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Notice that the quadratically constrained quadratic programming problem is a special
case of CQCQP with K = �m

+ . The linear and bilinear matrix inequality problems, which
are widely used in optimal control (e.g. Leibfritz [15]), are also special cases of CQCQP. The
study of CQCQP problems is also motivated by the robust optimization (see Ben-Tal and
Nemirovski [5], El-Ghaoui and Lebret [11], El-Ghaoni, Oustry and Lebret [12] and references
therein). For example, given a quadratically constrained quadratic programming:

min xTA0x+ 2bT0 x+ c0
s.t. xTAix+ 2bTi x+ ci ≤ 0, i = 1, . . . , I,

(QCQP) (1.2)

consider its robust version RQCQP

min xTA0x+ 2bT0 x+ c0
s.t. xTAix+ 2bTi x+ ci ≤ 0, ∀(Ai, bi, ci) ∈ Ui, i = 1, . . . , I,

(RQCQP) (1.3)

where

Ui =

(A, b, c) ∈ Sn ×�n ×�

∣∣∣∣∣∣∣∣
(A, b, c) = (A0

i , b
0
i , c

0
i ) +

∑mi

j=1 u
j
i (A

j
i , b

j
i , c

j
i ),

for some positive integer mi > 0
with ui ∈ �mi , ∥ui∥2 ≤ 1,

(Aj
i , b

j
i , c

j
i ) ∈ Sn ×�n ×�, j = 0, . . . ,mi.

 (1.4)

i = 1, . . . , I. Notice that, for any ui ∈ �mi and ∥ui∥2 ≤ 1, we have

xTAix+ 2bTi x+ ci = (xTA0
ix+ 2(b0i )

Tx+ c0i ) +

mi∑
j=1

uj
i (x

TAj
ix+ 2(bji )

Tx+ cji ).

Then, for each i, xTAix+ 2bTi x+ ci ≤ 0, ∀(Ai, bi, ci) ∈ Ui, is equivalent to∥∥∥∥∥∥∥
 xTA1

ix+ 2(b1i )
Tx+ c1i

...
xTAmi

i x+ 2(bmi
i )Tx+ cmi

i


∥∥∥∥∥∥∥
2

≤ −(xTA0
ix+ 2(b0i )

Tx+ c0i ), (1.5)

which is a quadratic second order cone constraint. Hence, solving the RQCQP problem is
equivalent to solving its corresponding CQCQP problem. Some of the polynomial optimiza-
tion problems can also be formulated as the CQCQP problem. For example, given a double
well function constraint

1

2
(xTAT

1 A1x+ 2bT1 x+ c1)
2 + xTA2x+ 2bT2 x+ c2 ≤ 0 (1.6)

with A1 ∈ �p×n, A2 ∈ Sn, b1, b2 ∈ �n and c1, c2 ∈ �, it can be written as

1

2
(xTAT

1 A1x+2bT1 x+c1)
2+xTA3x+2bT3 x+c3 ≤ xT (A3−A2)x+2(b3−b2)

Tx+c3−c2 (1.7)

for any A3 ∈ Sn, b3 ∈ �n and c3 ∈ �. When both (xTA3x + 2bT3 x + c3) and (xT (A3 −
A2)x+2(b3 − b2)

Tx+ c3 − c2) are nonnegative over �n, inequality (1.7) can be rewritten as
a quadratic second order cone constraint.

One commonly used conic quadratic constraint is X − xxT ∈ Sn
+ while solving the

relaxation of the QCQP problem. This special constraint can be reformulated as an equiv-

alent conic linear constraint

[
1 xT

x X

]
∈ Sn+1

+ and thus be solved easily. For general conic
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quadratic constraints, in the literature, few research papers work on CQCQP problems di-
rectly. However, there are many results on the conic nonlinear programming problems. For
example, when f(x) is convex and −g(x) is K-convex (see Boyd [9]), CQCQP becomes a con-
vex programming problem whose optimality conditions have been extensively studied. See
e.g., Massam [17], Borwein and Wolkowicz [8], Berman [6], Ban and Song [3]. For conic non-
linear programming problems over polyhedral cones, the Fritz-John conditions are studied
in Craven and Mond [10] and Alders and Sposito [2]. The first and second order optimality
conditions for problems over positive semidefinite cone are studied in Shapiro [23]. Over
second order cones, the Aubin property which is equivalent to the strong regular condition
is studied in Outrata and Ramı́rez [18]. Over convex cones, the saddle-point conditions are
studied in Sposito and David [24]. Based on the Farkas Lemma over cones developed in
Sposito and David [25], regular conditions, KKT conditions and complementary slackness
are studied in Sposito [26] and Alders and Sposito [1]. A more general regular condition can
be seen in Robinson [19]. Strong regular condition and equivalent conditions which ensure
the uniqueness of the Lagrangian multipliers are studied in Robinson [20] and Shapiro [22].
For more results regarding the optimality conditions for the conic nonlinear programming
problems, one may refer to Bonnans and Shapiro [7]. In Kojima, Kim and Waki [13], a
general framework for the convex relaxation of conic polynomial programming problems is
introduced. The positive semidefinite (SDP in short) relaxation for the conic polynomial
programming problem is studied in Kojima and Muramatsu [14].

Most results in the literature focus on the local optimality conditions or the lower bounds
of the conic nonlinear programming problems. In [16], Lu et al. proposed a scheme to de-
sign algorithms solving QCQP problems globally. In their approach, based on the cone of
nonnegative quadratic functions introduced in Sturm and Zhang [27], they reformulated the
QCQP problem as a linear conic programming problem COP and its dual problem COD.
They showed that when the QCQP problem has a finite optimal value, then these three
problems have the same optimal objective value. They also proved that if a KKT solution
(x∗ and its corresponding Lagrangian multipliers) satisfies the “extended global optimality
condition”, then x∗ is a global optimal solution to the QCQP problem. In order to obtain
the optimal Lagrangian multipliers, they showed that the Lagrangian multipliers are a global
optimal solution to the COD problem and, furthermore, if the linear independent constraint
qualification (LICQ) is satisfied at x∗, then the Lagrangian multipliers have a “maximal
property” (Lemma 4.5 in Lu et al. [16]) among all the optimal solutions of COD. However,
solving COP and COD is as difficult as solving QCQP, and, therefore, a relaxation scheme is
introduced to gain polynomial solvability. They also proved the extended global optimality
condition for the relaxed problems.

Inspired by the work of Lu et al. [16], we propose a similar scheme for solving the
CQCQP problem, extend the maximal property of the Lagrangian multipliers, and relax
the condition required. In Section 2, we introduce the KKT condition for CQCQP and its
corresponding linear conic reformulations. In Section 3, the copositiveness condition is in-
troduced which is similar to the extended global optimality condition in [16]. We extend the
maximal property of the Lagrangian vector and relax the condition for the maximal prop-
erty. Our results can be applied to extend the results of Lu et al. [16] directly. In Section
4, an approximation scheme is proposed for the computation purpose and the copositive-
ness condition is used to test global optimality. We also use one example to illustrate the
effectiveness of the algorithm. Some discussions and conclusions are given in Section 5.
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2 KKT Conditions and Linear Conic Reformulation.

Let K∗ be the dual cone of K. Given λ ∈ K∗, denote

A(λ) = A0 −
m∑
i=1

λiAi,

b(λ) = b0 −
m∑
i=1

λibi,

c(λ) = c0 −
m∑
i=1

λici.

(2.1)

Then the Lagrangian of CQCQP becomes

L(x, λ) = f(x)−
m∑
i=1

λigi(x) = xTA(λ)x+ 2bT (λ)x+ c(λ). (2.2)

Note that when K is a matrix cone, any matrix in K is treated as a vector in the above
equation.

Given a local minimal solution x∗ and its corresponding Lagrangian vector λ∗ ∈ K∗, the
KKT condition can be denoted as

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗
i∇gi(x

∗) = 0,

m∑
i=1

λ∗
i gi(x

∗) = 0,

g(x∗) ∈ K and λ∗ ∈ K∗.

(2.3)

Here ∇xL is the partial derivative of the function L with respect to x, assuming f and g
are differentiable.

In general, we could not guarantee the existence of the Lagrangian vector at x∗. In the
literature, a commonly used regularity condition is the Robinson condition (refer to Bonnans
and Shapiro [7], Eqn. 2.163), i.e.,

0 ∈ int{z ∈ �m | z = g(x∗) +∇g(x∗)h− k, for some h ∈ �n, k ∈ K}, (2.4)

where int(·) means the interior of a set and ∇g(x∗) ∈ �m×n is the Jacobean of g at x∗.
When K has a nonempty interior, the condition can be equivalently written as

∃h ∈ �n such that g(x∗) +∇g(x∗)h ∈ int(K).

Under the Robinson condition, the Lagrangian vector exists at x∗ and the set of Lagrangian
vectors is a closed bounded set. (See Theorem 3.9 of [7].)

The KKT conditions are merely necessary for a local minimum solution of CQCQP.
Given a KKT solution (x∗, λ∗), a commonly seen global optimality condition is given in the
follows.

Lemma 2.1 (Positive semidefiniteness condition). Let (x∗, λ∗) be a KKT solution of CQCQP.
If A(λ∗) is positive semidefinite, then x∗ is an optimal solution of CQCQP.

A more general global optimality condition for QCQP is provided in Lu et al. [16]. To
obtain a similar result for CQCQP, we need to introduce the corresponding linear conic
programming problems.
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Denote the feasible domain of CQCQP by

dom(CQCQP) = {x ∈ �n | g(x) ∈ K}.

For any given matrices M1 and M2, in a common practice, we treat each of them as a vector
and define the inner product of M1 ·M2 as the ordinary inner product of two vectors. Then
we define the following two cones:

Dn+1 =

{
U ∈ Sn+1

∣∣∣∣ U ·
[

1 xT

x xxT

]
≥ 0, ∀x ∈ dom(CQCQP)

}
, (2.5)

and

D∗
n+1 = cl cone

{
X =

[
1

x

][
1

x

]T ∣∣∣∣ x ∈ dom(CQCQP)

}
. (2.6)

where, cl cone(·) is the closure of the conic hull of a set.
Observe that cone Dn+1 is the set of coefficients of all quadratic functions that are

nonnegative over the feasible domain of CQCQP while D∗
n+1 is the smallest closed convex

cone that contains the feasible domain of CQCQP in the homogenous form. They are both
closed and convex by definition. Corollary 1 of Sturm and Zhang [27] further shows that
they are dual to each other.

Consider the following linear conic programming problem:

min

[
c0 bT0
b0 A0

]
· Y

s.t. Y11 = 1,
Y ∈ D∗

n+1.

(COP0) (2.7)

Following the discussion made on the problem (MP) in Section 3 of Sturm and Zhang [27],
we have the next result.

Theorem 2.2. Problem COP0 and Problem CQCQP are equivalent in the sense that they
have the same optimal objective value.

Let Gi =

[
ci bTi
bi Ai

]
denote the matrix form of the coefficients of the ith constraint in

CQCQP and Y ∈ D∗
n+1. We can represent g(x) by

G(Y ) =

G1 · Y
...

Gm · Y

 ∈ �m. (2.8)

Then we have the next result.

Lemma 2.3. If Y ∈ D∗
n+1 then G(Y ) ∈ K.

Proof. Given Y ∈ D∗
n+1, there exists a sequence of Yk ∈ cone{X =

[
1
x

][
1
x

]T | x ∈
dom(CQCQP)} such that

lim
k→∞

Yk = Y.

By the definition of conic hull, we have

Yk =

sk∑
j=1

µj

[
1

xj

][
1

xj

]T
with xj ∈ dom(CQCQP) and µj ≥ 0 for some positive integer sk.
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Since xj ∈ dom(CQCQP) and µj ≥ 0, we have

G(

[
1

xj

][
1

xj

]T
) = g(xj) ∈ K.

Consequently,

G(Yk) = G(

sk∑
j=1

µj

[
1

xj

][
1

xj

]T
) =

sk∑
j=1

µjG(

[
1

xj

][
1

xj

]T
) ∈ K.

Since K is closed, we have G(Y ) = lim
k→∞

G(Yk) ∈ K.

