj(s)
∥∥ ≤ 2M2γ +M1Tγ +

∫ τj+γ

τj

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη

+

∫ s

τj+γ

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη. (3.27)

Now, using (3.17), we obtain∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥ ≤ ϵ−1∥φϵ(η)∥+ ∥ϕj(η)∥ ≤ M1 +M3, η ∈ [τj , τj + γ], (3.28)

where M3 > 0 is an upper bound for ∥ϕj∥ (recall that ϕj is piecewise continuous). Substi-
tuting (3.28) into (3.27) gives

∥∥ϵ−1φϵ(s)− ϕj(s)
∥∥ ≤ M4γ +

∫ s

τj+γ

L3

∥∥ϵ−1φϵ(η)− ϕj(η)
∥∥dη,

where M4 = 2M2 +M1T +L3(M1 +M3). This inequality holds for all s ∈ [τj + γ, t]. Thus,
by the Gronwall-Bellman inequality,∥∥ϵ−1φϵ(s)− ϕj(s)

∥∥ ≤ M4 exp(L3T )γ, s ∈ [τj + γ, t].

Choosing s = t gives ∥∥ϵ−1φϵ(t)− ϕj(t)
∥∥ ≤ M4 exp(L3T )γ,

which holds for all ϵ satisfying (3.20). Since γ > 0 was chosen arbitrarily, this shows that
(3.15) holds when t > τj .

By combining Theorems 3.1 and 3.2, we obtain the full partial derivative of the state
vector with respect to τj . This partial derivative is called the state variation.

Theorem 3.3. Let j ∈ {1, . . . , p − 1} and τ = [τ1, . . . , τp−1]
⊤ ∈ T . Suppose that τj−1 <

τj < τj+1. Then

∂x(t|τ )
∂τj

= lim
ϵ→0

x(t|τ + ϵej)− x(t|τ )
ϵ

= ϕj(t|τ ), t ∈ [0, T ] \ {τj}.

Note that the state variation in Theorem 3.3 does not exist at t = τj , as the left and right
partial derivatives differ at this time point. Note also that the condition τj−1 < τj < τj+1

in Theorem 3.3 is necessary to ensure that the perturbed switching time vector τ + ϵej is
admissible for the STO problem.

On the basis of Theorem 3.3, we are now able to derive the gradient the cost function in
the STO problem.



548 R. LOXTON, Q. LIN AND K.L. TEO

Theorem 3.4. Let τ = [τ1, . . . , τp−1]
⊤ ∈ T and suppose that τj−1 < τj, j = 1, . . . , p. Then

∂J(τ )

∂τj
=

∂Φ(x(T |τ ))
∂x

ϕj(T |τ ), j = 1, . . . , p− 1.

Proof. This result follows immediately from Theorem 3.3 and the chain rule of differentia-
tion:

∂J(τ )

∂τj
=

∂

∂τj

{
Φ(x(T |τ ))

}
=

∂Φ(x(T |τ ))
∂x

∂x(T |τ )
∂τj

=
∂Φ(x(T |τ ))

∂x
ϕj(T |τ ),

as required.

In view of Theorem 3.4, we can compute the gradient of J at each τ ∈ T satisfying
τj−1 < τj , j = 1, . . . , p, by invoking the following procedure:

1. Combine the original state system (2.1)-(2.3) with the variational systems (3.1)-(3.3)
to form an enlarged switched system.

2. Solve the enlarged system constructed in Step 1 to obtain x(·|τ ) and ϕj(·|τ ), j =
1, . . . , p− 1.

3. Use x(T |τ ) and ϕj(T |τ ), j = 1, . . . , p − 1, to compute ∂J/∂τ via the formulae in
Theorem 3.4.

This gradient computation method—called the variational method—can be used in conjunc-
tion with the gradient-based optimization algorithm given at the beginning of this section
to determine an optimal switching time vector for the STO problem.

3.2 Gradient Computation: Costate Method

We now develop an alternative gradient computation procedure called the costate method.
With the costate method, we define an auxiliary system called the costate system as follows:

λ̇(t) = −
[
∂f i(t,x(t|τ ))

∂x

]⊤
λ(t), t ∈ (τi−1, τi), i = 1, . . . , p, (3.29)

λ(τ+i ) = λ(τ−i ), i = 1, . . . , p− 1, (3.30)

λ(T ) =

[
∂Φ(x(T |τ ))

∂x

]⊤
. (3.31)

Since the costate system involves a terminal condition rather than an initial condition, it
must be solved backward in time starting from t = T . Let λ(·|τ ) : [0, T ] → Rn denote
the unique continuous solution of (3.29)-(3.31) corresponding to τ ∈ T . We now derive the
gradient of J in terms of λ(·|τ ).

