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the framework and many numerical first-order and second-order manifold-based algorithms
for (1.1), with an emphasis on the application to numerical linear algebra.

However, a lot of optimization problems arising from real-world applications cannot
simply be formulated in the form of (1.1). In many cases, besides the manifold constraint
x ∈ M, the variable x should also be subject to other equality and/or inequality constraints.
For example, in the quadratic assignment problem (see [21]), the constraint for the variable
X is in the Stiefel manifold

St(j, k) := {X ∈ Rk×j |X⊤X = Ij}, (j < k),

where Ij stands for the j-by-j identity matrix and also X ≥ 0 (i.e., each element of X is
nonnegative), while in the sparse principal component analysis (see [17]), the variable X ∈
St(j, k) should also satisfy a set of inequality constraints. Moreover, even if there are only
equality constraints, the feasible set in many cases does not form a smooth and connected
manifold. This suggests that a more general formula of the nonlinear programming problem
should be cast as

min f(x) (1.2)

s.t. ci(x) = 0, i ∈ E = {1, . . . , l}
ci(x) ≥ 0, i ∈ I = {l + 1, . . . , r}
x ∈ M.

In (1.2), the constraint x ∈ M means that both f and ci for all i ∈ E ∪ I are defined on the
manifold M.

On the other hand, many real-world problems in the form of (1.2) can also be formulated
back into the traditional nonlinear programming problem. This is the case when the manifold
M is a Riemannian submanifold of Rm. A typical and very important example is again the
Stiefel manifold, where the problem (1.1) with M = St(j, k) can be thought as the equality
constrained minimization, and thus the manifold-based algorithms are thereby alternative
but efficient approaches for the related equality constrained minimization. It has been
observed that when the underlying manifold M is of simple or nice differential geometry
structure, the manifold-based algorithms appear to be more convenient and can perform
better than many state-of-the-art traditional optimization methods (see e.g., [1, 2, 3, 4]).
This is one of our motivations of this paper.

Just as we can generalize the classical numerical algorithms for the unconstrained min-
imization to (1.2), we can also generalize traditional approaches for the constrained opti-
mization problems and develop counterpart algorithms for (1.2). The idea seems attractive
and practical since we have already had several efficient algorithms for (1.1) at hand. In
fact, in [21], the traditional augmented Lagrangian method is generalized and tried to solve
the quadratic assignment problem. This is the other motivation of this paper. Based on our
observation, the foremost problem we are facing is the optimality conditions of (1.2). Al-
though discussions on the optimality conditions for (1.1) have been made, e.g., in [2, 14, 22],
to the best of the authors’ knowledge, systematic treatment on the optimality conditions
that combine nonsmooth optimization on a manifold with equality and inequality constraints
has not been fully developed. It should be pointed out that the paper by Ledyaev and Zhu
[14] discusses this issue based on an appropriate Frechet subderivative notion, which allows
one to develop a quite satisfactory subdifferential calculus. However, we notice that the
computation of the subdifferential is difficult according to the definition in [14], and there-
fore, we will define the subdifferential and treat the optimality conditions in another way,
which is of advantage for practical computation.
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In this paper, we will discuss optimality conditions for (1.2), under the assumption that
M is a general Riemannian manifold equipped with its Riemannian connection, and the
constrained functions ci for all i ∈ E ∪ I are differentiable. We will establish the first-order
optimality condition of (1.2) when f is a nonsmooth Lipschitz function or continuously
differentiable, and present the first-order and the second-order optimality conditions when
f is twice continuously differentiable.

We organize the paper in the following way. In Section 2, we will provide some prelimi-
nary concepts and notation. In Section 3, we present the definitions of the Clarke generalized
gradient of a Lipschitz function on the Riemannian manifolds, the tangent and normal cones
to closed subsets of Riemannian manifolds. Then the first-order necessary optimality con-
dition is obtained. In Section 4, we discuss the first-order and the second-order optimality
conditions for (1.2) when the objective function is differentiable. In Section 5, we will restrict
ourselves to the special case when M is a Riemannian submanifold of Rm : For the case that
f(x) is nonsmooth Lipschitz continuous, we will study the properties of the Clarke general-
ized gradient; while more specially, when M is formed by a set of equality constraints, we
show that the optimality conditions for (1.2) can be derived directly from the traditional
results on Rm. A final conclusion is drawn in Section 6.

