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were presented in their papers [4, 7, 8, 1] showing that the exact optimal values of QOPs in
their classes coincide with the optimal values of their CPP relaxation problems.

A general CPP problem is characterized as a linear optimization problem over a closed
convex cone, similar to how a general SDP problem is characterized as a linear optimization
problem over the positive semidefinite cone. It is well-known, however, that solving a general
CPP problem, or even a simple CPP problem derived as the CPP relaxation problem of
the QOP over the simplex [3] is much more difficult than solving a general SDP problem.
Efficient numerical methods for solving CPPs have not been developed whereas the primal-
dual interior-point methods have been effective for solving SDPs. In fact, the fundamental
problem of determining whether a given variable matrix is completely positive (or copositive)
still remains a very challenging problem.

If developing efficient numerical methods for CPP relaxations from QOPs in the classes is
an important goal to achieve in the future, a first step toward that goal may be representing
the QOPs in a simplified form. We say that the QOPs are in a simplified form if the numbers
of constraints and variables are reduced. Then, CPP relaxations derived from the simplified
QOPs have a reduced number of constraints and variables, alleviating some of difficulties
of handling a large number of constrains and variables. This will decrease the difficulty of
solving CPP relaxations.

For this purpose, three types of “extremely simple” relaxations are proposed for a class
of linearly constrained QOPs in continuous and nonnegative variables and binary variables,
the class studied in Burer [4]. The first relaxation is an unconstrained QOP in nonnegative
variables. The other two relaxations are a primal-dual pair of an unconstrained CPP problem
in a variable matrix whose upper-left element is fixed to 1 and a copositive programming
(CP) problem in a single variable. We may regard that such a CPP is one of the simplest
CPPs, except trivial ones over the completely positive cone with no constraint, and that
such a CP problem is one of the simplest CPs, except trivial ones with no variable. If the
problem of determining whether a given variable matrix is completely positive is resolved
in the future [17], the proposed relaxations can be used for designing efficient numerical
methods for solving the class of QOPs.

A technique to reduce a linearly constrained QOP in continuous nonnegative variables
and binary variables to a QOP with a single quadratic equality constraint in nonnegative
variables was introduced by Arima, Kim and Kojima in [1]. The resulting QOP was relaxed
to a CPP problem with a single linear equality constraint in a variable matrix with upper-
left element fixed to 1. They showed that the optimal value of the CPP relaxation problem
coincides with the optimal value of the original QOP. Taking the dual of the CPP problem
leads to a CP problem in two variables. As will be shown in the subsequent section, the
dual CP has no optimal solution in general. This is the second motivation of this paper.

The first proposed relaxation is obtained by applying the Lagrangian relaxation to the
QOP with a single quadratic equality constraint in nonnegative variables, which has been
reduced from the given QOPs using the technique in [1]. The application of the Lagrangian
relaxation results in an unconstrained QOP with the Lagrangian multiplier parameter λ in
nonnegative variables. For any fixed λ, the optimal value of this unconstrained QOP in
nonnegative variables, denoted by ζ(λ), bounds the optimal value of the original linearly
constrained QOP in continuous nonnegative variables and binary variables, denoted by ζ∗,
from below. If the Lagrangian multiplier parameter λ is chosen to be positive, λ works
as a penalty parameter. Thus, the standard theory on the penalty function method [9]
can be utilized to prove that the optimal value ζ(λ) of the unconstrained QOP with the
parameter value λ > 0 monotonically converges to ζ∗ as λ tends to ∞ under a moderate
assumption. In addition, the unconstrained QOP may play an important role for developing
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numerical methods. More precisely, if the feasible region of the original QOP can be scaled
into the unit box [0, 1]n, then the box constraints can be added to the unconstrained QOP.
Many global optimization technique developed for this type of QOPs can be used. See, for
example, [5, 6].

The application of CPP relaxation in [1] to the QOP with the parameter λ > 0 provides
a primal-dual pair of an unconstrained CPP problem with the parameter λ > 0 in a variable
matrix with the upper-left element fixed to 1 and a CP problem with the parameter λ in a
single variable. We show under the same moderate assumption that the primal-dual pair of
problems with the parameter value λ > 0 both have optimal solutions with no duality gap,
and share the optimal value ζ(λ) with the QOP for the parameter value λ > 0.

After introducing notation and symbols in Section 2, we state our main results, The-
orems 3.1 and 3.3 in Section 3. We give a proof of Theorem 3.1 in Section 4, and some
remarks in Section 5.

2 Notation and Symbols

We use the following notation and symbols throughout the paper.