Theorem 3.5. Let τ = [τ1, . . . , τp−1]
⊤ ∈ T and suppose that τj−1 < τj, j = 1, . . . , p. Then

∂J(τ )

∂τj
= λ(τj |τ )⊤f j(τj ,x(τj |τ ))− λ(τj |τ )⊤f j+1(τj ,x(τj |τ )), j = 1, . . . , p− 1.
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Proof. Let v : [0, T ] → Rn denote an arbitrary absolutely continuous function. Then we can
express the cost function J as follows:

J(τ ) = Φ(x(T |τ )) = Φ(x(T |τ )) +
p∑

i=1

∫ τi

τi−1

v(t)⊤f i(t,x(t|τ ))dt−
p∑

i=1

∫ τi

τi−1

v(t)⊤ẋ(t|τ )dt.

Using integration by parts,

J(τ ) = Φ(x(T |τ )) +
p∑

i=1

∫ τi

τi−1

v(t)⊤f i(t,x(t|τ ))dt

−
p∑

i=1

{
v(τi)

⊤x(τi|τ )− v(τi−1)
⊤x(τi−1|τ )−

∫ τi

τi−1

v̇(t)⊤x(t|τ )dt
}

= Φ(x(T |τ ))− v(T )⊤x(T |τ ) + v(0)⊤x0

+

p∑
i=1

∫ τi

τi−1

{
v(t)⊤f i(t,x(t|τ )) + v̇(t)⊤x(t|τ )

}
dt.

Using the Leibniz rule, this equation can be differentiated with respect to τj to give

∂J(τ )

∂τj
=

∂Φ(x(T |τ ))
∂x

∂x(T |τ )
∂τj

− v(T )⊤
∂x(T |τ )

∂τj

+ v(τj)
⊤f j(τj ,x(τj |τ ))− v(τj)

⊤f j+1(τj ,x(τj |τ ))

+

p∑
i=1

∫ τi

τi−1

{
v(t)⊤

∂f i(t,x(t|τ ))
∂x

∂x(t|τ )
∂τj

+ v̇(t)⊤
∂x(t|τ )
∂τj

}
dt.

Recall that v : [0, T ] → Rn was chosen arbitrarily. Setting v(·) = λ(·|τ ) and applying the
costate equations (3.29)-(3.31), we obtain

∂J(τ )

∂τj
= λ(τj |τ )⊤f j(τj ,x(τj |τ ))− λ(τj |τ )⊤f j+1(τj ,x(τj |τ )),

as required.

Note that Theorem 3.5 gives similar gradient formulae to those derived in [20] (see
Chapter 5) and [7] (see Proposition 1). However, the derivation of Theorem 3.5 is completely
different to the derivations given in these references.

On the basis of Theorem 3.5, we now present the following costate method for computing
the gradient of J at each τ ∈ T with τj−1 < τj , j = 1, . . . , p:

1. Solve the state system (2.1)-(2.3) forward in time to obtain x(·|τ ).

2. Solve the costate system (3.29)-(3.31) backward in time to obtain λ(·|τ ).

3. Use x(τj |τ ) and λ(τj |τ ), j = 1, . . . , p − 1, to compute ∂J/∂τ via the formulae in
Theorem 3.5.

Notice that the costate method involves backward integration, whereas the variational
method only involves forward integration. Since the state and costate systems are solved
in different directions, numerical interpolation is generally needed when implementing the
costate method. However, one advantage of the costate method is that it typically requires
solving fewer differential equations—there is only one costate system compared with p − 1
variational systems.
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3.3 Difficulties with the Direct Optimization Approach

The direct optimization approach to solving the STO problem involves combining one of the
two gradient computation procedures (either the variational method or the costate method)
with the gradient-based optimization algorithm described at the beginning of this section. As
mentioned earlier, it is often claimed in the literature that the direct optimization approach
is difficult to implement numerically because the gradient of the cost function in the STO
problem is discontinuous (see [5, 8, 19, 21]). However, there is no proof of this claim in the
literature. In fact, as we will soon show, the reason why no such proof exists is because the
claim itself is incorrect. To show this, we will need the following lemma.