2 Preliminaries and Notation

To begin with, we first introduce some basic differential geometry concepts and notations.
The reader can find most of these preparatory materials from the books [2, 13, 16].

Let M be an n-dimensional smooth manifold and p ∈ M. We will use Fp(M) to denote
the set of all smooth real-valued functions defined on a neighborhood of p. Let γ be a curve
such that γ(0) = p. The mapping γ̇(0) from Fp(M) to R defined by

γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

is called the tangent vector to γ at x. The tangent space to M at p is represented by TpM,
whose element, known as the tangent vector, can be regarded as a mapping ξp from Fp(M)
to R such that there exists a curve γ on M with γ(0) = p, satisfying

ξpf = γ̇(0)f :=
d(f(γ(t)))

dt

∣∣∣∣
t=0

for all f ∈ Fp(M). Such a curve γ is said to realize the tangent vector ξp. The tangent
bundle TM := ∪pTpM consists of all tangent vectors to M. The vector field ξ on M is a
smooth mapping form M to the tangent bundle TM that assigns to each point p ∈ M a
tangent vector ξp ∈ TpM.

Let (U,φ) be a chart containing p. The tangent vectors {∂/∂xi|p, 1 ≤ i ≤ n} defined by

∂

∂xi

∣∣∣
p
f =

∂(f ◦ φ−1)

∂xi

∣∣∣
φ(p)

, ∀f ∈ Fp(M) (2.1)

forms a basis of TpM. It is also obvious that ∂/∂xi is a vector field on U .
Let F : M → N be a smooth mapping between two smooth manifolds M and N . The

differential (also known as push-forward) of F at p (see [2, 16]), DF (p) : TpM → TF (p)N
is defined by

(DF (p)[ξp])f := ξp(f ◦ F ),
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for all ξp ∈ TpM and f ∈ FF (p)(N ). By (2.1), we haveDφ(p)[ ∂
∂xi |p] = ∂

∂xi |φ(p) and therefore,

if ξ =
∑n

i=1 ξi
∂

∂xi |p ∈ TpM, we have

Dφ(p)[ξ] = (ξ1, . . . , ξn)
⊤ ∈ Rn, (2.2)

where we use the identification Tφ(p)Rn ∼= Rn. For notational convenience thus, we will use
•̂ to represent the corresponding counterpart of the object • related with M in Rn :

p̂ := φ(p), ξ̂p̂ := Dφ(p)[ξp], and f̂ := f ◦ φ−1. (2.3)

With this notation, for ξp ∈ TpM and f ∈ Fp(M), it is easy to see that

ξpf = ⟨ξ̂p̂,∇f̂(p̂)⟩.

A differentiable manifold whose tangent spaces are endowed with a smoothly varying
inner product with respect to p ∈ M is called a Riemannian manifold. The smoothly
varying inner product, denoted by ⟨·, ·⟩p, is called the Riemannian metric, and when no
confusion arises, we will also omit the subscript and use simply ⟨·, ·⟩ instead of ⟨·, ·⟩p. Let
gij(p) := ⟨∂/∂xi|p, ∂/∂xj |p⟩p. Then gij(·) is a smooth function on M. Thus, for vector
fields ξ =

∑
i ξi∂/∂x

i and ζ =
∑

i ζi∂/∂x
i, we have

g(ξ, ζ) := ⟨ξ, ζ⟩ =
∑
ij

gijξiζj .

Thus, if we introduce the notation G : p̂ 7→ Gp̂ to denote the matrix-valued function such
that the (i, j) element of Gp̂ is gij(p), we have then, in matrix notation,

gp(ξp, ζp) = ⟨ξp, ζp⟩p = ξ̂⊤p̂ Gp̂ζ̂p̂. (2.4)

In our discussion on the optimality condition for (1.2), we will restrict ourselves to the case
that M is a Riemannian manifold with a Riemannian metric g.

