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Introduction and Preliminaries

The fixed point problem is a classical problem in nonlinear analysis. It finds applications in a
wide spectrum of fields such as economics, physics, and applied sciences. We are interested
in the split common fixed-point problem (SCFP), which is a generalization of the split
feasibility problem (SFP), and the latter is in turn a generalization of the convex feasibility
problem (CFP), see [1, 2]. The CFP and SCFP have applications in many fields such as
approximation theory [9], image reconstruction, radiation therapy [4, 12], and control [10].

Throughout this paper, we assume that F,, E5 are real Banach spaces, “© — 7 denotes
weak convergence. Fix (T') is the fixed point set of an operator T, i.e., Fix(T) := {« | x =
T(xz)}, and I denotes the identity operator.

Let S be a nonempty closed convex subset of F; and T': S — S be a mapping. T is said
to be nonexpansive if
[T(x) - Tl < llz —yl,Va,y € S.
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T is said to be [;-asymptotically nonexpansive if for all z,y € S,
1T (z) = T*(y)l| < lellx — yll, Yk > 1,

where T% = T(T(...(T))) (k times), {lx} C [1,00) is a sequence satisfying I, — 1 as k — oco.

A mapping T is called quasi-nonexpansive if for all z € S, z € Fix(T)
1T(z) — 2| < [lz — =]
A mapping T is called I — quasi-asymptotically nonexpansive if for all € S, z € Fix(T),
IT* (@) = 2| < llle = 2|, Yk > 1,

where {l} C [1,00) is a sequence satisfying I, — 1 as k — oo.

A mapping T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that for all z,y € S,
|IT*(x) = T*(y)|| < Lljx — y|, Vk > 1.

Clearly, a I[g-asymptotically nonexpansive mapping must be uniformly [ — Lipschitzian as
well as asymptotically quasi-nonexpansive but the converse may not hold.

The SFP in finite dimensional spaces was first introduced by Censor and Elfving [6] for
modeling inverse problems. The SFP in an infinite-dimensional Hilbert space can be found
in [8, 15, 16, 18]. The SCFP for a class of quasi-nonexpansive mappings in the setting of
Hilbert space was first introduced and studied by Moudafi [13]. In this paper we discuss
SCFP for asymptomatic quasi-nonexpansive mapping in uniformly convex Banach space.
We propose a method for solving SCFP and prove its weak convergence. A notable feature
of the method is that it generates an iterative sequence and each new iteration is a weighted
average of three intermediate points generated from the last iteration.

The split common fixed point problem for asymptomatic quasi-nonexpansive operators
is defined as follows.

Find z* € C such that Az € Q, (1.1)

where A : Ey — FE5 is a bounded linear operator, U : £y — E1 and T : E; — FE5 are two
operators with nonempty fixed-point sets Fix(U) = C and Fix(T) = @Q, respectively. We
denote the solution set of the two-operator SCFP by

Fr={yeC| Ay € Q}. (1.2)

To prove the convergence theorem in the next section, we first recall some results. Let
FE be a Banach space and let S be a nonempty bounded convex subset of F. FE is said to
have Opial property [14], if for any sequence {z*} in E, ¥ — z*, then

lim inf [2* —2*|| <lim inf ||2% —y||,Vy € E with y # 2*. (1.3)
k—o0 k—oo

A mapping T : S — E is called demi-closed with respect to y € E if for each sequence {z*}
in S and each z € E,2* — z and T(2*) — y imply that € S and T'(x) = y. The reader
is referred to [7, 11] for a detailed discussion on the notion of demi-closed mappings. In
what follows, only the particular case of demi-closedness at zero will be used, which is the
particular case when y = 0.
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Lemma 1.1. Let T : S — S be a lx-quasi asymptotically nonexpansive mapping. Then, for
any z € Fix(T) and x € S:

(8)- (o= T*(@),x = 2) 2 4l = T*(@) |2 = Sz o - 2%
(b). (& —T*(x),z — TH(x)) < Lllz — T@)|2 + S|l — 2|
Proof. Part (a). By the classical equality there holds
L e 1 2
{@,y) = Sllel” + lyll” = Slle =yl

and, from the fact that T is [x-quasi asymptotically nonexpansive mapping, it follows that

(x —TH(z),z — 2)

1 , 1
Slle =TE@)* + Jl = 2| = ST (@) — 2|

1 12
> Sllz=T*@)* + o = 2|* = Fllz - 2]
1 Z-1
= Sl = TH@)? ~ E e - 2|
Part (b). From Part (a), we have
(@ —=TH2),z =T @) = (z—T"z),z—a+aT"(2))
= (o —T* @),z — ) + (@ — TH(2),0 — TH(a))
—(z = T*z),2 —2) + |z — T*(2)|?
1 12—
< Slle—TH@I + A e 2l
This completes the proof. O

Lemma 1.2 ([17]). Let E be a uniformly convex Banach space. Let {ay},{bx} and {cy} be
three sequences in (0, 1) satisfying ap+bx+cx = 1 and 0 < liminfy_ o0 ap < liminfy_ oo (ap+
bp) < limsup,, .. (ar + br) < 1. Assume that {x*}, {y*} and {z*} are three sequences in
E. Then the conditions: limsup,,_, . |2*| < d, limsup,_, . [|[v*|| < d,limsup,,_. . ||2¥] < d,
and limsup,,_, . |lap2® +bry*+cr2®|| = d imply that limy o [|2F —y" || = limp_ o0 |y —2F| =
limy, s |28 — 2%| = 0, where d > 0 is some constant.

The Algorithm and Its Asymptotic Convergence

The Algorithm

We now describe the algorithm and prove its weak convergence.
Algorithm 2.1.

Initialization: Let z° € E; be arbitrary.
Iterative step: For k € N, set u* = 2% + v AT(T* — I)A(z*), and let

" = apa® + b + UM (W), k € N, (2.1)

where {ap},{br} and {cx} are three sequences in (0,1) satisfying ap + by, + ¢ = 1 and
0<a<agbgc <b<1, ve(0, %) with A being the spectral radius of the operator AT A.
To prove its weak convergence we need the following proposition.
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Proposition 2.2. Let Es be uniformly conver Banach space and let T : Es — E5 be a -
asymptotically quasi- nonezpansive mapping with {l;,} C [1,00) such that Y ;- (lx—1) < oo.
Then, u® is a \/(1 + (12 — 1))- asymptotically quasi-nonexpansive mapping.

Proof. By the definition of u*, we have

[uf — z||? 2% +~AT(T* — I)(Az") — 2|?
2% = 2| + 22| AT(T" = 1)(Az")|?
+2y(zk — 2, AT(T* — I)(Amk)>

2% = 2|1 + M |(T* — I)(A2®)|?

+27<A‘(Ek — AZ, (Tk — I)(Axk»a

IN

that is
Ju¥ — 2|1 < [la® — 2> + MP(TF — I)(Az")|]* + 2y(Az* — Az, (T* - I)(Az")).  (2.2)

Now, by setting 0 := 2y(Az® — Az, (T* — I)(Ax*)) and using Part (b) of Lemma 1.1, we
obtain

0 = 2v(Az" — Az (TF - I)(Az"))
= 2y(A2b — Az + (T* — I)(Az®) — (T* — I)(Ab), (TF — I)(Azh))
= 2y((T*(A*) — Az, (T" — I)(A2®)) — (T — I)(A=")|?)
2 (ST = D)2+ S aat — Az = (% = DAt )
= (T = D(AZ®)|? + A% = Dl=* - 2]
Combined with (2.2), it yields
[uf =22 < (L+AA0E = D)[la® = 2]|* = 4(1 = M) |(T* = I)(Az")|>. (2.3)
By 7 € (0, 1), (2.3) implies that

IN

lu? = 2]l < /(L + A = 1) 2" — =] (2.4)

Since {l;} C [1,00) and Y 7o ; (I —1) < o0, it is easy to deduce that {/(1 +~yA(lf — 1))} C
o0) and /(1 4+vA(Z — 1)) — 1. Therefore, u* is a /(1 +vA(IZ — 1))- asymptotically
quasi-nonexpansive mapping. O

Convergence of the Algorithm

In this subsection, we establish the weak convergence of Algorithm 2.1.

We first prove a lemma which is an important part of the proof of weak convergence
theorem.

Lemma 2.3. Given a bounded linear operator A : By — FEo, Ey and Fy are two uniformly
conver Banach spaces, let U : By — FEq and T : Fy — E5 be two uniformly L-Lipschitzian
and l-asymptotically quasi-nonexpansive mappings with {lx} C [1,00) such that [y — 1 and
Y (WVTHAE —1) = 1) < o0, Fix(U) = C # 0 and Fix(T) = Q # 0. Let {z*} be
any sequence generated by Algorithm 2.1. Then limy_,o. ||2* — z|| exists and {||u* — z||} is
bounded for each z € T provided that T # ().
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Proof. From (2.1), by Proposition 2.2, we obtain
¥ =z = flar(a® = 2) + b (P = 2) + e (UF (W) = 2)

agllz® = 2|l + bgllu” — 2] + (lhew) [u* — 2]

IN

(ar + (b + lee)y/ (L + AR = D) la* = z]].

Setting vy = ay + (bg + lpcx) /(1 + YA(lF — 1), the above inequality takes the shape
|2Ftt — z|| < vg||lz® — 2|, for all k € N.

By induction, we have

k+m—1
™ — 2| < ( H v;)||z* — z|| for all k,m € N.
i=k

v —1=ap+ (bk —&—lkck)\/l—l—'y)\(li — 1) —ap — by — ¢
= (/1AM = 1) = Dbi + (/1 + 9203 — 1) — Deg.