Lemma 3.6. Let {τ k}∞k=1 ⊂ T be a sequence of switching time vectors such that τ k → τ ∈
T as k → ∞. Then x(·|τ k) → x(·|τ ) uniformly on [0, T ] as k → ∞.

Proof. Consider the indicator functions χ(τi−1,τi) : R → R and χ(τk
i−1,τ

k
i ) : R → R defined as

follows:

χ(τi−1,τi)(t) =

{
1, if t ∈ (τi−1, τi),

0, if t /∈ (τi−1, τi),
χ(τk

i−1,τ
k
i )(t) =

{
1, if t ∈ (τki−1, τ

k
i ),

0, if t /∈ (τki−1, τ
k
i ).

Let t′ ∈ [0, T ] \ {τ0, τ1, . . . , τp} be a fixed time point. Then there exists an integer ς ∈
{1, . . . , p} such that t′ ∈ (τς−1, τς) and t′ ∈ (τkς−1, τ

k
ς ) for all sufficiently large k. Thus, when

k is sufficiently large,

χ(τk
i−1,τ

k
i )(t

′) = χ(τi−1,τi)(t
′) =

{
1, if i = ς,

0, if i ̸= ς.

Since t′ ∈ [0, T ] \ {τ0, τ1, . . . , τp} was selected arbitrarily, this shows that χ(τk
i−1,τ

k
i ) →

χ(τi−1,τi) almost everywhere as k → ∞.

Now, using (2.1)-(2.3), the state trajectories corresponding to τ and τ k can be written
as follows:

x(t|τ ) = x0 +

p∑
i=1

∫ t

0

f i(η,x(η|τ ))χ(τi−1,τi)(η)dη

and

x(t|τ k) = x0 +

p∑
i=1

∫ t

0

f i(η,x(η|τ k))χ(τk
i−1,τ

k
i )(η)dη. (3.32)

Thus,

∥∥x(t|τ k)− x(t|τ )
∥∥ ≤

p∑
i=1

∫ t

0

∥∥f i(η,x(η|τ k))χ(τk
i−1,τ

k
i )(η)− f i(η,x(η|τ ))χ(τi−1,τi)(η)

∥∥dη.
Using the triangle inequality, we obtain

∥∥x(t|τ k)− x(t|τ )
∥∥ ≤

p∑
i=1

∫ t

0

∥∥f i(η,x(η|τ k))χ(τk
i−1,τ

k
i )(η)− f i(η,x(η|τ ))χ(τk

i−1,τ
k
i )(η)

∥∥dη
+

p∑
i=1

∫ t

0

∥∥f i(η,x(η|τ ))χ(τk
i−1,τ

k
i )(η)− f i(η,x(η|τ ))χ(τi−1,τi)(η)

∥∥dη.
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Since χ(τk
i−1,τ

k
i )(η) ∈ {0, 1}, this inequality can be manipulated to yield

∥∥x(t|τ k)− x(t|τ )
∥∥ ≤ ∆k +

p∑
i=1

∫ t

0

∥∥f i(η,x(η|τ k))− f i(η,x(η|τ ))
∥∥dη, (3.33)

where

∆k =

p∑
i=1

∫ T

0

∥∥f i(η,x(η|τ ))χ(τk
i−1,τ

k
i )(η)− f i(η,x(η|τ ))χ(τi−1,τi)(η)

∥∥dη.
Since χ(τk

i−1,τ
k
i ) → χ(τi−1,τi) almost everywhere as k → ∞, it follows from Lebesgue Domi-

nated Convergence Theorem that ∆k → 0 as k → ∞. Furthermore, by (2.8),∥∥f i(η,x(η|τ k))− f i(η,x(η|τ ))
∥∥ ≤ L3

∥∥x(η|τ k)− x(η|τ )
∥∥, η ∈ [0, T ], i = 1, . . . , p.

Substituting this inequality into (3.33) yields

∥∥x(t|τ k)− x(t|τ )
∥∥ ≤ ∆k +

∫ t

0

pL3

∥∥x(η|τ k)− x(η|τ )
∥∥dη.

Thus, by the Gronwall-Bellman inequality,∥∥x(t|τ k)− x(t|τ )
∥∥ ≤ ∆k exp(pL3T ).

Since ∆k → 0 as k → ∞, it follows that x(·|τ k) → x(·|τ ) uniformly.

We now prove the analogue of Lemma 3.6 for the costate system (3.29)-(3.31).

Lemma 3.7. Let {τ k}∞k=1 ⊂ T be a sequence of switching time vectors such that τ k → τ ∈
T as k → ∞. Then λ(·|τ k) → λ(·|τ ) uniformly on [0, T ] as k → ∞.

Proof. It follows from (3.29)-(3.31) that for all t ∈ [0, T ],

λ(t|τ ) = λ(T |τ ) +
p∑

i=1

∫ T

t

[
∂f i(η,x(η|τ ))

∂x

]⊤
λ(η|τ )χ(τi−1,τi)(η)dη

and

λ(t|τ k) = λ(T |τ k) +

p∑
i=1

∫ T

t

[
∂f i(η,x(η|τ k))

∂x

]⊤
λ(η|τ k)χ(τk

i−1,τ
k
i )(η)dη,

where, as in the proof of Lemma 3.6, χ(τi−1,τi) : R → R and χ(τk
i−1,τ

k
i ) : R → R are defined

by

χ(τi−1,τi)(t) =

{
1, if t ∈ (τi−1, τi),

0, if t /∈ (τi−1, τi),
χ(τk

i−1,τ
k
i )(t) =

{
1, if t ∈ (τki−1, τ

k
i ),

0, if t /∈ (τki−1, τ
k
i ).

Thus,∥∥λ(t|τ k)− λ(t|τ )
∥∥ ≤

∥∥λ(T |τ k)− λ(T |τ )
∥∥

+

p∑
i=1

∫ T

t

∥∥∥∥λ(η|τ k)⊤
∂f i(η,x(η|τ k))

∂x
χ(τk

i−1,τ
k
i )(η)− λ(η|τ )⊤ ∂f i(η,x(η|τ ))

∂x
χ(τi−1,τi)(η)

∥∥∥∥dη.
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Therefore, by the triangle inequality,∥∥λ(t|τ k)− λ(t|τ )
∥∥ ≤ υk +

∥∥λ(T |τ k)− λ(T |τ )
∥∥

+

p∑
i=1

∫ T

t

∥∥∥∥λ(η|τ k)⊤
∂f i(η,x(η|τ k))

∂x
− λ(η|τ )⊤ ∂f i(η,x(η|τ k))

∂x

∥∥∥∥dη
+

p∑
i=1

∫ T

t

∥∥∥∥λ(η|τ )⊤ ∂f i(η,x(η|τ k))

∂x
− λ(η|τ )⊤ ∂f i(η,x(η|τ ))

∂x

∥∥∥∥dη,
(3.34)

where

υk =

p∑
i=1

∫ T

0

∥∥∥∥λ(η|τ )⊤ ∂f i(η,x(η|τ ))
∂x

χ(τk
i−1,τ

k
i )(η)−λ(η|τ )⊤ ∂f i(η,x(η|τ ))

∂x
χ(τi−1,τi)(η)

∥∥∥∥dη.
Recall from the proof of Lemma 3.6 that χ(τk

i−1,τ
k
i ) → χ(τi−1,τi) almost everywhere as k → ∞.

Thus, it follows from Lebesgue Dominated Convergence Theorem that υk → 0 as k → ∞.
Let γ > 0 be arbitrary. Then it follows from inequality (2.5), Assumptions 2.1 and 2.3,

and Lemma 3.6 that when k is sufficiently large,

∥∥λ(T |τ k)− λ(T |τ )
∥∥ =

∥∥∥∥∂Φ(x(T |τ k))

∂x
− ∂Φ(x(T |τ ))

∂x

∥∥∥∥ < γ

and ∥∥∥∥∂f i(η,x(η|τ k))

∂x
− ∂f i(η,x(η|τ ))

∂x

∥∥∥∥ < γ, η ∈ [0, T ], i = 1, . . . , p.

Thus, when k is sufficiently large, (3.34) can be simplified as follows:∥∥λ(t|τ k)− λ(t|τ )
∥∥ ≤ υk + (pN1T + 1)γ

+

p∑
i=1

∫ T

t

∥∥∥∥[∂f i(η,x(η|τ k))

∂x

]⊤
λ(η|τ k)−

[
∂f i(η,x(η|τ k))

∂x

]⊤
λ(η|τ )

∥∥∥∥dη,
where N1 is an upper bound for the Euclidean norm of λ(η|τ ) (recall that λ(·|τ ) is a con-
tinuous function defined on the compact interval [0, T ]). By Assumption 2.1 and inequality
(2.5), there exists a positive constant N2 > 0 such that∥∥∥∥[∂f i(t,x(t|τ k))

∂x

]⊤∥∥∥∥ ≤ N2, t ∈ [0, T ], τ k ∈ T , i = 1, . . . , p.

Hence,

∥∥λ(t|τ k)− λ(t|τ )
∥∥ ≤ υk + (pN1T + 1)γ +

∫ T

t

pN2

∥∥λ(η|τ k)− λ(η|τ )
∥∥dη.

Therefore, by the Gronwall-Bellman inequality,∥∥λ(t|τ k)− λ(t|τ )
∥∥ ≤ (υk + (pN1T + 1)γ) exp(pN2T ),

which holds whenever k is sufficiently large. Since γ was selected arbitrarily, and υk → 0 as
k → ∞, it follows that λ(t|τ k) → λ(t|τ ) as k → ∞, uniformly with respect to t.
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Recall from Theorem 3.5 that for each admissible switching time vector τ ∈ T with
τj−1 < τj , j = 1, . . . , p, the partial derivatives of the cost function J are given by

∂J(τ )

∂τj
= λ(τj |τ )⊤f j(τj ,x(τj |τ ))− λ(τj |τ )⊤f j+1(τj ,x(τj |τ )), j = 1, . . . , p− 1.

It follows immediately from Assumption 2.1 and Lemmas 3.6 and 3.7 that these partial
derivatives are continuous with respect to τ . Thus, contrary to what is commonly claimed
in the literature, the gradient of the cost function in the STO problem is continuous with
respect to the switching times. The confusion around this issue seems to stem from the
presence of an instantaneous jump in the variational system (3.1)-(3.3), which causes the
state variation to be discontinuous (as a function of time). However, although the state
variation is discontinuous, the cost function’s gradient is not.

So what are the difficulties associated with implementing the direct optimization ap-
proach? There are two difficulties that should be mentioned:

(i) Piecewise integration of the variational and/or costate systems is cumbersome to im-
plement numerically because the switching times change at each optimization iteration;
and

(ii) The gradient formulae in Theorems 3.4 and 3.5 only exist when the switching times
are distinct (this causes problems if the optimization algorithm tries to merge two
adjacent switching times to delete a “non-optimal” subsystem).

For these reasons, the direct optimization approach is rarely used in practice. Instead, the
time-scaling transformation [8,9,19] is usually invoked to transform the STO problem into an
equivalent problem with fixed switching times. This allows one to circumvent the difficulties
mentioned above. The time-scaling transformation is discussed in the next section.

4 Indirect Optimization: The Time-Scaling Approach

The time-scaling approach involves solving the STO problem indirectly by transforming it
into an equivalent problem that is easier to solve. This is done by introducing a new time
variable s ∈ [0, p], along with a new set of decision parameters θi = τi − τi−1, i = 1, . . . , p.
The new time variable s is related to the old time variable t through the following equations:

dt(s)

ds
= θi, s ∈ (i− 1, i), i = 1, . . . , p, (4.1)

t(i+) = t(i−), i = 1, . . . , p− 1, (4.2)

t(0) = 0, (4.3)

t(p) = T, (4.4)

where T > 0 is the terminal time. Note that equations (4.1)-(4.4) define t = t(s) as a
non-negative and non-decreasing piecewise linear function of s.

Integrating (4.1)-(4.3) gives

t(i) = t(0) +
i∑

j=1

∫ j

j−1

dt(s)

ds
ds =

i∑
j=1

∫ j

j−1

θjds =
i∑

j=1

(τj − τj−1) = τi, i = 1, . . . , p.

Thus, under the time-scaling transformation defined by equations (4.1)-(4.4), s = i in the
new time horizon is mapped to t = τi in the original time horizon.
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Now, let x̃(s) = x(t(s)). Then under the time-scaling transformation, the dynamics
(2.1) become

d

ds

{
x̃(s)

}
=

d

ds

{
x(t(s))

}
= θif

i(t(s),x(t(s))) = θif
i(t(s), x̃(s)), s ∈ (i− 1, i),

i = 1, . . . , p. (4.5)

Furthermore, the intermediate conditions (2.2) and the initial condition (2.3) become

x̃(i+) = lim
s→i+

x(t(s)) = x(τ+i ) = x(τ−i ) = lim
s→i−

x(t(s)) = x(i−), i = 1, . . . , p− 1, (4.6)

and

x̃(0+) = lim
s→0+

x(t(s)) = x(0+) = x0. (4.7)

Equations (4.1)-(4.7) constitute a new switched system (with fixed switching times) in which
t is considered as a state variable.

The subsystem durations θi, i = 1, . . . , p, must satisfy the following constraints:

θi ≥ 0, i = 1, . . . , p, (4.8)

and

θ1 + θ2 + · · ·+ θp = T. (4.9)

Notice that constraint (4.9) is equivalent to (4.4).

Any θ = [θ1, . . . , θp]
⊤ ∈ Rp satisfying (4.8) and (4.9) is called an admissible duration

vector. Let S denote the set of all such admissible duration vectors.

Under the time-scaling transformation, the cost function (2.9) becomes

J̃(θ) = Φ(x̃(p|θ)),

where x̃(·|θ) denotes the solution of (4.5)-(4.7) corresponding to a given duration vector
θ ∈ S. Thus, our new problem can be stated formally as follows: Find an admissible
duration vector θ∗ ∈ S such that

J̃(θ∗) = inf
θ∈S

J̃(θ).

This new problem is equivalent to the original STO problem [10]. In fact, if θ∗ = [θ∗1 , . . . , θ
∗
p]

⊤

is an optimal solution for the new problem, then the optimal switching times for the original
STO problem are

τ∗i = θ∗1 + · · ·+ θ∗i , i = 1, . . . , p− 1.

Notice that the switching times in (4.5)-(4.7) occur at the fixed locations s = i, i = 1, . . . , p−
1. Thus, the partial derivatives of the cost function with respect to the switching times are
not required to solve the equivalent problem. Instead, we require the partial derivatives
of the cost function with respect to the new decision parameters θi, i = 1, . . . , p. These
partial derivatives can be obtained using conventional methods; see [9,10,12,20] for details.
Moreover, unlike in the original STO problem, the partial derivatives of the cost function
in the equivalent problem still exist when some of the subsystem durations are zero. This is
the primary advantage of the time-scaling approach.
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5 Numerical Example

Consider the Dubins vehicle model for the motion of a charged particle in a magnetic field [3]:

ẋ(t) = R sinα(t), ẏ(t) = −R cosα(t), α̇(t) = u(t), (5.1)

where (x(t), y(t)) is the particle’s position, α(t) is the particle’s heading, u(t) ∈ {−1, 1} is a
discrete-valued control variable representing the direction of the magnetic field, and R > 0
is a given constant. The initial conditions for (5.1) are

x(0) = 0, y(0) = 0, α(0) = 0. (5.2)

Since u(t) ∈ {−1, 1} for all t, we can re-write system (5.1) as follows:

ẋ(t) = R sinα(t), ẏ(t) = −R cosα(t), α̇(t) = (−1)i+1, t ∈ (τi−1, τi), i = 1, . . . , p,
(5.3)

where p − 1 is the maximum number of control switches, τ0 = 0 is the initial time, τp = T
is the terminal time, and τi, i = 1, . . . , p− 1, are switching times to be optimized.

Our STO problem is thus stated as follows: Subject to the initial conditions (5.2) and
the dynamics (5.3), choose the switching times τi, i = 1, . . . , p− 1, to minimize

J = (x(T )− xT )2 + (y(T )− yT )2, (5.4)

where (xT , yT ) denotes the desired final state.
To solve this problem, we wrote a Fortran program based on the direct optimization

approach. This program uses the optimization code NLPQLP [18] to implement Step 4
(compute search direction) and Step 5 (line search) of the gradient-based optimization algo-
rithm presented in Section 3. For the cost function gradients, the program allows the user
to select either the variational or costate method.

For p = 4, R = 1, T = 8, and (xT , yT ) = (4, 4), applying the variational method gives
an optimal cost of J = 9.6814× 10−3 and the optimal switching times

τ∗1 = 3.4081, τ∗2 = 4.9388, τ∗3 = 6.4694.

Applying the costate method gives an optimal cost of J = 9.6856 × 10−3 and the optimal
switching times

τ∗1 = 3.4051, τ∗2 = 4.9307, τ∗3 = 6.4623.

As expected, both the variational and costate methods yield almost identical results. The
optimal state trajectory for the particle is shown in Figure 1.

We now apply the time-scaling transformation to this problem. Under the time-scaling
transformation, the state equations (5.3) become

˙̃x(s) = Rθi sin α̃(s), ˙̃y(s) = −Rθi cos α̃(s), ˙̃α(s) = (−1)i+1θi, s ∈ (i−1, i), i = 1, . . . , p,
(5.5)

where x̃(s) = x(t(s)), ỹ(s) = y(t(s)), α̃(s) = α(t(s)), and the overhead dot now denotes
differentiation with respect to the new time variable s.

The initial conditions (5.2) become

x̃(0) = 0, ỹ(0) = 0, α̃(0) = 0. (5.6)

Furthermore, the cost function (5.4) becomes

J̃ = (x̃(p)− xT )2 + (ỹ(p)− yT )2.
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Figure 1: The optimal state trajectory obtained using the direct optimization approach
in conjunction with the variational method. The red dot indicates the desired terminal
position.

Thus, the transformed problem can be stated as follows: Subject to the new dynamics (5.5)
and the new initial conditions (5.6), choose the mode durations θi, i = 1, . . . , p, to minimize
J̃ .

We wrote another Fortran program to solve this transformed problem. This new program
also uses NLPQLP to implement the optimization process, and allows the user to select
between the variational and costate methods for computing the cost function gradients.
Applying the variational method gives an optimal cost of J̃ = 9.6814×10−3 and the optimal
durations

θ∗1 = 3.4081, θ∗2 = 1.5306, θ∗3 = 1.5306, θ∗4 = 1.5306.

These optimal durations correspond to the following optimal switching times:

τ∗1 = θ∗1 = 3.4081, τ∗2 = θ∗1 + θ∗2 = 4.9387, τ∗3 = θ∗1 + θ∗2 + θ∗3 = 6.4693.

Applying the costate method gives an optimal cost of J̃ = 9.6818 × 10−3 and the optimal
durations

θ∗1 = 3.4092, θ∗2 = 1.5312, θ∗3 = 1.5291, θ∗4 = 1.5306.

The corresponding optimal switching times are

τ∗1 = θ∗1 = 3.4092, τ∗2 = θ∗1 + θ∗2 = 4.9404, τ∗3 = θ∗1 + θ∗2 + θ∗3 = 6.4695.

As expected, the time-scaling transformation produces almost identical results to the direct
optimization approach.

Note that under the time-scaling transformation, the variable switching times τi, i =
1, . . . , p − 1, are replaced by the conventional decision parameters θi, i = 1, . . . , p. Hence,
since the switching times in the new system (5.5) are fixed, integrating (5.5) numerically
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is much easier than integrating (5.3). The other advantage of the time-scaling approach is
that the cost function’s gradient exists even when some of the subsystem durations are zero.
Recall that the gradient formulae for the direct optimization approach do not hold when
two or more switching times coincide.

6 Conclusion

In this paper, we have investigated two computational approaches for solving the STO
problem: the direct optimization approach and the time-scaling transformation. The di-
rect optimization approach involves optimizing the switching times directly by combining
special procedures for computing the cost function’s gradient with standard nonlinear pro-
gramming algorithms. The time-scaling approach, on the other hand, involves optimizing
the switching times indirectly by transforming the STO problem into an equivalent prob-
lem that is easier to solve. Although the time-scaling transformation is much more popular
than the direct optimization approach, the basis for its popularity is poorly described in the
literature. Papers on this topic typically justify the time-scaling transformation with vague
statements such as “the cost function’s gradient in the STO problem is not effective for nu-
merical implementation”. In this paper, we demonstrated rigorously why the time-scaling
transformation is superior to the direct optimization approach, thereby closing a significant
gap in the literature. In particular, we showed that the common perception that “the cost
function’s gradient in the STO problem is discontinuous” is actually incorrect. We therefore
hope that these new results will stimulate further research into the STO problem.

A Proof that φϵ is of order ϵ

Let ϵ ∈ Ω be arbitrary but fixed. Furthermore, let i(η) denote the active mode at time η
corresponding to the switching time vector τ , and let iϵ(η) denote the active mode at time
η corresponding to the switching time vector τ + ϵej . Then there exists an interval Iϵ of
length |Iϵ| = ϵ such that

iϵ(η) = i(η), η /∈ Iϵ. (A.1)

Now, for each t ∈ [0, T ], we have

φϵ(t) = xϵ(t)− x(t) =

∫ t

0

{
f iϵ(η)(η,xϵ(η))− f i(η)(η,x(η))

}
dη.