Given f ∈ Fp(M), the gradient of f at p (see [2]), denoted by gradf(p), is defined as the
unique tangent vector in TpM that satisfies the condition:

⟨gradf(p), ξp⟩ = ξpf = ⟨∇f̂(p̂), ξ̂p̂⟩, ∀ξp ∈ TpM, (2.5)

and so in matrix notation, the coordinate expression of gradf(p) is given by (see [2])

Dφ(p)[gradf(p)] = G−1
p̂ ∇f̂(p̂). (2.6)

The length of a curve γ : [a, b] → M on M is defined by

L(γ) =

∫ b

a

√
⟨γ̇(t), γ̇(t)⟩dt,

and the Riemannian distance (see [2]) on M is given by

d : M×M → R : d(x, y) = inf
Γ
L(γ),

where Γ represents the set of all curves in M joining points x and y. Thus the set {y ∈
M | d(x, y) < δ} serves as a neighborhood of x with radius δ > 0.
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A geodesic is a curve on M that locally minimizes the arc length. For every ξ ∈ TpM,
there exists an interval Z containing 0 and a unique geodesic γ(t; p, ξ) : Z → M such that
γ(0) = p and γ̇(0) = ξ. The mapping (see [2])

Expp : TpM → M : ξ 7→ Exppξ = γ(1; p, ξ)

is called the exponential map on p ∈ M. Let E : Rn → TpM be a linear bijection such that
{E(ei)}ni=1 is an orthonormal basis for TpM, where ei is the i-th unit vector. Let U be a
neighborhood of a point p and V a neighborhood of the origin of TpM such that Expp is a
diffeomorphism between V and U . If we define

φ = E−1Exp−1
p . (2.7)

then (U,φ) is known as a Riemannian normal coordinate system. Under the normal coordi-
nate system, it is true that (see [13])

Gp̂ = In. (2.8)

Lastly, the Riemannian Hessian (see [2]) of f ∈ Fp(M) at a point p in M is defined as
the (symmetric) linear mapping Hessf(p) of TpM into itself that satisfies

Hessf(p)[ξp] = ∇ξpgradf, ∀ξp ∈ TpM,

where ∇ stands for the Riemannian connection (see [2]) on M. The following result (see [2,
Prop. 5.5.4]) is useful for our analysis

Hessf(p) = Hess(f ◦ Expp)(0p). (2.9)

3 The Clarke Generalized Gradient

In this section, we will study the property of a Lipschitz function definded on a Riemannian
manifold M. The Lipschitz behavior of functions on M has been studied in [9, 10]. In
this paper, we only focus on the Clarke generalized gradient of a Lipschitz function and its
application to the optimality condition.

3.1 Lipschitz Continuity

Recall that a function f on M is said to be Lipschitz of rank L on a set U if

|f(y)− f(z)| ≤ L · d(y, z), ∀y, z ∈ U,

where L > 0. If there exists a neighborhood U of p ∈ M such that f is Lipschitz of rank
L on U , we say that f is Lipschitz of rank L at p; if furthermore, for every p ∈ M, f is
Lipschitz of rank L at p for some L > 0, then f is said to be locally Lipschitz on M.

Now suppose f : M → R is a locally Lipschitz function onM. The generalized directional
derivative of f at p ∈ M in the direction v ∈ TpM, denoted by f◦(p; v), is defined as (see
[12])

f◦(p; v) := lim sup
y→p,t↓0

f ◦ φ−1(φ(y) + tDφ(p)(v))− f ◦ φ−1(φ(y))

t
, (3.1)

where (U,φ) is a chart containing p. Indeed, we have

f◦(p; v) = (f ◦ φ−1)◦(φ(p);Dφ(p)(v)), (3.2)
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where (f ◦φ−1)◦(φ(p);Dφ(p)(v)) is the Clarke generalized directional derivative (see [7]) of
f ◦φ−1 at φ(p). It should be pointed out that this definition does not depend on the choice
of charts (see [19]).

Lemma 3.1. Let M be a Riemannian manifold and p ∈ M. Let (U,φ) be a chart containing
p. Then f is Lipschitz at p if and only if f ◦ φ−1 is Lipschitz at φ(p).

Proof. Let (U,φ) and (V, ψ) be two charts containing p. Since the Jacobian matrix of the
mapping φ ◦ ψ−1 is nonsingular around ψ(p), we only need to prove the assertion for one
particular chart (U,φ), namely, the normal coordinate defined by (2.7). We use the notation
Bδ := {y ∈ M : d(p, y) ≤ δ} and B(0p; δ) := {ξp ∈ TpM : ∥ξp∥ ≤ δ}. By [6, Thm. 2.3],
for every C > 1, the mappings Expp : B(0p; δ) → Bδ and Exp−1

p : Bδ → B(0p; δ) are
C-Lipschitz for small enough δ, and so the assertion follows. �

The proofs of the following results are similar to [7, Prop. 2.1.1] except for (3.3). Thus,
we only give the proof for (3.3).

