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Before this study, Goyal [7] first developed the EOQ models under conditions of permis-
sible delay in payments. Chand & Ward [2] added the concept of net present value (NPV) to
classical EOQ models and compares their results with ones of [7]. Chu et al. [4] augmented
the constraints of “the interest charged is greater than the interest earned” to Goyal’s [7]
model. He proved that the average total cost function is convex and proposed a simplified
search scheme for solving the problem. Based on Goyal’s [7] model, Aggarwal & Jaggi [1]
developed the EOQ models of the deteriorating items under condition of permissible delay
in payments. They proved that the objective function is piecewise-convex and showed some
theoretical results. Later, Jamal et al. [12] further generalized Aggarwal & Jaggi’s [1] model
by allowing shortages. Chung [6] presented a theorem that determines the replenishment
quantity under condition of permissible delay in payments. Huang [9] assumed that the
supplier offers the retailer partially permissible delay in payments when the order quantity
is smaller than a predetermined quantity. Huang & Hsu [11] investigated an extended case
the retailer is offered with two levels of trade credit.

Ouyang et al. [13] added the conditions of cash discount to the models of Goyal [7]
and developed inventory models under condition of permissible delay in payments and cash
discount simultaneously. In their model, the retailers may simply compare these two models
and pick the favorite one. Chang [3] extended the scenario by adding the constraint: the
selling price is greater than purchasing price to the model of Ouyang et al. [13]. Huang &
Chung [10] derived an EOQ model under the conditions of cash discount and trade cred-
its. We may consider their model using so called “Single-Stage Payment Strategy (SSPS)”
since the retailer makes its payment at only one stage but considering taking advantage of
cash discount and trade credits. Note that they did not take into account the option of
“permissible delay in payment” in their decision-making scenario. The theoretical analysis
in their study could be simpler since they consider less number of possible cases and the
derivation of the corresponding cost functions are more straightforward. However, since the
decision-maker in the scenario of Huang & Chung [10] has no option of “permissible delay
in payment”, the proposed Two-Stage Payment Strategy in this study could obtain better
solution than their optimal solution. (Please refer to the numerical experiments in Section
5.) Moreover, Huang [8] simplified the search of the optimal values of models in Chang [3]
and offered an efficient algorithm.

In this study, we are interested in another possible practice (which is a kind of “hybrid”
strategy, and will be called “Two-Stage Payment Strategy” later) in the real world, namely,
the supplier allows some partial payment is paid within the period of cash discount and
the remained unpaid payment is disbursed before the permissible delay period. We con-
sider that the Two-Stage Payment Strategy may lead to a lower cost than the other two
strategies in the literature. We are motivated to investigate the problem by formulating the
corresponding mathematical model, gaining more insights through our theoretical analysis,
and hopefully, to propose an efficient solution approach and the optimal strategy for the
retailers based on our theoretical analysis.

The rest of the paper is organized as follows. Section 2 introduces the notations, the as-
sumptions and the mathematical models under the Two-Stage Payment Strategy. We prove
the convexity and monotonicity properties of all models in Section 3. These properties assure
the existence of an optimal solution for all the models. Then, we conduct theoretical analysis
and also present the proposed solution approach based on our theoretical results in Section
4. In Section 5, we first solve six examples in Huang & Chung [10] using the proposed solu-
tion approach under the Two-Stage Payment Strategy. Also, we conduct sensitivity analysis
for obtaining more managerial insights as the second part of Section 5. Finally, Section 6
addresses our concluding remarks.
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2 The Mathematical Models

Following the practice in real world, suppliers often offer a so-call “1/10, n/30” rule to
retailers. We describe this rule as follows. The supplier would offer the retailer a 1%-cash
discount, if the retailer is willing to pay for the purchased items within a period of 10 days.
Otherwise, the retailer must pay in full before a permissible delay period of 30 days.

Before this study, Ouyang et al. [13] found the preferable one between the following two
cases exclusively.

1. EOQ under conditions of cash discount.

2. EOQ under conditions of permissible delay in payments.

We also call them “Single-Stage Payment Strategy (SSPS)” since the retailer makes its
payment at only one stage in either case. One may refer to Ouyang et al. [13] for the details
of their formulation.

In this study, we are interested in another practice, namely, a “Two-Stage Payment
Strategy (TSPS)”, in which the retailer is able to take the advantage of cash discount for the
first part of its payment, and pay the rest within 30 days. We also call the concerned problem
as the “EOQ under both options of permissible delay in payments and cash discount.”

Before presenting the proposed mathematical model, we first introduce the notation for
the model formulation as follows.

D: the demand rate(unit/years)

h: the stock holding cost per year excluding interest charges(dollars/unit)

s: the selling price (dollars/unit)

p: the purchasing price (dollars/unit)

A: the ordering cost (dollars/order)

Ic: the interest charged in the stocks (dollars/year)

Id: the interest earned (dollars/year)

M1: the period of cash discount (years)

M2: the permissible delay period (years)

T : the replenishment cycle time (years)

ACT (T ): the annual average total relevant cost (dollars/year)

EOQ(T ): the annual average total relevant cost of the traditional EOQ model, i.e. the sum
of average holding cost and setup cost where EOQ(T ) = A/T + hDT/2.

We define ATC(T ) as the average total cost for the decision maker (i.e., the retailer) as
follows

ATC(T ) = EOQ(T )− ID(T )− IR(T ) + IC(T ) (2.1)

where ID(T ) indicates the earned discount, IR(T ) is the interest earned, and IC(T ) is
the interest charged. The expressions of ID(T ), IR(T ) and IC(T ) may vary with different
cases.

We also employ the following assumptions for our model formulation.
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Table 1: The Payment Mechanism of the Six Cases
Other Payment time

Cases Payment at M1 Payment at M2 and amount
Case 1.1 pDM1 pD(T −M1) No
Case 1.2 pDM1 pD(M2 −M1) Pay as sold
Case 2.1 pDT No No
Case 2.2 pDT No No
Case 2.3 No pDT No
Case 2.4 No pDM2 Pay as sold

1. The demand rate is known and constant.

2. Shortage is not allowed.

3. Replenishments are instantaneous.

4. The unit selling price is larger than the unit purchasing price.

5. The supplier offers a cash discount if it makes the payment with the discount rate of
r within the cash-discount period M1 (and enjoys the earned discount ID(T ) in the
objective function). Otherwise, it shall pay the full payment within the permissible
delay period M2.

6. The permissible delay period M2 is longer than the period M1 of cash discount, i.e.
M1 < M2.

7. The retailer deposits the sales revenue generated from the sold items in an interest-
bearing account, and it receives interest income, corresponding to the term of IR(T )
in the objective function, from the deposited revenue before making the payment at
M2.

8. The supplier charges interest for the delayed payment beyond the permissible delay
dead line (M2), and the interest charged is the term IC(T ) in the objective function.

9. The interest earned is no larger than the interest charged, namely, 0 < Id < Ic.

10. We consider no extra financial options (e.g., investing additional cash) is allowed in
the decision-making scenario.

11. The planning horizon is infinite.

First, we present the mathematical models for the Two-Stage Payment Strategy (TSPS),
i.e., the EOQ under both options of permissible delay in payments and cash discount. There
are two possible cases in TSPS, namely, Case 1.1: T ∈ [M1,M2] and Case 1.2: T ≥ M2. We
would formulate a mathematical model for the corresponding cases as follows.

Case 1.1: Given T ∈ [M1,M2], the retailer made the payment before the permissible de-
lay period M2. Therefore, the interest charged is zero, i.e., IC(T ) = 0. The retailer
would make the first part of its payment at M1 and earn the cash discount by ID(T ) =
rpDM1

T
. Also, it is best for the retailer to hold the second part of its payment untilM2.
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In such a case, the interest earned is IR(T ) = sIdD

[
M1(M1 −M2)

T
+M2 −

T

2

]
. In

fact, the term IR(T ) includes the interest
sIdDM2

1

T
from the unpaid amount of sD(T−

M1) earned beforeM1 and the interest earned
sIdD(T −M1)

2

2T
+
sIdD(T −M1)(M2 − T )

T
between M1 and M2 in Case 1.1. Therefore, the average total cost function for Case
1.1, denoted as ATC1.1(T ), is given as (2.2).

ATC1.1(T ) = EOQ(T )− rpDM1

T
− sIdD

[
M1(M1 −M2)

T
+M2 −

T

2

]
(2.2)

Case 1.2: Given T ≥ M2. Similar to Case 1.1, it will be the best option for the retailer
to make the first part of its payment at M1 and receive a cash discount of ID(T ) =
rpDM1

T
. The retailer would make the second part of its payment at M2 to avoid

interest charge. Before making this payment, the retailer is able to get an interest

income of
sIdD[M2

1 + (M2 −M1)
2]

2T
. Besides, since T ≥ M2, the retailer has to pay

for the interest charge for those items sold after M2, and the interest charged will

be
pIcD(T −M2)

2

2T
. Then, the average total cost function for Case 1.2, denoted as

ATC1.2(T ), may be expressed as (2.3).

ATC1.2(T ) = EOQ(T )− rpDM1

T
− sIdD[M2

1 + (M2 −M1)
2]

2T
+

pIcD(T −M2)
2

2T
(2.3)

Recall that Ouyang et al. [13], Chang [3] and Huang [8] proposed two categories of
Single-Stage Payment Strategies:

1. EOQ models under conditions of cash discount: There are two possible cases in this
category as follows.

Case 2.1: T ≤ M1;

Case 2.2: M1 ≤ T ;

2. EOQ models under conditions of permissible delay in payments: Two possible cases
in this category are:

Case 2.3: T ≤ M2;

Case 2.4: M2 ≤ T .

We denote the average total cost function for Case 2.1, Case 2.2, Case 2.3 and Case 2.4 as
ATC2.1(T ), ATC2.2(T ), ATC2.3(T ) and ATC2.4(T ) respectively. The expressions for these
functions are given as follows.

ATC2.1(T ) = EOQ(T )− rpD − sIdD

(
M1 −

T

2

)
, (2.4)

ATC2.2(T ) = EOQ(T )− rpD − sIdDM2
1

2T
+

p(1− r)IcD(T −M1)
2

2T
, (2.5)

ATC2.3(T ) = EOQ(T )− sIdD

(
M2 −

T

2

)
, (2.6)
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ATC2.4(T ) = EOQ(T )− sIdDM2
1

2T
+

pIcD(T −M2)
2

2T
(2.7)

The derivation of the function ATC2.1(T ) can be referred to the equation (22) of Huang
[8]. Moreover, the functions ATC2.2(T ), ATC2.3(T ) and ATC2.4(T ) can be referred to the
equation (21), (24) and (23) of Huang [8] respectively.

Obviously, the retailer would make the optimal decision by taking into accounts all the
cases in both Single-Stage and Two-stage Payment Strategies. Therefore, we are interested
in finding an optimal solution of (2.8) in this study.

min{ATC1.1(T
∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2), ATC2.3(T

∗
2.3), ATC2.4(T

∗
2.4)}

(2.8)
where T ∗

i,j are satisfied

ATC1.1(T
∗
1.1) = min

T∈[M1,M2]
ATC1.1(T ) (2.9)

ATC1.2(T
∗
1.1) = inf

T∈[M2,∞)
ATC1.2(T ) (2.10)

ATC2.1(T
∗
2.1) = inf

T∈(0,M1]
ATC2.1(T ) (2.11)

ATC2.2(T
∗
2.2) = inf

T∈[M1,∞)
ATC2.2(T ) (2.12)

ATC2.3(T
∗
2.3) = inf

T∈(0,M2]
ATC2.3(T ) (2.13)

ATC2.4(T
∗
2.4) = inf

T∈[M2,∞)
ATC2.4(T ). (2.14)

3 Convexity and Monotonicity Analysis

Here, we would indicate that the cost functions (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) are
convex under certain conditions. Also, we would assert that these cost functions are still
non-decreasing functions, even if these conditions are not satisfied. Moreover, our theoretic
results facilitate us in obtaining an optimal solution T ∗

i,j for each case.
Before presenting our theoretical analysis, we define a new symbol ∆ as

∆ = rp− sId(M2 −M1). (3.1)

Note that the condition ∆ > 0 implies that the interest earned from the generated sales
revenue between M1 and M2, is less than the profit made from cash discount. It is a crucial
condition for deriving our theoretical results. On the other hand, to simplify our conditions
in finding the optimal solution for all the cases, we further define k1, k2 and k3 as follows.

k1 = DM2
1 (h+ sId) (3.2)

k2 = DM2
2 (h+ sId) (3.3)

k3 = 2DM1[rp− sId(M2 −M1)] (3.4)

Next, we will first present our convexity and monotonicity analysis on the Two-Stage
Payment Strategy, and do that for the Single-Stage Payment Strategy in the second part.
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3.1 The Analysis on the Two-Stage Payment Strategy

Theorem 3.1 asserts the convexity and monotonicity of the function ATC1.1(T ) for Case 1.1.

Theorem 3.1. Let
λ1 = 2{A−DM1[rp− sId(M2 −M1)]} (3.5)

and

T1.1 =

√
2{A−DM1[rp− sId(M2 −M1)]}

D(h+ sId)
(3.6)

1. If λ1 > 0, then ATC1.1(T ) is convex and an optimal replenishment cycle of min
T>0

ATC1.1(T )

is T1.1.

2. If λ1 = 0, then ATC1.1(T ) is constant.

3. If λ1 < 0, then ATC1.1(T ) is increasing, concave and an optimal replenishment cycle of
min

T∈[M1,M2]
ATC1.1(T ) is M1.

Theorem 3.1 assists to find an optimal solution of Case 1.1, i.e., T ∗
1.1 = argmin

T∈[M1,M2]

ATC1.1(T ).

We note that the fourth item in Corollary 3.2 also plays the same role, but it facilitates us
in the organization of the possible situations when deriving the proposed solution approach
for solving (2.8).

Corollary 3.2. Assume ∆ > 0.

1. If 2A > k3, then λ1 > 0 and T1.1 exists. If 2A ≤ k3, then λ1 < 0.

2. If 2A ≥ k1 + k3, then T1.1 ≥ M1. If 2A ∈ (k3, k1 + k3), then T1.1 < M1.

3. If 2A ∈ (k3, k2 + k3], then T1.1 ≤ M2. If 2A > k2 + k3, then T1.1 > M2.

4. An optimal solution of min
T∈[M1,M2]

ATC1.1(T ) is given by

T ∗
1.1 =


M1 if 2A < k1 + k3
T1.1 if 2A ∈ [k1 + k3, k2 + k3]
M2 if 2A > k2 + k3

.

Though the analysis on the function ATC1.2(T ) is more complicated, we may derive
Theorem 3.3 and Corollary 3.4 by applying a similar approach.

Theorem 3.3. Let

λ2 = 2{A−DM1[rp− Id(M2 −M1)]}+DM2
2 (pIc − sId). (3.7)

and

T1.2 =

√
2{A−DM1[rp− Id(M2 −M1)]}+DM2

2 (pIc − sId)

D(h+ pIc)
(3.8)

1. If λ2 > 0, then ATC1.2(T ) is convex and an optimal replenishment cycle of inf
T>0

ATC1.2(T )

is T1.2.
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2. If λ2 = 0, then ATC1.2(T ) is constant.

3. If λ2 < 0, then ATC1.2(T ) is increasing, concave and an optimal replenishment cycle
inf

T∈[M2,+∞)
ATC1.2(T ) is M2.

Also, Corollary 3.4 assists to find the optimal replenishment cycle of inf
T∈[M2,+∞)

ATC1.2(T ).

Corollary 3.4. Assume ∆ > 0.

1. If 2A > k2 + k3, then λ2 > 0 and T1.2 > M2.

2. If 2A ≤ k2 + k3 and λ2 > 0, then T1.2 ≤ M2.

3. An optimal solution of inf
T∈[M2,+∞)

ATC1.2(T ) is

T ∗
1.2 =

{
T1.2 if 2A > k2 + k3
M2 otherwise

.

3.2 The Analysis on the One-Stage Payment Strategy

We start the discussion in this section with our analysis on Cases 2.1 and 2.3, and proceed
with those on Cases 2.2 and 2.4 later.

As analyzing Cases 2.1 and 2.3, we observe that the functions ATC2.1(T ) and ATC2.3(T )
have the same derivative, though they are different in their expressions. Consequently,
Theorem 3.5 concludes that both functions locate the same optimal solution.

Theorem 3.5. Let

T2.1 =

√
2A

D(h+ sId)
(3.9)

Then the functions ATC2.1(T ) and ATC2.3(T ) are convex. The replenishment cycle T2.1 is
an optimal replenishment cycle of inf

T>0
ATC2.1(T ) and inf

T>0
ATC2.3(T ).

From Corollary 3.6, one obtains T ∗
2.1 = arginf

T∈(0,M1]

ATC2.1(T ) which is the optimal replen-

ishment cycle of Case 2.1.

Corollary 3.6. Assume ∆ > 0.

1. If 2A < k1, then T2.1 < M1. If 2A ≥ k1, then T2.1 ≥ M1.

2. An optimal solution of inf
T∈(0,M1]

ATC2.1(T ) is

T ∗
2.1 =

{
T2.1 if 2A < k1
M1 if 2A ≥ k1

.

Corollary 3.7 gives the optimal replenishment cycle of Case 2.3, i.e., T ∗
2.3 = arginf

T∈(0,M2]

ATC2.3(T ).

Corollary 3.7. Assume ∆ ≤ 0.

1. If 2A ≤ k2, then T2.1 ≤ M2. If 2A > k2, then T2.1 > M2.
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2. An optimal solution of inf
T∈(0,M2]

ATC2.3(T ) is

T ∗
2.3 =

{
T2.1 if 2A ≤ k2
M2 if 2A > k2

.

For Case 2.2, we declare the convexity and monotonicity of its total cost function
ATC2.2(T ) with Theorem 3.8.

Theorem 3.8. Let

λ3 = 2A+DM2
1 [p(1− r)Ic − sId] (3.10)

and

T2.2 =

√
2A+DM2

1 [p(1− r)Ic − sId]

D[h+ p(1− r)Ic]
(3.11)

1. If λ3 > 0, then ATC2.2(T ) is convex and an optimal replenishment cycle of inf
T>0

ATC2.2(T )

is T2.2.

2. If λ3 = 0, then ATC2.2(T ) is constant.

3. If λ3 < 0, then ATC2.2(T ) is increasing, concave and an optimal replenishment cycle of
inf

T∈[M1,∞)
ATC2.2(T ) is M1.

Also, Corollary 3.9 supports in finding the optimal replenishment cycle of Case 2.2, i.e.,
T ∗
2.2 = arginf

T∈[M1,∞)

ATC2.2(T ).

Corollary 3.9. 1. If 2A ≥ k1, then λ3 > 0 and T2.2 ≥ M1.

2. If 2A < k1 and λ3 > 0, then T2.2 < M1.

3. An optimal solution of inf
T∈[M1,∞)

ATC2.2(T ) is

T ∗
2.2 =

{
M1 if 2A < k1
T2.2 if 2A ≥ k1

.

Finally, for Case 2.4, Theorem 3.10 states the convexity and monotonicity of its cost
function ATC2.4(T ).

Theorem 3.10. Let

λ4 = 2A+DM2
2 (pIc − sId) (3.12)

and

T2.4 =

√
2A+DM2

2 (pIc − sId)

D(h+ pIc)
(3.13)

1. If λ4 > 0, then ATC2.4(T ) is convex and an optimal replenishment cycle of inf
T>0

ATC2.4(T )

is T2.4.

2. If λ4 = 0, then ATC2.4(T ) is constant.
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3. If λ4 < 0, then ATC2.4(T ) is increasing, concave and an optimal replenishment cycle of
inf

T∈[M2,∞)
ATC2.4(T ) is M2.

Also, Corollary 3.11 facilitates the task of locating the optimal replenishment cycle of
Case 2.4, i.e., T ∗

2.4 = arginf
T∈[M2,∞)

ATC2.4(T ).

Corollary 3.11. 1. If 2A > k2, then λ4 > 0 and T2.4 > M2.

2. If 2A ≤ k2 and λ4 > 0, then T2.4 ≤ M2.

3. An optimal solution of inf
T∈[M2,∞)

ATC2.4(T ) is

T ∗
2.4 =

{
M2 if 2A ≤ k2
T2.4 if 2A > k2

.

4 The Proposed Solution Approach

Based on our theoretical results in Corollary 3.2 to 3.11, we are able to secure all T ∗
i,j and

solve the problem in (2.8). In the first part of this section, we will conduct further analysis
on the optimization of (2.8). Then, the second part summarizes the proposed solution
approach.

4.1 Theoretical Foundation

Our theoretical analysis in this section lays important foundation for the proposed solution
approach in Section 4.2.

Recall that the condition ∆ > 0 indicates that the interest earned from the generated
sales revenue betweenM1 andM2, is less than the profit made from cash discount. Therefore,
∆ > 0 implies that we may exclude inf

T∈(0,M2]
ATC2.3(T ) and inf

T∈[M2,∞)
ATC2.4(T ) from our

consideration if ∆ > 0. Following such intuitive ideas, we summarize (and prove) them in
Theorem 4.1.

Theorem 4.1. Given ∆ = rp− sId(M2 −M1), the following properties hold.

1. The condition ∆ > 0 is necessary and sufficient for the followings:

(a) For all T ≤ M1, ATC2.1(T ) < ATC2.3(T ) holds.

(b) For all T ∈ [M1,M2], ATC1.1(T ) < ATC2.3(T ) holds.

(c) For all T ≥ M1, ATC1.2(T ) < ATC2.4(T ) holds.

2. The condition ∆ < 0 is necessary and sufficient for the followings:

(a) For all T ≤ M1, ATC2.3(T ) < ATC2.2(T ) holds.

(b) For all T ∈ [M1,M2], ATC2.3(T ) < ATC1.1(T ) holds.

(c) For all T ≥ M1, ATC2.4(T ) < ATC1.2(T ) holds.

3. The condition ∆ = 0 is necessary and sufficient for the followings:

(a) For all T ≤ M1, ATC2.1(T ) = ATC2.3(T ) holds.
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(b) For all T ∈ [M1,M2], ATC1.1(T ) = ATC2.3(T ) holds.

(c) For all T ≥ M1, ATC1.2(T ) = ATC2.4(T ) holds.

The condition ∆ > 0 dichotomizes the possible situations, and Theorem 4.1 asserts that
solving (2.8) is equivalent to

1. min{ATC1.1(T
∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}, if ∆ > 0.

2. min{ATC2.2(T
∗
2.2), ATC2.3(T

∗
2.3), ATC2.4(T

∗
2.4), }, otherwise.

Further, we would make use of the following two results so as to straight out the condi-
tions for finding the optimal solution.

1. The assumption of M1 < M2 and the definition of k1 and k2 lead to k1 < k2.

2. The condition ∆ > 0 implies k1 < k1 + k3 < k2 + k3 (since ∆ > 0 infers k3 > 0 following
the definition of ∆ and k3).

With the two results above, we are able to combine all the theoretical analysis in Theorem
3.1-3.10 and Corollary 3.2-3.11 into Theorem 4.2, that provides the backbone of the proposed
algorithm for solving the optimal solution of (2.8).

Theorem 4.2. Let u1 = T2.1DM1(h+ sId).

1. Suppose ∆ > 0 and 2A < k1.

(a) The conditions u1 ≤ 2A < k1 imply that

ATC1.1(M1) = ATC2.2(M2)
= min{ATC1.1(T

∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}.

(b) The conditions 2A < u1 ≤ k1 imply that

ATC2.1(T2.1)
= min{ATC1.1(T

∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}.

2. Suppose ∆ > 0.

(a) The conditions k1 ≤ 2A < k1 + k3 imply that

ATC2.2(T2.2) = min{ATC1.1(T
∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}.

(b) The conditions k1 + k3 ≤ 2A ≤ k2 + k3 imply that

ATC∗ = min{ATC1.1(T1.1), ATC2.2(T2.2)}
= min{ATC1.1(T

∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}.

(c) The condition 2A > k2 + k3 implies that

ATC∗ = min{ATC1.2(T1.2), ATC2.2(T2.2)}
= min{ATC1.1(T

∗
1.1), ATC1.2(T

∗
1.2), ATC2.1(T

∗
2.1), ATC2.2(T

∗
2.2)}.

3. Suppose ∆ ≤ 0.
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(a) The conditions 2A < k1 implies that

ATC2.3(T2.3) = min{ATC2.2(T
∗
2.2), ATC2.3(T

∗
2.3), ATC2.4(T

∗
2.4)}.

(b) The conditions 2A ∈ [k1, k2] implies that

min{ATC2.2(T2.2), ATC2.3(T2.3)}
= min{ATC2.2(T

∗
2.2), ATC2.3(T

∗
2.3), ATC2.4(T

∗
2.4)}.

(c) The conditions 2A > k2 implies that

min{ATC2.2(T2.2), ATC2.4(T2.4)}
= min{ATC2.2(T

∗
2.2), ATC2.3(T

∗
2.3), ATC2.4(T

∗
2.4)}.

From Theorem 4.2 (and the tree-structured conditions in Figure 1), we are able to make
the following observations:

1. When the conditions ∆ > 0 and u1 ≤ 2A < k1 hold, i.e., the conditions in (1a), the
TSPS (more specifically, Case 1.1) solves the same optimal solution as the SSPS (Case
2.2).

2. The TSPS also possibly obtains an optimal solutions for the conditions in (2b) and
(2c), but, the optimal solutions of Case 1.1 and Case 1.2 must be better than those
from Case 2.2 (of the SSPS) for both cases, respectively.

3. The SSPS solves the optimal solution, for the following conditions: (i) Case 2.1 for
the conditions in (2b), (ii) Case 2.2 for the conditions in (2a), (iii) Case 2.3 for the
conditions in (2a), (iv) either Case 2.2 or Case 2.3 for the conditions in (3b), and (v)
either Case 2.2 or Case 2.4 for the conditions in (3c).

Note that Theorem 4.2 lays important foundation for the proposed algorithm. The tree-
structured conditions in Theorem 4.2 cover all the possible cases. Therefore, we shall make
use of Theorem 4.2 to an algorithm that solves the optimal solution of (2.8) efficiently.

Figure 1: Tree Structure of Theorem 4.2



EOQ UNDER CASH DISCOUNT AND DELAY IN PAYMENT 529

4.2 The Proposed Algorithm

Following the results in Theorem 4.2, we propose an effective algorithm for finding the
optimal cycle time of (2.8) as follows.

Algorithm 1.

Step 1. If ∆ > 0, then go to Step 2. Otherwise, go to Step 3.

Step 2. (a) If 2A ∈ [u1, k1), then stop and report ATC1.1(M1) as the optimal value.

(b) If 2A < u1 ≤ k1, then stop and report ATC2.1(T2.1) as the optimal value.

(c) If 2A ∈ [k1, k1 + k3), then stop and report ATC2.2(T2.2) as the optimal value.

(d) If 2A ∈ [k1 + k3, k2 + k3], then stop and report

min{ATC1.1(T1.1), ATC2.2(T2.2)}

as the optimal value.

(e) If 2A > k2 + k3, then stop and report

min{ATC1.2(T1.2), ATC2.2(T2.2)}

as the optimal value.

Step 3. (a) If 2A < k1, then stop and report ATC2.3(T2.3) as the optimal value.

(b) If 2A ∈ [k1, k2], then stop and report

min{ATC2.2(T2.2), ATC2.3(T2.3)}

as the optimal value.

(c) If 2A > k2, then stop and report

min{ATC2.2(T2.2), ATC2.4(T2.4)}

as the optimal value.

Note that each step in Algorithm 1 corresponds to an exclusive case in Theorem 4.2.
For example, Step 3(a) is corresponding to (3a) in Theorem 4.2. Therefore, Theorem 4.2
guarantees that Algorithm 1 obtains an optimal solution.