Since Y, (V1 +YA(Z —1) — 1) < oo, it is easy to get

> (/A +A(02 —1) 1) < o0

Note that

k—o0
Hence,
oo
S -1
k=1
furthermore
o0
li ;i = 1.
Jm o=t
i=k
Therefore, limy_,, ||2* — z|| exists. From (2.4), we obtain that {u* — 2} is bounded. O

Theorem 2.4. Given a bounded linear operator A : E1 — Ey, Fy and Ey are two uniformly
convex Banach spaces, let U : 1 — Fy and T : Ey — FEy be two uniformly L-Lipschitzian
and li,-asymptotically quasi- nonexpansive mappings with {l} C [1,00) such that > o (I —
1) < oo, Fix(U) = C # 0,Fix(T) = Q # 0. Assume that U — I and T — I are demi-closed
at 0 and T # (). Then, any sequence {x*} generated by Algorithm 2.1 converges weakly to a
point x* € T'.

Proof. We first prove that limy_, [|[U*(u¥) — u*|| = limy_o0 || T*(Ax*) — AzF|| = 0. Let

limy_ o0 |2% — z|| = ¢ where ¢ > 0 is a real number. If ¢ = 0, the result is obvious. Assume
c>0,
c= lim |lap(@® — 2) + bp(uf — 2) + cu(U* (WF) — 2)||. (2.5)
k—o00

Since ||[U*(u*) — 2)|| < lx||u* — z||, therefore

lim sup | U* (u*) — 2)|| < e (2.6)

k—o0
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Applying Lemma 1.2 on (2.5) and (2.6), we obtain

lim [|U*(uF) —u*| =0, (2.7)
k—o0
lim |U*(*) — 2% =0 (2.8)
k—o0
and
lim [[uf — 2"|| = 0. (2.9)
k—o0

Let M = max{||z* — 2|, [|u* — 2||}. From (2.3), we have
V(1= MIT* = D(A®)]* < (14407 = D)l — 2] — [l — 2|
= [lz* = 2] — llu® = 2] + AR = D)ll* — 2|
< Mja® —uf|| + A = 1) 2" — 2]* = 0.

Hence
lim ||T%(Az*) — A2*|| = 0. (2.10)
k—o0
Now, we prove that limy_, |21 — 2| = 0 and limg_s o ||uF*! — u¥|| = 0. As a matter of
fact, it follows from (2.1) that
2+ — 2% = [Japz® + bpu® + U (W) — (ap + by + cx)z"|

(
< bellu® — 2| + e |U(uF) — 2|
< b||uk — ka + c||U(uk) - a:k||

In view of (2.8) and (2.9), we have that

lim ||z — 2| = 0. (2.11)
k—o0

Similarly, it follows from (2.1), (2.10) and (2.11) that

bt — uF|| = (@M 4y AT(TMT = DAY — (aF + 4 AT(TF — 1) A2
< Pt — ¥ 4+ )| AT (TR — D) AR Y| + 4| AT(T* — I) Az®| = 0, (k — o).
(2.12)

ext, we prove that limg_, [|Axz” — x =0 and limy_, [|[u” — U(u = 0. Setting
N hat i Az® — T(Az*)|| = 0 and li F—U(u")|| = 0. Setti
nr := ||[u® — UF(u")]|, since U is uniformly-L-Lipschitzian continuous, it follows from (2.4),
(2.7) and (2.12) that
lu* = U@®)]| < Ju* = U* )| + JU*(u®) = U@P)]

<+ LU (W) = o

<+ LU (W) = U@+ 0 W) = uf)

<+ L2 =7+ LOUPH @) = a7 [l =)

<k 4 LD+ 1D)||u” — o7 + L1 — 0, (k — o). (2.13)
Similarly, we have
Jim |Az* — T(Az*)| = 0. (2.14)
—> 00
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Finally, we prove that ¥ — 2* and u* — z*, where z* € I'. Since {u*} is bounded, let
v=0,1,2--- be the sequence of indices, such that w — lim, u*» = z*. From (2.13), we have
lim, o0 [[uF* — U(uFv)|| = 0. Since U is demi-closed at zero, we know that 2* € Fix(U).
Moreover, it follows from (2.1) and (2.10) that

ot = u(xh) — yAT(TF — T)Axh — 2~

Since A is linear bounded operator, it gets Az*> — Az*. In view of (2.14) we have
lim, oo ||AzFe — T(Az*)|| = 0. Again since T is demi-closed at zero, we know that Az* €
Fix(T'). This implies that z* € T.

Assume that there exists another subsequence {u*v} of {u*} such that {u*»} converges
weakly to a point y* € H with y* # z*. Using the same argument above, we know that
y* € T'. Since each uniformly convex Banach space possesses Opial property, we have

lim inf [u* — 2*|| < liminf ||u** — y*|| = liminf |u* — ||
vV—00 V—00 k—o0
= liminf |u* — ¢*|| < liminf ||u" — 2*|
V— 00 w—r 00
= liminf ||u® — 2*|| = liminf |[|u* — 2|,
k—o0 V—00
which is a contradiction. This implies that {u*} converges weakly to the point z* € I'. Since

ok = u(2?) — yAT(TF — I) Az*, we know that {2*} converges weakly to 2* € I". The proof
is completed. O
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