Lemma 2.3 indicates that G(Y ) ∈ K is valid for COP0. By adding this redundant
constraints, we define the following linear conic programming problem:

min

[
c0 bT0
b0 A0

]
· Y

s.t. G(Y ) ∈ K,
Y11 = 1,
Y ∈ D∗

n+1.

(COP1) (2.9)

Then COP1 and CQCQP must have the same optimal objective value. Moreover, the conic
dual of COP1 becomes

max σ

s.t.

[
c(λ)− σ bT (λ)
b(λ) A(λ)

]
∈ Dn+1,

λ ∈ K∗.

(COD1) (2.10)

Similar to the proof of Theorem 3.3 in [16], we have the next theorem.

Theorem 2.4. If CQCQP has a finite optimal value, then the optimal objective values of
problems CQCQP, COP1 and COD1 are equal.

Let (x∗, λ∗) be a KKT solution of CQCQP and define a matrix

M(x∗, λ∗) =

[
c(λ∗)− f(x∗) bT (λ∗)

b(λ∗) A(λ∗)

]
. (2.11)

We can extend the positive semidefiniteness condition as follows.

Theorem 2.5 (Copositiveness condition). Let (x∗, λ∗) be a KKT solution of CQCQP. If
M(x∗, λ∗) ∈ Dn+1, then (σ∗, λ∗) = (f(x∗), λ∗) is globally optimal to COD1 and x∗ is globally
optimal to CQCQP.

Proof. From the condition

M(x∗, λ∗) =

[
c(λ∗)− f(x∗) bT (λ∗)

b(λ∗) A(λ∗)

]
∈ Dn+1,

we know (σ∗, λ∗) = (f(x∗), λ∗) is a feasible solution of COD1. Since x∗ is feasible for
CQCQP and σ∗ = f(x∗), we know x∗ is optimal to CQCQP and (σ∗, λ∗) is optimal to
COD1.
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Note that, given a KKT solution, if M(x∗, λ∗) ∈ Sn+1
+ ⊂ Dn+1, then A(λ∗) ∈ Sn

+ which
means the positive semidefiniteness condition holds. On the other hand, if the positive
semidefiniteness condition holds, then x∗ is an optimal solution of CQCQP. Hence,

f(x∗) = L(x∗, λ∗) = c(λ∗)− (x∗)TA(λ∗)x∗

and, from the KKT condition, we have

M(x∗, λ∗) =

[
(x∗)TA(λ∗)x∗ −(A(λ∗)x∗)T

−A(λ∗)x∗ A(λ∗)

]
∈ Sn+1

+ .

This shows that the positive semidefiniteness condition is equivalent to M(x∗, λ∗) ∈ Sn+1
+ ⊂

Dn+1 and, therefore, is a special case of the copositiveness condition.
The copositiveness condition discussed here is similar to the extended global optimality

condition for QCQP in Lu et al. [16].

3 Finding Global Optimal Solutions

We have already extend the global optimality condition proposed in Lu et al. [16] to the
copositiveness condition for CQCQP. In this section, we will establish similar properties as
Lu et al. [16] to solve CQCQP problems globally. Notice that, in Lu et al. [16], Algorithm
1 is based on the fact that the optimal Lagrangian vector λ∗ has some maximal property
among all the optimal solutions of COD, i.e., λ∗ ≥ λ̄, for all λ̄ being optimal in COD. In
our problem, Robinson regularity condition cannot guarantee such maximal property.

Example 3.1. Consider the following problem.

min f(x) = x1 + x2

s.t. g1(x) = (x1 − 1
2 )

2 + (x2 − 1
2 )

2 − 1
2 ≤ 0

g2(x) = (x1 + x2 − 1
2 )

2 − 1
4 ≤ 0

In this example, K = K∗ = {x ∈ �2|x1 ≤ 0, x2 ≤ 0}. One can easily verify that x∗ =
(0, 0)T is the unique optimal solution. Robinson regularity condition is satisfied by choosing
h = (1, 1)T . Any (x∗, λ) with λ1 ≤ 0, λ2 ≤ 0 and λ1 + λ2 = −1 satisfies both the KKT
condition and the copositiveness condition. If we choose σ∗ = 0, λ∗ = (−1

2 ,−
1
2 )

T and
λ̄ = (0,−1)T , then both (σ∗, λ∗) and (σ∗, λ̄) are optimal solutions of COD1. However,
λ∗ − λ̄ = (−1

2 ,
1
2 )

T /∈ K∗, which means the maximal property does not hold.

Interestingly, although under Robinson regularity condition such maximal property does
not hold, the idea for obtaining the optimal Lagrangian vector still works. In Lu et al. [16],
the optimal Lagrangian vector is solved by maximizing an auxiliary linear conic programming
problem in Theorem 4.6. The maximal property in their work guarantees the existence and
uniqueness of the solution.

Under Robinson regularity condition, the set of Lagrangian multipliers corresponding to
x∗ is nonempty, convex, bounded and closed. (See Theorem 3.9 in [7]) If we can guarantee
any optimal solution of the auxiliary programming lies in the set of Lagrangian multipliers
corresponding to x∗, then the proposed solution scheme still works.

Suppose (x∗, λ∗) is a KKT solution satisfying the copositiveness condition. Then from
Theorem 2.5, (σ∗, λ∗) = (f(x∗), λ∗) is an optimal solution of COD1. Suppose (σ∗, λ̄) is
another optimal solution of COD1, then

L(x, λ̄)− σ∗ =

[
1
x

]T [
c(λ̄)− σ∗ bT (λ̄)

b(λ̄) A(λ̄)

] [
1
x

]
≥ 0, ∀x ∈ dom(CQCQP ).
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Notice that

0 ≥ −λ̄T g(x∗) = f(x∗)− λ̄T g(x∗)− σ∗ = L(x∗, λ̄)− σ∗ ≥ 0.

We have λ̄T g(x∗) = 0. Hence,

L(x, λ̄)− L(x∗, λ̄) =

[
1
x

]T [
c(λ̄)− σ∗ bT (λ̄)

b(λ̄) A(λ̄)

] [
1
x

]
≥ 0, ∀x ∈ dom(CQCQP ).

This means that x∗ is an optimal solution to the problem

min L(x, λ̄)
s.t. g(x) ∈ K.

(3.1)

From Lemma 3.7 in Bonnans and Shapiro [7], we have

[∇f(x∗)− λ̄T∇g(x∗)]d ≥ 0, ∀d ∈ Tdom(CQCQP )(x
∗),

where Tdom(CQCQP )(x
∗) is the tangent cone of dom(CQCQP ) at x∗. Since

∇f(x∗)− (λ∗)T∇g(x∗) = 0,

we have
(λ∗ − λ̄)∇g(x∗)d ≥ 0, ∀d ∈ Tdom(CQCQP )(x

∗). (3.2)

From Corollary 2.91 and Example 2.62 in [7], we have

Tdom(CQCQP )(x
∗) = {d ∈ �n|∇g(x∗)d ∈ TK(g(x

∗))}
= {d ∈ �n|∇g(x∗)d ∈ cl([g(x∗)] +K)} (3.3)

where TK(g(x
∗)) is the tangent cone of K at g(x∗) and [g(x∗)] is the one dimensional subspace

of �m generated by g(x∗).
Therefore,

∇g(x∗)Tdom(CQCQP )(x
∗) = cl([g(x∗)] +K) ∩∇g(x∗)�n (3.4)

and its dual is

{∇g(x∗)Tdom(CQCQP )(x
∗)}∗ = {cl([g(x∗)] +K) ∩∇g(x∗)�n}∗

= {cl([g(x∗)] +K)}∗ + {∇g(x∗)�n}∗

= {[g(x∗)] +K}∗ + {y ∈ �m|yT∇g(x∗) = 0}
=

{
[g(x∗)]⊥ ∩ K∗}+ {y ∈ �m|yT∇g(x∗) = 0}

in which the first equality holds by (3.4), the second and fourth equalities holds due to
Corollary 16.4.2 in [21], and the third equality holds by the definition of dual operator. Here
[g(x∗)]⊥ is the orthogonal complement space of [g(x∗)].

From (3.2) and (λ∗)T g(x∗) = λ̄T g(x∗) = 0, we have

(λ∗ − λ̄) ∈
{
[g(x∗)]⊥ ∩ K∗}+ {y ∈ �m|yT∇g(x∗) = 0}

and (λ∗ − λ̄)T g(x∗) = 0. This implies (λ∗ − λ̄) = λ1 + λ2 with λ1 ∈
{
[g(x∗)]⊥ ∩ K∗} and

λ2 ∈ {y ∈ �m|yT∇g(x∗) = 0} ∩ [g(x∗)]⊥. Define λ̃ , λ∗ − λ2 = λ̄ + λ1. One can easily
check that (x∗, λ̃) is a KKT solution of CQCQP and λ̃− λ̄ ∈ K∗.

The above discussion reveals a fact that for any optimal solution λ̄ of COD1, there exists
another optimal solution λ̃ such that (x∗, λ̃) is a KKT solution of CQCQP and λ̃− λ̄ ∈ K∗.
Therefore, after solving COD1, we can use a similar auxiliary problem to find the optimal
Lagrangian multipliers under Robinson regularity condition.
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Theorem 3.2 (Extended maximal property). Let (x∗, λ∗) be a KKT solution satisfying
the copositiveness condition. If Robinson regularity condition holds at x∗ and let σ∗ be the
optimal value of COD1, then, for any h ∈ int(K), any optimal solution λ̃ of

max hTλ

s.t.

[
c(λ)− σ∗ bT (λ)

b(λ) A(λ)

]
∈ Dn+1,

λ ∈ K∗,

(COD2) (3.5)

forms a KKT solution (x∗, λ̃) of CQCQP.

Proof. Notice that any feasible solution of COD2 together with σ∗ forms an optimal solution
of COD1. From the above discussion, suppose λ̄ is a feasible solution of COD2, then there
is λ̃ such that λ̃− λ̄ ∈ K∗ and (x∗, λ̃) is a KKT solution of CQCQP, which means λ̃ is also
a feasible solution of COD2. Since h ∈ int(K), then (λ̃− λ̄)Th > 0. Therefore, any optimal
solution of COD2 together with x∗ forms a KKT solution of CQCQP.

Notice that if {y ∈ �m|yT∇g(x∗) = 0} = {0}, then we have the same maximal property
as in [16]. One sufficient condition is that all the rows of ∇g(x∗) are linearly independent,
which is the linear independence constraint qualification (LICQ).

Lemma 3.3. Let (x∗, λ∗) be a KKT solution satisfying the copositiveness condition. If
LICQ holds at x∗ in CQCQP, then, for any (σ∗, λ̄) being an optimal solution of COD1, we
have λ∗ − λ̄ ∈ K∗.

Proof. First, notice that LICQ implies the Robinson condition. Since ∇g(x∗) is of full row
rank, we have {y ∈ �m|yT∇g(x∗) = 0} = {0}. Therefore, from the above discussion,
λ∗ − λ̄ ∈ K∗.

Corollary 3.4 (Maximal property). Let (x∗, λ∗) be a KKT solution satisfying the coposi-
tiveness condition. If LICQ holds at x∗, then, for any h ∈ int(K), λ∗ is the unique optimal
solution of COD2.

Proof. Note that if (σ∗, λ∗) and (σ∗, λ̄) are two different optimal solutions of COD1, then
they are both feasible solutions of COD2. Suppose λ∗ is the optimal Lagrangian vector,
then we have λ∗ − λ̄ ∈ K∗. Since h ∈ int(K), then hT (λ∗ − λ̄) > 0. Hence λ∗ is always
strictly better than any other solutions λ̄ in COD2 which means λ∗ is the unique optimal
solution of COD2.

After finding the Lagrangian vector λ∗, if we further know that A(λ∗) is invertible, then
x∗ can be obtained by solving ∇xL(x, λ

∗) = 0, i.e.,

x∗ = −A−1(λ∗)b(λ∗). (3.6)

4 Computation Scheme and Example

Solving COD1 and COD2 may not be easy. In order to achieve polynomial solvability
of CQCQP within an arbitrary precision, we have to make additional assumptions and
use approximations of the corresponding linear conic reformulations. Here we assume that
K is computable, i.e., any linear conic programming problems over K could be solved in
polynomial time. Moreover, the approximating problems are obtained via replacing D∗

n+1
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by a computable C∗
n+1 satisfying D∗

n+1 ⊂ C∗
n+1 ⊂ Sn+1

+ in COP1, and Dn+1 by a computable

Cn+1 satisfying Sn+1
+ ⊂ Cn+1 ⊂ Dn+1 in COD1, where C∗

n+1 and Cn+1 are dual to each other.

In this way, we have the following two corresponding conic approximation problems that
can be solved in polynomial time:

max σ

s.t.

[
c(λ)− σ bT (λ)
b(λ) A(λ)

]
∈ Cn+1,

λ ∈ K∗.

(COD1′) (4.1)

and

max hTλ

s.t.

[
c(λ)− σ∗ bT (λ)

b(λ) A(λ)

]
∈ Cn+1,

λ ∈ K∗.

(COD2′) (4.2)

where σ∗ is the optimal objective value of COD1′ and h ∈ int(K).

In this setting, we get a similar computation scheme:

Algorithm 4.1 (CQCQP algorithm).

STEP 1: Given an instance of CQCQP, solve the corresponding COD1′ to find its optimal
objective value σ∗. If failed, then stop and note that the CQCQP problem cannot
be solved by using the current approximation.

STEP 2: Choose an h ∈ int(K) and solve COD2 ′ to find the optimal λ∗.

STEP 3: Compute x∗ = −A+(λ∗)b(λ∗), where A+(λ∗) is the Moore-Penrose inverse of
A(λ∗) (see Ben-Israel and Greville [4]). Particularly, A+(λ∗) = A−1(λ∗) when
A(λ∗) is nonsingular.

STEP 4: If x∗ is a feasible solution and f(x∗) = σ∗, then return x∗ as a global optimal
solution of CQCQP with the objective value f(x∗) = σ∗. Otherwise, return σ∗

as a lower bound for CQCQP.

Remark. Since COD1′ is only an inner approximation of COD1, it may not be feasible
and the algorithm could stop at STEP 1. If we let Cn+1 = Sn+1

+ , then the dual problem of
COD1′ becomes the classic SDP relaxation of CQCQP.

The next theorem validates Algorithm 4.1.

Theorem 4.2. If Algorithm 4.1 returns a solution x∗, then x∗ is an optimal solution of
CQCQP. If Algorithm 4.1 returns a value σ∗ then it is a lower bound for CQCQP.

Proof. If Algorithm 4.1 returns a feasible x∗, then f(x∗) = σ∗ and (σ∗, λ∗) is optimal to
COD2′. Hence we know M(x∗, λ∗) ∈ Cn+1 ⊂ Dn+1 and

0 ≤
[
1
x∗

]T [
c(λ∗)− f(x∗) bT (λ∗)

b(λ∗) A(λ∗)

] [
1
x∗

]
= −

m∑
i=1

λ∗
i gi(x

∗) ≤ 0.
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This implies
∑m

i=1 λ
∗
i gi(x

∗) = 0. Since A(λ∗)x∗ + b(λ∗) = 0, (x∗, λ∗) satisfies the KKT
conditions, i.e.,

∇xL(x
∗, λ∗) = 2A(λ∗)x∗ + 2b(λ∗) = 0,

(λ∗)T g(x∗) = 0,

g(x∗) ∈ K, λ∗ ∈ K∗.

Consequently, (x∗, λ∗) satisfies the copositiveness condition. By Theorem 2.5, x∗ must be
an optimal solution of CQCQP with the objective value f(x∗) = σ∗.

If Algorithm 4.1 returns a value σ∗, since Cn+1 ⊂ Dn+1, the feasible domain of COD1′

is contained in the feasible domain of COD1. Hence σ∗ is a lower bound of CQCQP.

Now let us first go back to Example 1. Although there are multiple optimal solutions of
COD1 and the maximal property does not hold, choose h = (−2,−1)T , after solving COD2,
we can get λ∗ = (−1, 0)T . Hence, x∗ = −A(λ∗)−1b(λ∗) = (0, 0)T is an optimal solution.