5 Numerical Experiments

We would like to make observation if the optimal solution comes from the Single-Stage
Payment Strategy or the Two-Stage Payment Strategy in this section. Section 5.1 takes
the six examples in Huang & Chung [10] for our numerical experiments. Then, we conduct
sensitivity analysis to obtain further managerial insights as the second part of this section.
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Table 2: The parameters of the six examples in Huang & Chung [10].
Example 1 2 3 4 5 6

A 10 100 100 100 100 100
h 10 10 10 10 10 10
r 0.1 0.005 0.001 0.01 0.001 0.001
M1 0.08 0.06 0.02 0.02 0.05 0.02
M2 0.1 0.1 0.1 0.1 0.1 0.1
D 5,000 2,600 1,000 4,000 5,000 1,000
Ic 0.15 0.15 0.15 0.15 0.15 0.15
Id 0.14 0.12 0.12 0.12 0.12 0.10
p 150 100 60 50 50 100
s 150 100 60 50 50 100

Table 3: The optimal solutions of the six examples.
Example 1 2 3 4 5 6

The optimal Csae Case2.1 Case2.1 Case2.4 Case1.1 Case2.3 Case2.3
Improvement 0 0 0 1.034% 0 0

5.1 The Six Examples in Huang & Chung (2003)

We take the six examples in Huang & Chung [10] as the benchmark instances for comparison
here. Table 2 displays the sets of parameters for those six examples.

We solve these six examples using the proposed algorithm (i.e., Algorithm 1) under Two-
Stage Payment Strategy (TSPS). Table 3 shows the optimal solutions from Algorithm 1. The
TSPS solves the same optimal solution as the SSPS except one instance, namely, Example
4. We observe that the optimal solution commits Case 1.1 in which the retailer made the
payment before the permissible delay period M2. In this example, the TSPS obtains a better
solution than the SSPS with an improvement of 1.034% in the annual average total relevant
cost. The retailer would make the first part of its payment at M1 and earn the cash discount.

5.2 Sensitivity Analysis

In this section, we would employ sensitivity analysis to gain more managerial insights for the
Two-Stage Payment Strategy. To set up a base case for our sensitivity analysis, we would
first introduce an example with its parameters showing in Table 4.

Before starting our sensitivity analysis, we first solve the base-case example. Follow-

Table 4: The parameters of the base-case example for our sensitivity analysis.
A=$200 dollars / per order D=3,000units / per year

h=$10 dollars / per unit, per year Ic is an annual interest of 15%
Id is an annual interest of 7% r=0.5%

s=$25 dollars / per unit p=$20 dollars/per unit
M1=10 days M2=30 days
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Table 5: A summary of our sensitivity analysis.

Range of TSPS-applied TSPS-applied Best TSPS Average
Parameter parameter Range percentage strategy improvement

s [20,40] [20,26] 33.3% Case1.2 0.54%
p [12.5,25] [19.2,21.4] 18.3% Case1.2 0.38%
h [1,135] [1,112] 79.3% Case1.x+ 0.63%
Ic [0.071,0.9] [0.107,0.9] 32.7% Case1.2 85.17%
D [1,20000] [1,20000] 91.2% Case1.x+ 1.59%
A [5,4000] [21,4000] 97.8% Case1.x+ 7.09%
Id [0.0001,0.149] [0.0001,0.0729] 48.9% Case1.2 0.57%
r [0.0001,0.05] [0.0001,0.0053] 1.2% Case1.2 0.42%

+We mark “Case 1.x” since the best TSPS strategy could alternate between Case 1.1 and
Case 1.2 for different instances.

ing the ∆ = 0.0041096 > 0 and 2A = 400 > 238.8065303 = k2 + k3, it belongs to the
conditions in (2c) in Theorem 4.2 (and, also Step 2(e) in Algorithm 1). The algorithm
reports that the optimal replenishment cycle of Case 1.2 is T ∗

1.2 = T1.2 = 0.0867 with
ATC∗ = ATC1.2(T1.2) = $3399.1922. Therefore, Algorithms 1 solves an optimal solution
for the base-case example under the TSPS.

We would like to investigate is that if the TSPS strategy will sustain as the parameter
changes and how significant will the improvement vary with the change of parameters via
our sensitivity analysis. Therefore, we conduct our sensitivity analysis by changing only one
parameter, but keeping the others fixed. But, we would fix the values of M1 and M2 in our
sensitivity analysis since they apply to most of the accounting practice in the real-world.

Table 5 summarizes the settings and the results in our sensitivity analysis. The second
column shows the test-range of the parameters. Note that we set the range by referring to
the six examples in Huang & Chung [10], but attempt to test a much wider range than those
appearing in the six examples for the interested parameters. The third column indicates the
percentage of the test-range where the TSPS applied and obtained an optimal solution for
the tested instances. Obviously, the larger the TSPS-applied percentage, the more robust
the parameter. For this base-case example, we observe that the TSPS applied to almost
all the tested range for the parameters D (demand rate) and A (ordering cost), and 79.3%
of the range for h (holding cost). Also, the TSPS is very sensitive to the parameter r (the
discount rate of cash discount), and the TSPS no longer obtains an optimal solution as the
parameter r leaves the 1.2%-range, i.e., [0.0001, 0.0053]. This observation may result from
the case that the decision maker would take full advantage of cash discount as the discount
rate is good enough (and applies the EOQ with cash discount only), and would totally ignore
cash discount as the discount rate becomes unattractive.