Taking the norm of both sides and then applying equation (A.1) yields

∥φϵ(t)∥ ≤
∫
[0,t]\Iϵ

∥∥f i(η)(η,xϵ(η))− f i(η)(η,x(η))
∥∥dη

+

∫
Iϵ

∥∥f iϵ(η)(η,xϵ(η))− f i(η)(η,x(η))
∥∥dη

≤
∫ t

0

∥∥f i(η)(η,xϵ(η))− f i(η)(η,x(η))
∥∥dη

+

∫
Iϵ

∥∥f iϵ(η)(η,xϵ(η))− f i(η)(η,x(η))
∥∥dη.

Therefore, from (2.6) and (2.8),

∥φϵ(t)∥ ≤ 2L3|Iϵ|+
∫ t

0

L3∥φϵ(η)∥dη = 2L3|ϵ|+
∫ t

0

L3∥φϵ(η)∥dη.
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Finally, applying the Gronwall-Bellman inequality gives

∥φϵ(t)∥ ≤ 2L3|ϵ| exp(L3T ). (A.2)

This completes the proof.

B Proof that ρϵ
j and ρϵ

j+1 are of order ϵ2

Let ρϵ
j and ρϵ

j+1 be as defined in the proof of Theorem 3.1 and assume that ϵ ∈ Ω∩ (−∞, 0].
Then

∥ρϵ
j∥ ≤

∫ τj

τj+ϵ

∥∥f j(η,x(η))−f j(τj ,x(τj))
∥∥dη ≤

∫ τj

τj+ϵ

L3|η−τj |dη+
∫ τj

τj+ϵ

L3

∥∥x(η)−x(τj)
∥∥dη,

where L3 is the Lipschitz constant defined in (2.8). Thus,

∥ρϵ
j∥ ≤

∫ τj

τj+ϵ

L3|η − τj |dη +

∫ τj

τj+ϵ

L3

∥∥x(η)− x(τj)
∥∥dη ≤ L3ϵ

2 +

∫ τj

τj+ϵ

L3

∥∥x(η)− x(τj)
∥∥dη.
(B.1)

Since ϵ ∈ Ω ∩ (−∞, 0], we must have τj−1 ≤ τj + ϵ ≤ τj . Hence, for each η ∈ [τj + ϵ, τj ],∥∥x(η)−x(τj)
∥∥ ≤

∫ τj

η

∥∥f j(s,x(s))
∥∥ds ≤ ∫ τj

τj+ϵ

∥∥f j(s,x(s))
∥∥ds ≤ ∫ τj

τj+ϵ

L3ds = L3|ϵ|, (B.2)

where the last inequality follows from (2.6). Substituting (B.2) into (B.1) gives

∥ρϵ
j∥ ≤ L3ϵ

2 + L2
3ϵ

2. (B.3)

Now, for ρϵ
j+1, we have

∥ρϵ
j+1∥ ≤

∫ τj

τj+ϵ

∥∥f j+1(η,xϵ(η))− f j+1(τj ,x(τj))
∥∥dη

≤
∫ τj

τj+ϵ

∥∥f j+1(η,xϵ(η))− f j+1(η,x(η))
∥∥dη

+

∫ τj

τj+ϵ

∥∥f j+1(η,x(η))− f j+1(τj ,x(τj))
∥∥dη. (B.4)

Thus, using inequalities (2.8) and (A.2),

∥ρϵ
j+1∥ ≤

∫ τj

τj+ϵ

L3∥φϵ(η)∥dη +

∫ τj

τj+ϵ

∥∥f j+1(η,x(η))− f j+1(τj ,x(τj))
∥∥dη

≤ 2L2
3 exp(L3T )ϵ

2 +

∫ τj

τj+ϵ

∥∥f j+1(η,x(η))− f j+1(τj ,x(τj))
∥∥dη.

The integral term on the right-hand side can be handled using the same arguments as in
the derivation of (B.3). Thus,

∥ρϵ
j+1∥ ≤ 2L2

3 exp(L3T )ϵ
2 + L3ϵ

2 + L2
3ϵ

2.

This completes the proof.
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