Rn = the space of n-dimensional column vectors,

Rn
+ = the nonnegative orthant of Rn,

Sn = the space of n× n symmetric matrices,

Sn+ = the cone of n× n symmetric positive semidefinite matrices,

C =
{
A ∈ Sn : xTAx ≥ 0 for all x ∈ Rn

+

}
(the copositive cone),

C∗ =

{
r∑

i=1

xjx
T
j : xj ∈ Rn

+ (j = 1, 2, . . . , r) for some r ≥ 1

}
(the completely positive cone),

Y •Z = trace of Y Z for every Y , Z ∈ Sn (the inner product),

cl conv G = the closure of the convex hull of G ⊆ Sn.

3 Main Results

3.1 Linearly Constrained QOPs in Continuous and Binary Variables

Let A be a q×m matrix, b ∈ Rq, c ∈ Rm and r ≤ m a positive integer. We consider a QOP
of the form

minimize uTQ0u+ 2cTu
subject to u ∈ Rm

+ , Au+ b = 0, ui(1− ui) = 0 (i = 1, 2, . . . , r).
(3.1)

Burer [4] studied this type of QOP, and proposed a completely positive cone programming
(CPP) relaxation whose objective value is the same as the QOP (3.1). When Q0 = O is
taken, the problem becomes a standard 0-1 mixed integer linear optimization problem. We
assume throughout the paper that QOP (3.1) has an optimal solution u∗ with the optimal
value ζ∗.

We first convert the QOP (3.1) into a QOP with a single equality constraint according
to the discussions in Section 5.1 and 5.2 of [1]. Note that the constraint ui(1 − ui) = 0
implies ui = 1 or 0, thus 0 ≤ ui ≤ 1 (i = 1, 2, . . . , r). Hence we may assume without
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loss of generality that the equalities ui + ui+r − 1 = 0 (i = 1, 2, . . . , r) are included in the
equality Au + b = 0, where ui+r ≥ 0 serves as a slack variable for the inequality ui ≤ 1
(i = 1, 2, . . . , r). More precisely, we assume that A and b are of the forms

A =

(
A11 A12 A13

I I O

)
, b =

(
b1
−e

)
, (3.2)

where I denotes an r × r matrix and e the r-dimensional column vector of ones. If the
0-1 constraint ui(1 − ui) = 0 is replaced by the complementarity constraint uiui+r = 0
(i = 1, 2, . . . , r) and the linear equality constraint Au + b = 0 by a quadratic equality
constraint (Au+ b)T (Au+ b) = 0, QOP (3.1) is rewritten by

minimize uTQ0u+ 2cTu
subject to u ∈ Rm

+ , (Au+ b)T (Au+ b) = 0, uiui+r = 0 (i = 1, 2, . . . , r).
(3.3)

Notice that the left hand sides of all quadratic equality constraints (Au+ b)T (Au+ b) = 0
and uiui+r = 0 (i = 1, 2, . . . , r) are nonnegative for every u ∈ Rm

+ . Thus, we can unify the
constraints into a single equality constraint to reduce the QOP (3.3) to

minimize uTQ0u+ 2cTu subject to u ∈ Rm
+ , g(u) = 0, (3.4)

where g(u) = (Au+ b)T (Au+ b) +
r∑

i=1

uiui+r.

In the main results presented in Theorems 3.1 and 3.3, one of the following conditions
will be imposed on (3.4):

(a) The feasible region of QOP (3.4) is bounded.

(b) Q0 is copositive-plus and the set of optimal solutions of QOP (3.4) is bounded. Here
A ∈ C is called copositive-plus if u ≥ 0 and uTAu = 0 imply Au = 0.

3.2 A Parametric Unconstrained QOP Over the Nonnegative Orthant

We now introduce a Lagrangian relaxation of QOP (3.4) by defining a Lagrangian function
f : Rm

+ × R → R by f(u, λ) = uTQ0u+ 2cTu+ g(u)λ,

minimize f(u, λ) subject to u ∈ Rm
+ . (3.5)

Notice that (3.5) is an unconstrained QOP over the nonnegative orthant with the Lagrangian
multiplier parameter λ ∈ R for the equality constraint of QOP (3.4).

Let us choose a positive number for λ so that g(·)λ : Rm
+ → R serves as a penalty function

for QOP (3.4). In fact, we see that

g(u) ≥ 0 for every u ∈ Rm
+ ,

g(u) = 0 if and only if u ∈ Rm
+ satisfies the equality constraint of

(3.4),
g(u)λ → ∞ as 0 ≤ λ → ∞ otherwise.

For each λ > 0, define a level set L(λ) =
{
u ∈ Rm

+ : ζ∗ ≥ f(u, λ)
}
and the optimal objective

value ζ(λ) = inf
{
f(u, λ) : u ∈ Rm

+

}
of QOP (3.5). Note that ζ∗ is the optimal value of

QOP (3.1). Then, for 0 < λ < µ,

L(λ) ⊇ L(µ) ⊇ L∗,
ζ(λ) = inf {f(u, λ) : u ∈ L(λ)} ≤ ζ(µ) ≤ ζ∗,

(3.6)
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where L∗ denotes the set of optimal solutions of (3.4). Hence, if L(λ̄) is bounded for some
λ̄ > 0 and λ ≥ λ̄, then QOP (3.5) has an optimal solution with the finite objective value
ζ(λ), and all optimal solutions of QOP (3.5) are contained in the bounded set L(λ̄). The next
theorem ensures that QOP (3.5) with the parameter λ > 0 serves as sequential unconstrained
QOPs over Rm

+ for solving QOP (3.4) under condition (a) or (b).

Theorem 3.1.

(i) If condition (a) is satisfied, then L(λ) is bounded for every sufficiently large λ > 0.

(ii) If condition (b) is satisfied, then L(λ) is bounded for any λ > 0.

(iii) Assume that L(λ̄) is bounded for some λ̄ > 0. Let
{
λk ≥ λ̄ : k = 1, 2, . . . ,

}
be a

sequence diverging monotonically to ∞ as k → ∞, and
{
uk ∈ Rm

+ : k = 1, 2, . . . ,
}
a

sequence of optimal solutions of QOP (3.5) with λ = λk. Then, any accumulation point
of the sequence

{
uk ∈ Rm

+

}
is an optimal solution of QOP (3.4), and ζ(λk) converges

monotonically to ζ∗ as k → ∞.

Although some of the assertions in Theorem 3.1 can be proved easily by applying the
standard arguments on the penalty function method (for example, see [9]), we present com-
plete proofs of all assertions for completeness in Section 4.

It would be desirable if any optimal solution of the problem (3.5) were an optimal solution
of (3.4) for every sufficiently large λ. However, this is not true in general, as shown in the
following illustrative example:

minimize 2u1 subject to u1 ≥ 0, u1 − 1 = 0, (3.7)

which has the unique optimal solution u∗
1 = 1 with the optimal value ζ∗ = 2. In this case,

the Lagrangian relaxation problem is described as

minimize 2u1 + (u1 − 1)2λ subject to u1 ≥ 0.

For every λ > 1, this problem has the unique minimizer u∗
1 = 1−1/λ with the optimal value

ζ(λ) = 2− 1/λ.

3.3 Completely Positive Cone Programming and Copositive Cone Program-
ming relaxations of QOP (3.5) with the parameter λ > 0

We now relate the Lagrangian relaxation (3.5) of QOP (3.4) to the CPP relaxation of QOP
(3.4), which was discussed in Sections 5.1 and 5.2 of [1]. Let

n = 1 +m, x =

(
u0

u

)
∈ Rn, Q =

(
0 cT

c Q0

)
∈ Sn,

Ci = the m×m matrix with the (i, i+ r)th component 1/2 and 0 elsewhere

(i = 1, 2, . . . , r),

H0 =

(
1 0T

0 O

)
∈ Sn, H1 =

(
bT b bTA

AT b ATA

)
+

r∑
i=1

(
0 0T

0 Ci +CT
i

)
.
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Then,

Q • xxT = Q •
(

u0

u

)(
u0

u

)T

= uTQ0u+ 2cTu0u,

H0 • xxT = H0 •
(

u0

u

)(
u0

u

)T

= u2
0,

H1 • xxT = H1 •
(

u0

u

)(
u0

u

)T

= (bu0 +Au)T (bu0 +Au) +

r∑
i=1

uiui+r

for every x =

(
u0

u

)
∈ Rn. It should be noted that H0, H1 ∈ C. Using these identities,

we rewrite QOP (3.4) as

minimize Q •X subject to X ∈ G̃1, (3.8)

and QOP (3.5) as

minimize (Q+H1λ) •X subject to X ∈ G̃0. (3.9)

Here,

G̃0 =
{
xxT ∈ Sn : x ∈ Rn

+, H0 • xxT = 1
}
=
{
xxT ∈ Sn : x ∈ Rn

+, x2
1 = 1

}
,

G̃1 =
{
xxT ∈ G̃0 : H1 • xxT = 0

}
=

{
xxT ∈ Sn : x ∈ Rn

+, H0 • xxT = 1, H1 • xxT = 0
}
.

It was shown in [1] that the constraint sets cl conv G̃0 and cl conv G̃1 coincide with their

CPP relaxations Ĝ0 and Ĝ1, respectively, where

Ĝ0 = {X ∈ C∗ : H0 •X = 1} = {X ∈ C∗ : X11 = 1} ,

Ĝ1 =
{
X ∈ Ĝ0 : H1 •X = 0

}
= {X ∈ C∗ : H0 •X = 1, H1 •X = 0} .

See Theorem 3.5 of [1]. Since the objective functions of the problems (3.8) and (3.9) are
linear with respect to X ∈ Sn, (3.8) has the same optimal objective value as

minimize Q •X subject to X ∈ Ĝ1 (= cl conv G̃1), (3.10)

and (3.9) has the same optimal objective value as

minimize (Q+H1λ) •X subject to X ∈ Ĝ0 (= cl conv G̃0). (3.11)

We note that CPP (3.10) and QOP (3.4) have the equivalent optimal value ζ∗, and that
both CPP (3.11) and QOP (3.5) have the optimal value ζ(λ) ≤ ζ∗.

As dual problems of (3.10) and (3.11), we have

maximize y0 subject to Q−H0y0 +H1y1 ∈ C, (3.12)

and

maximize y0 subject to Q−H0y0 +H1λ ∈ C, (3.13)
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respectively. Either (3.12) or (3.13) forms a simple copositive cone programming (CP). The
difference is that y1 is a variable in (3.12) whereas λ > 0 is a parameter to be fixed in
advance in (3.13). As a result, (3.13) involves just one variable. Obviously, CPP (3.11) has
an interior feasible solution. By the standard duality theorem (see, for examples, Theorem
4.2.1 of [16]), CP (3.13) and CPP (3.11) have an equivalent optimal value. It is already
observed that CPP (3.11) and QOP (3.5) share the common optimal value ζ(λ). Thus,
Theorem 3.1 leads to the following theorem. It shows that, under condition (a) or (b),
(3.11) and (3.13) serve as a parametric CPP relaxation and a parametric CP relaxation,
respectively, and these parametric CP and CPP relaxations bound the optimal value ζ∗ of
QOP (3.4) from below by ζ(λ) converging monotonically to ζ∗ as λ → ∞.

Theorem 3.2. Assume that condition (a) or (b) holds.

(iv) CPP (3.11) and QOP (3.5) have the equivalent optimal value ζ(λ) ≤ ζ∗, which con-
verges monotonically to ζ∗ as λ → ∞.

(v) CP (3.13) and QOP (3.5) have the equivalent optimal value ζ(λ) ≤ ζ∗, which converges
monotonically to ζ∗ as λ → ∞.

Now, we discuss whether the dual (3.12) of CPP (3.10) has an optimal solution with the
same optimal objective value ζ∗ of CPP (3.10).

Theorem 3.3.

(vi) rank X ≤ n − rank A if X ∈ Ĝ1.

(vii) Assume that condition (a) or (b) is satisfied. Then, the strong duality equality between
CPP (3.10) and CP (3.12)

ζ∗ = min
{
Q •X : X ∈ Ĝ1

}
= sup {y0 : Q−H0y0 +H1y1 ∈ C} (3.14)

holds.

Since C∗ ⊆ Sn+ and any X ∈ Sn with rank X < n lies on the boundary of Sn+, (vi) of
Theorem 3.3 implies that CPP (3.10) does not have an interior feasible solution. Hence, the
standard duality theorem can not be applied to the primal dual pair of (3.10) and (3.12).
Thus, the assertion (vii) is important.

Proof of (vi) . Suppose that xxT ∈ G̃1. Then,

x ∈ Rn
+, 0 = H1 • xxT =

((
bT b bTA

AT b ATA

)
+

r∑
i=1

(
0 0T

0 Ci +CT
i

))
• xxT ,

(
bT b bTA

AT b ATA

)
• xxT ≥ 0,

(
r∑

i=1

(
0 0T

0 Ci +CT
i

))
• xxT ≥ 0.

It follows that

0 = xT

(
bT b bTA

AT b ATA

)
x = xT

(
bT

AT

)(
b A

)
x.

Thus, (b A)xxT = O holds for every xxT ∈ G̃1. Consequently, we have that (b A)X =

O for every X ∈ cl conv G̃1 = Ĝ1, which implies that rank X ≤ n − rank (b A) =
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n− rank A. �

Proof of (vii) . By assertion (v) of Theorem 3.2, we know that

ζ∗ = lim
0<λ→∞

ζ(λ) = sup
λ>0

max {y0 : Q−H0y0 +H1λ ∈ C} .

This implies the desired result. �

In general, (3.12) does not have an optimal solution with the optimal objective value
ζ∗. To verify this, assume on the contrary that (3.12) has an optimal solution (y∗0 , y

∗
1) with

the optimal value y∗0 = ζ∗. Since H1 ∈ C, (y∗0 , y1) remains an optimal solution with the
optimal value y∗0 = ζ∗ for every y1 ≥ y∗1 . Thus, (3.13) attains the optimal value ζ∗ for every
λ > max{0, y∗1}. By the weak duality relation, (3.11) (hence (3.5)) attains the optimal value
ζ∗ of QOP (3.4) for every λ > max{0, y∗1}. This contradicts what we have observed in the
simple example (3.7). Furthermore, if we reformulate the simple problem (3.7) as (3.8), the
constraint of (3.12) becomes (

−y0 + y1 1− y1
1− y1 y1

)
∈ C. (3.15)

We can verify numerically that if y0 = ζ∗ = 2, then, for any finite y1 ∈ R, the matrix on the
left side has a negative eigenvalue λ with a eigenvector v > 0. Thus,

vT

(
−2 + y1 1− y1
1− y1 y1

)
v = λvTv < 0.

As a result, the matrix on the left side of (3.15) with y0 = ζ∗ = 2 can not be in C for
any y1 ∈ R. This is a direct proof for the assertion that (3.12) does not have an optimal
solution with the optimal value y∗0 = ζ∗. If y0 < ζ∗ = 2, then the matrix on the left side of
(3.15) becomes positive definite for every sufficiently large y1 > 0. Thus, the strong duality
equality (3.14) holds.

Remark 3.4. Assume that QOP (3.1) satisfies condition (a) and we know a positive con-
stant α such that eTu ≤ α for any feasible solution u of QOP (3.1) and the m-dimensional
vector of ones e. Then, QOP (3.1) can be transformed into a QOP in a strictly positive
quadratic form, uTQ0u with all [Q0]ij > 0, to be minimized over a bounded feasible region.
Thus, the resulting QOP satisfies condition (b). We show this under the assumption that
the last component um of u ∈ Rm serves as a slack variable for the inequality constraint
that bounds the sum of the other components uj (j = 1, 2, . . . ,m − 1) by α, and that the
last row of the equality constraint Au + b = 0 is of the form eTu − α = 0. Then, for any
β ∈ R and every feasible solution u of (3.1),

uT

(
Q0 +

ceT

α
+

ecT

α
+ βeeT

)
u = uTQ0u+ 2cTu+ βα2.

Thus, the objective function uTQ0u + 2cTu can be replaced by

uT

(
Q0 +

ceT

α
+

ecT

α
+ βeeT

)
u. Taking β > 0 sufficiently large, we have a QOP in a

strictly positive quadratic form. Therefore, in the relaxation problems (3.10), (3.11), (3.12)

and (3.13), we can assume that Q is of the form

(
0 0T

0 Q0

)
with all [Q0]ij > 0. This
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conversion can be used for developing numerical methods for the QOP (3.1) with a bounded
feasible region in the future. However, it may not be numerically efficient because the
coefficient matrix Q0 of the resulting QOP becomes fully dense.

4 Proof of Theorem 3.1

A sequence
{
(uk, λk) ∈ Rm+1 : k = 1, 2, . . . ,

}
is used in the proofs of assertions (i), (ii)

and (iii) below such that

uk ≥ 0, λk > 0, (4.1)

ζ∗ ≥ f(uk, λk) = (uk)TQ0u
k + 2ckuk + g(uk)λk. (4.2)

We note that such a sequence always satisfies

(Auk + b)T (Auk + b) ≥ 0,
r∑

i=1

uk
i u

k
i+r ≥ 0, (4.3)

ζ∗ ≥ (uk)TQ0u
k + 2ckuk. (4.4)

4.1 Proof of Assertion (i)

Assume on the contrary that L(λ) is unbounded for any λ > 0. Then, λk → ∞ and
∥uk∥ → ∞ as k → ∞ for some sequence

{
(λk,uk) : k = 1, 2, . . . ,

}
satisfying (4.1) through

(4.4). We may assume without loss of generality that uk/∥uk∥ converges to some nonzero
d ≥ 0.

We divide the inequality (4.2) by λk∥uk∥2 and the inequalities in (4.3) by ∥uk∥2, respec-
tively, and take the limit on the resulting inequalities as k → ∞. Then, we observe that
d ≥ 0 satisfies

0 ≥ (Ad)T (Ad) +

r∑
i=1

dki d
k
i+r, (Ad)T (Ad) ≥ 0,

r∑
i=1

dki d
k
i+r ≥ 0. (4.5)

It follows that Ad = 0 and di = 0 (i = 1, 2, . . . , 2r) (recall that A is of the form (3.2)).
Hence, u∗ + νd remains a feasible solution of (3.4) for every ν ≥ 0. This can not happen if
condition (a) is satisfied.

4.2 Proof of Assertion (ii)

Let us fix λ > 0 arbitrarily. Assume that {u ≥ 0 : ζ∗ ≥ f(u, λ)} is unbounded. We can
take a sequence {uk : k = 1, 2, . . . , } satisfying (4.1) through (4.4) with λk fixed to λ and
∥uk∥ → ∞ as k → ∞. We may assume that uk/∥uk∥ converges to some nonzero d ≥ 0.
Since Q0 is assumed to be copositive-plus, it follows from (4.2) that

ζ∗ ≥ 2ckuk +

(
(Auk + b)T (Auk + b) +

r∑
i=1

uk
i u

k
i+r

)
λ, (4.6)

and from (4.4) that ζ∗ ≥ 2cuk.We first divide the inequality (4.6) by λ∥uk∥2, the inequalities
in (4.3) by ∥uk∥2, and the inequalities (4.4) by ∥uk∥2, respectively. Next, take the limit
on the resulting inequalities and the inequality ζ∗/∥uk∥ ≥ 2cTuk/∥uk∥ as k → ∞. Then,
we obtain (4.5), which implies Ad = 0 and di = 0 (i = 1, 2, . . . , 2r), and 0 ≥ 2cTd. In
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addition, 0 ≥ dTQ0d, which implies dTQ0d = and Q0d = 0 (recall that Q0 is copositive-
plus). Therefore, u∗ + νd remains a feasible solution of QOP (3.4) for every ν ≥ 0 and that
ζ∗ ≥ (u∗ + νd)TQ0(u

∗ + νd) + 2cT (u∗ + νd) for every ν ≥ 0. This contradicts condition
(b).

4.3 Proof of Assertion (iii)

We observe that the sequence
{
(uk, λk)

}
satisfies (4.1) through (4.4) with f(uk, λk) = ζ(λk).

Let {ukj : j = 1, 2, . . . , } be a subsequence that converges to ū ≥ 0. From (4.2),

ζ∗

λkj
≥ (ukj )TQ0u

kj + 2ckukj

λkj
+ g(ukj ),

g(ukj ) ≥ 0,

ζ∗ ≥ ζ(λkj ) ≥ (ukj )TQ0u
kj + 2ckukj

(j = 1, 2, . . . , ) hold. Taking the limit as j → ∞ in the inequality above, we have g(ū) = 0
and ζ∗ ≥ limj→∞ ζ(λkj ) ≥ (ū)TQ0ū + 2cT ū. Thus, ū is an optimal solution of (3.4) and
limj→∞ ζ(λkj ) = ζ∗. By (3.6), we also know that ζ(λ) ≤ ζ(µ) ≤ ζ∗ if λ ≤ µ. Consequently,
the sequence

{
ζ(λk)

}
itself converges monotonically to ζ∗ as k → ∞.

5 Preliminary Numerical Results

We performed preliminary numerical experiments to compare doubly nonnegative (DNN)
relaxations of the original problem (3.1) and DNN relaxations of the Largrangian relaxation
method (3.5) using two types of test problems. First, we chose ten binary quadratic problems
(BinQPs) from the BiqMac library [18] described as follows:

minimize xTQ0x
subject to xj(1− xj) = 0 (j = 1, 2, . . . , n)

0 ≤ xj ≤ 1.

 (5.1)

The second type of test problems is BinQPs with randomly generated linear constraints
Ax = b. Solving DNN relaxations of large-sized problems by the primal-dual interior
methods was very time-consuming in our experiment, thus, we present the results from the
BinQP of n = 100 for comparison in this paper.

The numerical experiments were performed on 2 CPUs, each CPU is Quad-Core Xeon
X5365(3.00GHz) Memory 64GB OS Red Hat Enterprise Linux Server release 6.2

Let X =

[
X00 x
x X

]
. A semidefinite (SDP) relaxation of (5.1) is:

minimize Q0 •X subject to Xii − xi = 0, X00 = 1, Xij ≥ 0, X ∈ Sn+1
+ . (5.2)

If we replace C∗ by Sn+
∩

N in (3.10), we obtain the following full doubly nonnegative
relaxation (DNN) of (3.10):

minimize Q0 •X
subject to H0 •X = 1, H1 •X = 0,

Xij ≥ 0 (1 ≤ i < j ≤ n), X ∈ Sn+.
(5.3)
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ConsiderK = {(i, j) : 1 ≤ i < j ≤ n, [Q+H0 +H1]ij ̸= 0}. Then, a partial DNN of (3.10)
as a further relaxation of (5.3) is obtained:

minimize Q0 •X
subject to H0 •X = 1, H1 •X = 0,

Xij ≥ 0 (i, j) ∈ K, X ∈ Sn+.
(5.4)

Similarly, replacing C∗ in (3.11) by Sn+
∩
N leads to the following full DNN relaxation

of (3.11):

minimize (Q+H1λ) •X
subject to X11 = 1, Xij ≥ 0 (1 ≤ i < j ≤ n), X ∈ Sn+.

(5.5)

Using K ′ = {(i, j) : 1 ≤ i < j ≤ n, [Q+H1λ]ij ̸= 0}, we obtain a partial DNN relaxation,
a further relaxation of (5.5) as follows:

minimize (Q+H1λ) •X
subject to X11 = 1, Xij ≥ 0 (i, j) ∈ K ′, X ∈ Sn+.

(5.6)

We compare (5.2) with the full DNN relaxation (5.3), the partial DNN relaxation (5.4),
the full DNN relaxation (5.5) of the Lagrangian relaxation (3.5), and the partial DNN
relaxation (5.6) of (3.5).

5.1 Binary Quadratic Optimization Problems

The optimal values of bqp100 problems are available in [2] and shown in the column “Opt-
Val” in Table 1. The objective values of the DNN (5.2) relaxation were obtained by the
SparsePOP [20] using the dense SDP relaxation with the SparsePOP parameter sparseSW
=0. SparsePOP is a Matlab software for solving polynomial optimization problems includ-
ing QOP by SDP relaxations. For details on the SparsePOP, we refer to [19]. We observe
that DNN relaxation (5.2) spent long time to compute lower bounds for the optimal value
of (5.1).

Table 1: Bounds and CPU time in seconds by the DNN using SparsePOP.

Problem OptVal DNN (5.2)
CPU, LBD

bqp100-1 -7.97000000e+03 10229.25, -8.3503564e+03
bqp100-2 -1.10360000e+04 10241.22, -1.1636821e+04
bqp100-3 -1.27230000e+04 10776.02, -1.3409249e+04
bqp100-4 -1.03680000e+04 10344.36, -1.0971601e+04
bqp100-5 -9.08300000e+03 11084.03, -9.3817292e+03
bqp100-6 -1.02100000e+04 10414.33, -1.1055927e+04
bqp100-7 -1.01250000e+04 8097.98, -1.0633598e+04
bqp100-8 -1.14350000e+04 11309.82, -1.1708559e+04
bqp100-9 -1.14550000e+04 12159.97, -1.1600918e+04
bqp100-10 -1.25650000e+04 9727.84, -1.2907801e+04

Table 2 displays the lower bounds by (5.4) and CPU time in seconds. To solve the
problem efficiently, we used SparseCoLO [10], a Matlab software package for exploiting
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sparsity of (5.4) to reduce the size of the problem. For the sparsity exploitation, SparseCoLO
parameters such as pars.CoLO.domain= 2, parsCoLO.range= 0, parsCoLO.EQorLMI = 2,
and sedumipars.eps= 1.e−9 were used. The full DNN relaxation (5.3) took much longer
time than (5.4), and the lower bounds were slightly better than those of (5.4), thus, the
results were not included.

We show the numerical results of (5.6) in Table 3. The results of (5.5) were not in-
cluded because it took much longer than solving (5.6) with slightly larger values of lower
bounds. SparseCoLO [10] was used to exploit sparsity of (5.6) with pars.CoLO.domain= 2,
parsCoLO.range= 0, parsCoLO.EQorLMI = 2, and sedumipars.eps= 1.e−9.

We observed in the numerical experiments that as λ increased, tighter lower bounds were
obtained, as shown in the theoretical property in Theorem 3.2 (v). For a large value of λ,
lower bounds approached to the lower bounds shown in Table 2, while taking shorter CPU
time than that in Table 2.

6 Concluding Remarks

We have proposed the three relaxations, the unconstrained QOP (3.5) in nonnegative vari-
ables, the CPP problem (3.11) and the CP problem (3.13). Computing an optimal solution
of any of the proposed relaxations numerically is difficult. As mentioned in Section 1, to
develop a numerical method for the second and third relaxations, the problem of checking
whether a given matrix lies in the completely positive cone and the copositive cone needs to
be resolved, respectively, which was shown in [14] as a co-NP-complete problem.

One practical method to overcome this difficulty is to relax the completely positive cone
C∗ by the so-called doubly nonnegative cone Sn+

∩
N in (3.11), where N denotes the cone

of n × n symmetric matrices with nonnegative components. This idea of replacing C∗ by
Sn+

∩
N in CPP problems has been used in [11, 21]. Even in their cases, the resulting SDPs

can not be solved efficiently when the size of variable matrix X is large because of the
(n − 1)n/2 inequality constraints Xij ≥ 0 (1 ≤ i < j ≤ n). In particular, the inequality
constraints make it difficult to exploit sparsity in the SDPs, which is an effective tool to
solve large scale SDPs efficiently.

If we replace C∗ by Sn+
∩
N in (3.11), we have the following problem rewritten as an

SDP, which serves as a relaxation of (3.11).

minimize (Q+H1λ) •X subject to X11 = 1, Xij ≥ 0 (1 ≤ i < j ≤ n), X ∈ Sn+. (6.1)

Note that the number of inequalities is increased. As a result, sparsity can not be exploited
efficiently, although it involves only a single equality constraint X11 = 1. To exploit sparsity
in (6.1), we need to reduce the number of inequality constraints. For example, we can
take K = {(i, j) : 1 ≤ i < j ≤ n, [Q+H1λ]ij ̸= 0}, expecting that K satisfies a structured
sparsity in practice, and replace the inequality constraints by Xij ≥ 0 ((i, j) ∈ K). Further
studies and numerical experiments along this direction are important subjects of future
research. We refer to [12, 13, 15] for exploiting sparsity in SDPs.

We have shown that (3.3) and (3.4) remain equivalent as all constraints of (3.3) are re-
duced to a single constraint of (3.4). However, it makes a difference when further relaxations
such as the doubly nonnegative cone relaxation are considered.
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Table 2: The lower bounds and CPU time by QOP (5.4), bqp100-2: No sensible solution
found.

Problem SDP partialDNN (5.4)
LBD CPU, LBD, |Ax− b|

bqp100-1 −∞ 227.8, -8.1974843209e+03, 9.4e-07
bqp100-2 −∞ 239.4, cTx= -1.1731807469e+04, 2.3e-09

bTy = -1.16710502e+04,
bqp100-3 −∞ 331.8, -1.3480133450e+04, 5.5e-08
bqp100-4 −∞ 285.0, -1.0959950623e+04, 4.8e-07
bqp100-5 −∞ 250.5, -9.3622874388e+03, 5.1e-07
bqp100-6 −∞ 245.2, -1.1075716311e+04, 3.3e-07
bqp100-7 −∞ 224.8, -1.0675801425e+04, 5.4e-07
bqp100-8 −∞ 377.6, -1.1782654842e+04, 2.6e-07
bqp100-9 −∞ 333.3, -1.1653822602e+04, 4.6e-07
bqp100-10 −∞ 238.1, -1.2931684389e+04, 2.8e-07

Table 3: The partial DNN relaxation (5.6) of the Lagrangian relaxation.
pars.CoLO.domain= 2, parsCoLO.range= 0, parsCoLO.EQorLMI = 2. Scaling for
Xij ≥ 0 is included.

Problem λ = 5.0× 105

CPU, LBD
bqp100-1 118.8, -8.39948892e+03
|Ax− b| 1.6e-03
bqp100-2 126.9, -1.17142601e+04
|Ax− b| 1.6e-03
bqp100-3 110.8, -1.34979622e+04
|Ax− b| 8.4e-04
bqp100-4 173.6, -1.10388990e+04
|Ax− b| 1.2e-03
bqp100-5 125.4, -9.44792622e+03
|Ax− b| 7.7e-04
bqp100-6 117.3, -1.11244620e+04
|Ax− b| 1.0e-03
bqp100-7 140.3, -1.07272318e+04
|Ax− b| 7.9e-04
bqp100-8 145.4, -1.17954377e+04
|Ax− b| 2.1e-03
bqp100-9 184.4, -1.16667499e+04
|Ax− b| 1.3e-03

bqp100-10 162.5, -1.29673707e+04
|Ax− b| 1.3e-03
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