On the other hand, we may observe that Case 1.2 sustains for the changes of the pa-
rameters s, p, Ic, Id, and r, from the fifth column of Table 5. (Recall that the base-case
obtains its optimal solution from Case 1.2.) For those who are interested in the sensitivity
on (s−p), one may refer to the results on s since when we conduct the sensitivity analysis on
s, we did it by fixing the value of p and varying the value of s, which is equivalent to do the
sensitivity analysis on (s− p). The best TSPS strategy alternates between Case 1.1.and 1.2
as the values of h, D and A changed. The last column of Table 5 shows that the parameters
Ic (the interest charged) facilitates the TSPS strategy to gain the most significant average
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improvement of 85.17% comparing to the SSPS strategy. For the parameter Id, we consider
cash discount could be even more attractive and EOQ with cash discount will be preferable
as the interest earned is low. It is reasonable that the earning from the interest may surpass
the cash discount as the interest earned increases to some level, and the decision maker
would turn to use the permissible delay in payment. Also, note that the parameter p (the
purchasing price) has a strong link with cash discount, namely, the lower the purchasing
price, the less the amount of cash discount. Therefore, the purchasing price directly impacts
the advantage of cash discount, and the decision maker will switch to take the permissible
delay in payment as the purchasing price is relatively low.

6 Conclusion and Future Research

In this paper, we introduce a new possible practice, called “Two-Stage Payment Strat-
egy”(TSPS), in which both options of “the permissible delay period” and “the period of
cash discount” are available to the retailer. The supplier often offers “the period of cash
discount” to encourage the retailer to pay for his purchase to boost the turnover of cash
flow. Also, as “the permissible delay period” is available, the retailer will be charged the
interest of unpaid payment if the payment is not paid in full by the end of this permissible
delay period. In the real world, the supplier may offer both options to the retailer to bridge
the strategic alliance and collaboration relationship between each other. Or, the retailer
may aggressively ask the supplier to have both options available if the retailer is in favor
of dominance power in the supply chain. Obviously, the TSPS could be very practical in
the real world. However, we found no EOQ model was proposed to assist the retailer’s
decision-making in such scenario.

In this study, we investigate the EOQ model with the TSPS available to the retailer. The
proposed model is different from the EOQ models for the Single-Stage Payment Strategy
(SSPS) in which the models were derived either for the condition of cash discount or the
condition of permissible delay in payment exclusively. We would like to verify that the EOQ
with the TSPS may lead to a lower cost than the latters under the SSPS. We formulate the
EOQ model under both options of cash discount and permissible delay in payment, and con-
duct thorough theoretical analysis. Based on our theoretical results, we propose an effective
solution approach (viz., Algorithm 1) that assists the retailer not only in the determination
of taking the TSPS or the SSPS, but also determining the optimal replenishment cycle time
respectively.

We solve the six examples in Huang & Chung [10], and demonstrate that the TSPS does
obtain better solution than the SSPS for some case in our numerical experiments. Our sen-
sitivity analysis indicates that the TSPS could be very sensitive to the discount rate of cash
discount and the interest earned. Also, the purchasing price facilitates the TSPS strategy
to gain the most significant average improvement comparing to the SSPS strategy.

We observe that there still exists some room for further studies of the lot sizing problems
under the conditions of cash discount or the condition of permissible delay in payment. The
interested researchers may take this study as the reference for their extensions.
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Appendix: The Derivation of the Annual Total Cost Function of
Case 1.1

The inventory level of Case 1.1 is shown in Figure 2. From Figure 2, the number of sold
products in Case 1.1 is shown in Figure 3. From Figure 3, we have

• the cost of traditional EOQ is given by A+ DT 2h
2 .

• the revenue from cash discount is rpDM1.

• the Interest earned is

sIdD

[
M1 (M1 −M2) + T

(
M2 −

T

2

)]
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Figure 2: Inventory level of Case 1.1

Figure 3: Number of sold products in Case 1.1

because

Interest earned
=

{
1
2 ×DM1 ×M1 +

1
2D (T −M1)× (T −M1) + (M2 − T )× [D (T −M1)]

}
×s× Id

= sId
[
1
2DM2

1 + 1
2D

(
T 2 − 2TM1 +M2

1

)
+D

(
M2T − T 2 −M2M1 + TM1

)]
= sId

[
DM2

1 +D
(
M2T − 1

2T
2 −M2M1

)]
= sIdD

[
M1 (M1 −M2) + T

(
M2 − T

2

)]
• the interest charged is 0 because T ≤ M2

Hence the total cost function is given by

A+
DT 2h

2
− rpDM1 − sIdD

[
M1 (M1 −M2) + T

(
M2 −

T

2

)]
and the average total cost function is given by

ATC1.1 (T ) =
A

T
+

DTh

2
− rpDM1

T
− sIdD

[
M1 (M1 −M2)

T
+

(
M2 −

T

2

)]
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