Next, we use another simple example to illustrate the effectiveness of the proposed al-
gorithm and to show that the proposed algorithm indeed improves the results obtained by
using the positive semidefiniteness condition. This example is a modification of Example 2
in Lu et al. [16].

Example 4.3.
min f(x) = xTA0x+ 2bT0 x+ c0

s.t.

[
g11(x) g12(x)
g12(x) g22(x)

]
∈ S2

+

where gij(x) = xTAijx+ 2bTijx+ cij with

A0 =

−2 10 2
10 4 1
2 1 −7

 , b0 =

−12
−6
56

 , c0 = 0

A11 =

−1 0 0
0 −1 0
0 0 −1

 , b11 =

10
8

 , c11 = −64

A12 =

1 0 0
0 1 0
0 0 −25

 , b12 =

 0
0
175

 , c12 = −1200

A22 =

−1 0 0
0 1 0
0 0 −4

 , b22 =

 0
1
32

 , c22 = −256.

The optimal objective value of this problem is known to be 448 and the corresponding
optimal solution is x = [0, 0, 8]T .

The constraints g11(x) ≥ 0 and g22(x) ≥ 0 imply that the feasible domain is a subset of
�3

+. (From g22(x) ≥ 0, we know x2 ≤ −2 or x2 ≥ 0. Together with g11(x) ≥ 0, the feasible
domain is contained in �3

+.) We can easily check that S4
+ ⊂ (S4

+ +N 4) ⊂ D4, where N 4 is
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the set of 4×4 matrices with nonnegative elements. Therefore, we can choose C4 = S4
++N 4

as the inner approximation of D4 in the approximations COD1′ and COD2′.
Solving COD1′ leads to an objective value of σ∗ = 448. Taking this value into COD2′

for solution, we find the Lagrangian multipliers

λ∗ =

[
λ∗
11 λ∗

12

λ∗
12 λ∗

22

]
=

[
4 0
0 2

]
and the matrices

M(x∗, λ∗) =


320 −16 −8 −40
−16 4 10 2
−8 10 6 1
−40 2 1 5

 and A(λ∗) =

 4 10 2
10 6 1
2 1 5

 .

Since A(λ∗) is invertible, we get x∗ = −A−1(λ∗)b(λ∗) = [0, 0, 8]T and f(x∗) = 448.
Notice that x∗ is feasible and f(x∗) = σ∗, from Theorem 4.2, x∗ is an optimal solution

of CQCQP with the optimal value f(x∗) = 448.
Here, M(x∗, λ∗) is not positive semidefinite, but it can be divided into the sum of a

positive semidefinite matrix and a nonnegative matrix as following:

M(x∗, λ∗) =


320 −16 −8 −40
−16 4 0 2
−8 0 6 1
−40 2 1 5

+


0 0 0 0
0 0 10 0
0 10 0 0
0 0 0 0

 ∈ C4.

It is worth mentioning that if we use the classic positive semidefinite relaxation problem,
i.e., let C4 = S4

+, then we can only obtain a lower bound of 445.83.

5 Conclusion

In this paper, we have extended the study of QCQP in Lu et al. [16] to the CQCQP prob-
lem. We introduced linear conic reformulations of CQCQP using the cone of nonnegative
quadratic functions and proved the copositiveness condition which is an extended global
optimality condition. In order to extend the computation scheme proposed in Lu et al. [16],
the extended maximal property of the optimal Lagrangian multipliers is proved. Since the
first orthant is a special case of CQCQP, our results readily applies to Lu et al. [16] and
improve their results. In that special case, the Robinson condition is g(x∗) +∇g(x∗)h < 0
for some h ∈ �n. Approximations of COD1 and COD2 are used in the computation scheme
to provide computational efficiency.

Since the conic programming problem over the cone Dn+1 may not be solved efficiently in
general, a larger computable Cn+1 in the approximation problem will lead to a better result
in polynomial time. Also notice that although the problems COP0 and COP1 are equivalent,
their conic dual problems are not. The property of the optimal Lagrangian multipliers can
only be obtained from the conic dual of the problem COP1. This fact raises an issue on
how to find and add valid conic form constraints so that the corresponding dual problem
possesses desired properties.
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