Theorem 3.2. Let M be a Riemannian manifold. Suppose that the function f : M → R
is Lipschitz of rank L on an open set V . Then,

(i) for each p ∈ V and v ∈ TpM, the function v 7→ f◦(p; v) is finite, positive homogeneous,
and sub-additive on TpM, and satisfies

|f◦(p; v)| ≤ L∥v∥; (3.3)

(ii) f◦(p; v) is upper semicontinuous on TM |U and, as a function of v alone, is Lipschitz
of rank L on TpM, for each p ∈ U ;

(iii) f◦(p;−v) = (−f)◦(p; v) for each p ∈ U and v ∈ TpM.

Proof. Since f◦(p; v) does not depend on the chart, we consider the normal coordinate
(U,φ) defined by (2.7). Assume that U ⊂ V . Write v ∈ TpM as v =

∑n
i=1 vi

∂
∂xi |p.

Let v̂ = (v1, . . . , vn)
⊤ ∈ Rn. By (2.8), we have Gφ(p) = In, and so ∥v∥ =

√
⟨v, v⟩p =√

v̂⊤Gφ(p)v̂ = ∥v̂∥.
We use the notation Uδ := {y ∈ M : d(p, y) < δ}. Fix ϵ > 0. Since Gφ(y) is a continuous

functions of y, there exists δ0 such that Uδ0 ⊂ U and if y ∈ Uδ0 , then the largest eigenvalue
λmax(Gφ(y)) of Gφ(y) satisfies

λmax(Gφ(y)) < 1 + 2ϵ.

Denote ηt := φ(y)+ tv̂ ∈ Rn and y(t) := φ−1(ηt). Assume that y(s) ∈ Uδ0 , ∀s ∈ [0, t]. Then
ẏ(t) =

∑
vi

∂
∂xi |y(t), and so

d(y, y(t)) ≤
∫ t

0

√
⟨ẏ(s), ẏ(s)⟩ds =

∫ t

0

√
v̂⊤Gηs v̂ds ≤ (1 + ϵ)t∥v̂∥ = (1 + ϵ)t∥v∥. (3.4)

From definition (3.1), we know that there exists δ1 and t0 such that for any δ ∈ (0, δ1) and
any t1 ∈ (0, t0),

f◦(p; v) ≤ sup
y∈Uδ,0<t<t1

f(y(t))− f(y)

t
+ ϵ,
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which implies that there exists y ∈ Uδ1 and t ∈ (0, t0) such that

f◦(p; v) ≤ f(y(t))− f(y)

t
+ 2ϵ. (3.5)

Let δ1 and t0 be both small enough so that (3.4) holds, then we have from (3.5)

f◦(p; v) ≤ L
d(y, y(t))

t
+ 2ϵ ≤ L(1 + ϵ)∥v∥+ 2ϵ.

Since ϵ is arbitrary, (3.3) holds. �

The generalized gradient or the Clarke subdifferential of a locally Lipschitz function f
at p ∈ M, denoted by ∂f(p), is defined as

∂f(p) = {ξ ∈ TpM : ⟨ξ, v⟩ ≤ f◦(p; v) for all v ∈ TpM}. (3.6)

By (2.4), (3.2) and (3.6), we have the following result.

Proposition 3.3. Let (M, g) be a Riemannian manifold and p ∈ M. Suppose that f :
M → R is Lipschitz near p and (U,φ) is a chart at p. Then

∂f(p) = [Dφ(p)]−1[G−1
φ(p)∂(f ◦ φ−1)(φ(p))].

Remark 3.4. In [12], the generalized gradient ∂f(p) is defined on T ∗
pM, the cotangent

space at p, and satisfies the property (see [12, Prop. 2.5]):

∂f(p) = Dφ(p)∗[∂(f ◦ φ−1)(φ(p))],

where ∗ denotes the adjoint. Since the gradient of a differentiable function is defined on
the tangent space, from the computational point of view, we think it is more reasonable to
define the generalized gradient of a nonsmooth function (a generalization of gradient) on
the tangent space as in (3.6).

Similar to [12, Thm. 2.9], it is easy to prove the following results and we omit the proof.

Theorem 3.5. Let M be a Riemannian manifold, p ∈ M and f is Lipschitz of rank L on
some neighborhood U of p. Then,

(i) ∂f(p) is a nonempty, convex, compact subset of TpM, and ∥ξ∥ ