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T is said to be lk-asymptotically nonexpansive if for all x, y ∈ S,

∥T k(x)− T k(y)∥ ≤ lk∥x− y∥,∀k ≥ 1,

where T k = T (T (...(T ))) (k times), {lk} ⊂ [1,∞) is a sequence satisfying lk → 1 as k → ∞.

A mapping T is called quasi-nonexpansive if for all x ∈ S, z ∈ Fix(T )

∥T (x)− z∥ ≤ ∥x− z∥.

A mapping T is called lk− quasi-asymptotically nonexpansive if for all x ∈ S, z ∈ Fix(T ),

∥T k(x)− z∥ ≤ lk∥x− z∥, ∀k ≥ 1,

where {lk} ⊂ [1,∞) is a sequence satisfying lk → 1 as k → ∞.

A mapping T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that for all x, y ∈ S,

∥T k(x)− T k(y)∥ ≤ L∥x− y∥, ∀k ≥ 1.

Clearly, a lk-asymptotically nonexpansive mapping must be uniformly lk− Lipschitzian as
well as asymptotically quasi-nonexpansive but the converse may not hold.

The SFP in finite dimensional spaces was first introduced by Censor and Elfving [6] for
modeling inverse problems. The SFP in an infinite-dimensional Hilbert space can be found
in [8, 15, 16, 18]. The SCFP for a class of quasi-nonexpansive mappings in the setting of
Hilbert space was first introduced and studied by Moudafi [13]. In this paper we discuss
SCFP for asymptomatic quasi-nonexpansive mapping in uniformly convex Banach space.
We propose a method for solving SCFP and prove its weak convergence. A notable feature
of the method is that it generates an iterative sequence and each new iteration is a weighted
average of three intermediate points generated from the last iteration.

The split common fixed point problem for asymptomatic quasi-nonexpansive operators
is defined as follows.

Find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where A : E1 → E2 is a bounded linear operator, U : E1 → E1 and T : E2 → E2 are two
operators with nonempty fixed-point sets Fix(U) = C and Fix(T ) = Q, respectively. We
denote the solution set of the two-operator SCFP by

Γ = {y ∈ C | Ay ∈ Q}. (1.2)

To prove the convergence theorem in the next section, we first recall some results. Let
E be a Banach space and let S be a nonempty bounded convex subset of E. E is said to
have Opial property [14], if for any sequence {xk} in E, xk ⇀ x∗, then

lim inf
k→∞

∥xk − x∗∥ < lim inf
k→∞

∥xk − y∥, ∀y ∈ E with y ̸= x∗. (1.3)

A mapping T : S → E is called demi-closed with respect to y ∈ E if for each sequence {xk}
in S and each x ∈ E, xk ⇀ x and T (xk) → y imply that x ∈ S and T (x) = y. The reader
is referred to [7, 11] for a detailed discussion on the notion of demi-closed mappings. In
what follows, only the particular case of demi-closedness at zero will be used, which is the
particular case when y = 0.



CONVERGENCE OF A FIXED POINT ALGORITHM 455

Lemma 1.1. Let T : S → S be a lk-quasi asymptotically nonexpansive mapping. Then, for
any z ∈ Fix(T ) and x ∈ S:

(a). ⟨x− T k(x), x− z⟩ ≥ 1
2∥x− T k(x)∥2 − l2k−1

2 ∥x− z∥2;
(b). ⟨x− T k(x), z − T k(x)⟩ ≤ 1

2∥x− T k(x)∥2 + l2k−1
2 ∥x− z∥2.

Proof. Part (a). By the classical equality there holds

⟨x, y⟩ = 1

2
∥x∥2 + 1

2
∥y∥2 − 1

2
∥x− y∥2,

and, from the fact that T is lk-quasi asymptotically nonexpansive mapping, it follows that

⟨x− T k(x), x− z⟩ =
1

2
∥x− T k(x)∥2 + ∥x− z∥2 − 1

2
∥T k(x)− z∥2

≥ 1

2
∥x− T k(x)∥2 + ∥x− z∥2 − l2k

2
∥x− z∥2

=
1

2
∥x− T k(x)∥2 − l2k − 1

2
∥x− z∥2.

Part (b). From Part (a), we have

⟨x− T k(x), z − T k(x)⟩ = ⟨x− T k(x), z − x+ xT k(x)⟩
= ⟨x− T k(x), z − x⟩+ ⟨x− T k(x), x− T k(x)⟩
= −⟨x− T k(x), z − x⟩+ ∥x− T k(x)∥2

≤ 1

2
∥x− T k(x)∥2 + l2k − 1

2
∥x− z∥2.

This completes the proof.

Lemma 1.2 ([17]). Let E be a uniformly convex Banach space. Let {ak}, {bk} and {ck} be
three sequences in (0, 1) satisfying ak+bk+ck = 1 and 0 < lim infk→∞ ak < lim infk→∞(ak+
bk) ≤ lim supk→∞(ak + bk) < 1. Assume that {xk}, {yk} and {zk} are three sequences in
E. Then the conditions: lim supk→∞ ∥xk∥ ≤ d, lim supk→∞ ∥yk∥ ≤ d, lim supk→∞ ∥zk∥ ≤ d,
and lim supk→∞ ∥akxk+bky

k+ckz
k∥ = d imply that limk→∞ ∥xk−yk∥ = limk→∞ ∥yk−zk∥ =

limk→∞ ∥zk − xk∥ = 0, where d > 0 is some constant.

2 The Algorithm and Its Asymptotic Convergence

2.1 The Algorithm

We now describe the algorithm and prove its weak convergence.

Algorithm 2.1.

Initialization: Let x0 ∈ E1 be arbitrary.
Iterative step: For k ∈ N , set uk = xk + γ AT (T k − I)A(xk), and let

xk+1 = akx
k + bku

k + ckU
k(uk), k ∈ N, (2.1)

where {ak}, {bk} and {ck} are three sequences in (0, 1) satisfying ak + bk + ck = 1 and
0 < a ≤ ak, bk, ck ≤ b < 1, γ ∈ (0, 1

λ ) with λ being the spectral radius of the operator ATA.
To prove its weak convergence we need the following proposition.
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Proposition 2.2. Let E2 be uniformly convex Banach space and let T : E2 → E2 be a lk-
asymptotically quasi- nonexpansive mapping with {lk} ⊂ [1,∞) such that

∑∞
k=1(lk−1) < ∞.

Then, uk is a
√
(1 + γλ(l2k − 1))- asymptotically quasi-nonexpansive mapping.

Proof. By the definition of uk, we have

∥uk − z∥2 = ∥xk + γAT (T k − I)(Axk)− z∥2

= ∥xk − z∥2 + γ2∥AT (T k − I)(Axk)∥2

+2γ⟨xk − z,AT (T k − I)(Axk)⟩
≤ ∥xk − z∥2 + λγ2∥(T k − I)(Axk)∥2

+2γ⟨Axk −Az, (T k − I)(Axk)⟩,

that is

∥uk − z∥2 ≤ ∥xk − z∥2 + λγ2∥(T k − I)(Axk)∥2 + 2γ⟨Axk −Az, (T k − I)(Axk)⟩. (2.2)

Now, by setting θ := 2γ⟨Axk − Az, (T k − I)(Axk)⟩ and using Part (b) of Lemma 1.1, we
obtain

θ = 2γ⟨Axk −Az, (T k − I)(Axk)⟩
= 2γ⟨Axk −Az + (T k − I)(Axk)− (T k − I)(Axk), (T k − I)(Axk)⟩
= 2γ(⟨T k(Axk)−Az, (T k − I)(Axk)⟩ − ∥(T − I)(Axk)∥2)

≤ 2γ(
1

2
∥(T k − I)(Axk)∥2 + l2k − 1

2
∥Axk −Az∥2 − ∥(T k − I)(Axk)∥2)

= −γ∥(T k − I)(Axk)∥2 + γλ(l2k − 1)∥xk − z∥2.

Combined with (2.2), it yields

∥uk − z∥2 ≤ (1 + γλ(l2k − 1))∥xk − z∥2 − γ(1− λγ)∥(T k − I)(Axk)∥2. (2.3)

By γ ∈ (0, 1
λ ), (2.3) implies that

∥uk − z∥ ≤
√
(1 + γλ(l2k − 1))∥xk − z∥. (2.4)

Since {lk} ⊂ [1,∞) and
∑∞

k=1(lk −1) < ∞, it is easy to deduce that {
√
(1 + γλ(l2k − 1))} ⊂

[1,∞) and
√

(1 + γλ(l2k − 1)) → 1. Therefore, uk is a
√

(1 + γλ(l2k − 1))- asymptotically
quasi-nonexpansive mapping.

2.2 Convergence of the Algorithm

In this subsection, we establish the weak convergence of Algorithm 2.1.

We first prove a lemma which is an important part of the proof of weak convergence
theorem.

Lemma 2.3. Given a bounded linear operator A : E1 → E2, E1 and E2 are two uniformly
convex Banach spaces, let U : E1 → E1 and T : E2 → E2 be two uniformly L-Lipschitzian
and lk-asymptotically quasi-nonexpansive mappings with {lk} ⊂ [1,∞) such that lk → 1 and∑

k→∞(
√
1 + γλ(l2k − 1) − 1) < ∞, Fix(U) = C ̸= ∅ and Fix(T ) = Q ̸= ∅. Let {xk} be

any sequence generated by Algorithm 2.1. Then limk→∞ ∥xk − z∥ exists and {∥uk − z∥} is
bounded for each z ∈ Γ provided that Γ ̸= ∅.
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Proof. From (2.1), by Proposition 2.2, we obtain

∥xk+1 − z∥ = ∥ak(xk − z) + bk(u
k − z) + ck(U

k(uk)− z)∥
≤ ak∥xk − z∥+ bk∥uk − z∥+ (lkck)∥uk − z∥

= (ak + (bk + lkck)
√
(1 + γλ(l2k − 1))∥xk − z∥.

Setting vk = ak + (bk + lkck)
√

(1 + γλ(l2k − 1), the above inequality takes the shape

∥xk+1 − z∥ ≤ vk∥xk − z∥, for all k ∈ N.

By induction, we have

∥xk+m − z∥ ≤ (

k+m−1∏
i=k

vi)∥xk − z∥ for all k,m ∈ N.

Note that

vk − 1 = ak + (bk + lkck)
√
1 + γλ(l2k − 1)− ak − bk − ck

= (
√
(1 + γλ(l2k − 1)− 1)bk + (

√
lk(1 + γλ(l2k − 1)− 1)ck,

Since
∑

k→∞(
√
1 + γλ(l2k − 1)− 1) < ∞, it is easy to get∑

k→∞

lk(
√
(1 + γλ(l2k − 1)− 1) < ∞.

Hence,
∞∑
k=1

(vk − 1) < ∞,

furthermore

lim
k→∞

∞∏
i=k

vi = 1.

Therefore, limk→∞ ∥xk − z∥ exists. From (2.4), we obtain that {uk − z} is bounded.

Theorem 2.4. Given a bounded linear operator A : E1 → E2, E1 and E2 are two uniformly
convex Banach spaces, let U : E1 → E1 and T : E2 → E2 be two uniformly L-Lipschitzian
and lk-asymptotically quasi- nonexpansive mappings with {lk} ⊂ [1,∞) such that

∑∞
k=1(lk−

1) < ∞, Fix(U) = C ̸= ∅,Fix(T ) = Q ̸= ∅. Assume that U − I and T − I are demi-closed
at 0 and Γ ̸= ∅. Then, any sequence {xk} generated by Algorithm 2.1 converges weakly to a
point x∗ ∈ Γ.

Proof. We first prove that limk→∞ ∥Uk(uk) − uk∥ = limk→∞ ∥T k(Axk) − Axk∥ = 0. Let
limk→∞ ∥xk − z∥ = c where c ≥ 0 is a real number. If c = 0, the result is obvious. Assume
c > 0,

c = lim
k→∞

∥ak(xk − z) + bk(u
k − z) + ck(U

k(uk)− z)∥. (2.5)

Since ∥Uk(uk)− z)∥ ≤ lk∥uk − z∥, therefore

lim sup
k→∞

∥Uk(uk)− z)∥ ≤ c. (2.6)
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Applying Lemma 1.2 on (2.5) and (2.6), we obtain

lim
k→∞

∥Uk(uk)− uk∥ = 0, (2.7)

lim
k→∞

∥Uk(uk)− xk∥ = 0 (2.8)

and
lim
k→∞

∥uk − xk∥ = 0. (2.9)

Let M = max{∥xk − z∥, ∥uk − z∥}. From (2.3), we have

γ(1− λγ)∥(T k − I)(Axk)∥2 ≤ (1 + γλ(l2k − 1))∥xk − z∥2 − ∥uk − z∥2

= ∥xk − z∥2 − ∥uk − z∥2 + γλ(l2k − 1))∥xk − z∥2

≤ M∥xk − uk∥+ γλ(l2k − 1))∥xk − z∥2 → 0.

Hence
lim
k→∞

∥T k(Axk)−Axk∥ = 0. (2.10)

Now, we prove that limk→∞ ∥xk+1 − xk∥ = 0 and limk→∞ ∥uk+1 − uk∥ = 0. As a matter of
fact, it follows from (2.1) that

∥xk+1 − xk∥ = ∥akxk + bku
k + ckU(uk)− (ak + bk + ck)x

k∥
≤ bk∥uk − xk∥+ ck∥U(uk)− xk∥
≤ b∥uk − xk∥+ c∥U(uk)− xk∥.

In view of (2.8) and (2.9), we have that

lim
k→∞

∥xk+1 − xk∥ = 0. (2.11)

Similarly, it follows from (2.1), (2.10) and (2.11) that

∥uk+1 − uk∥ = ∥(xk+1 + γ AT (T k+1 − I)Axk+1)− (xk + γ AT (T k − I)Axk)∥
≤ ∥xk+1 − xk∥+ γ∥AT (T k+1 − I)Axk+1∥+ γ∥AT (T k − I)Axk∥ → 0, (k → ∞).

(2.12)

Next, we prove that limk→∞ ∥Axk − T (Axk)∥ = 0 and limk→∞ ∥uk − U(uk)∥ = 0. Setting
ηk := ∥uk − Uk(uk)∥, since U is uniformly-L-Lipschitzian continuous, it follows from (2.4),
(2.7) and (2.12) that

∥uk − U(uk)∥ ≤ ∥uk − Uk(uk)∥+ ∥Uk(uk)− U(uk)∥
≤ ηk + L∥Uk−1(uk)− uk∥
≤ ηk + L(∥Uk−1(uk)− Uk−1(uk−1)∥+ ∥Uk−1(uk−1)− uk∥)
≤ ηk + L2(∥uk − uk−1∥+ L(∥Uk−1(uk−1)− uk−1∥+ ∥uk−1 − uk∥)
≤ ηk + L(L+ 1)∥uk − uk−1∥+ Lηk−1 → 0, (k → ∞). (2.13)

Similarly, we have
lim
k→∞

∥Axk − T (Axk)∥ = 0. (2.14)
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Finally, we prove that xk ⇀ x∗ and uk ⇀ x∗, where x∗ ∈ Γ. Since {uk} is bounded, let
v = 0, 1, 2 · · · be the sequence of indices, such that w− limv u

kv = x∗. From (2.13), we have
limv→∞ ∥ukv − U(ukv )∥ = 0. Since U is demi-closed at zero, we know that x∗ ∈ Fix(U).
Moreover, it follows from (2.1) and (2.10) that

xkv = u(xkv )− γAT (T kv − I)Axkv ⇀ x∗.

Since A is linear bounded operator, it gets Axkv ⇀ Ax∗. In view of (2.14) we have
limv→∞ ∥Axkv − T (Axkv )∥ = 0. Again since T is demi-closed at zero, we know that Ax∗ ∈
Fix(T ). This implies that x∗ ∈ Γ.

Assume that there exists another subsequence {ukw} of {uk} such that {ukw} converges
weakly to a point y∗ ∈ H with y∗ ̸= x∗. Using the same argument above, we know that
y∗ ∈ Γ. Since each uniformly convex Banach space possesses Opial property, we have

lim inf
v→∞

∥ukv − x∗∥ < lim inf
v→∞

∥ukv − y∗∥ = lim inf
k→∞

∥uk − y∗∥

= lim inf
v→∞

∥ukw − y∗∥ < lim inf
w→∞

∥ukw − x∗∥

= lim inf
k→∞

∥uk − x∗∥ = lim inf
v→∞

∥ukv − x∗∥,

which is a contradiction. This implies that {uk} converges weakly to the point x∗ ∈ Γ. Since
xk = u(xk)− γAT (T k − I)Axk, we know that {xk} converges weakly to x∗ ∈ Γ. The proof
is completed.
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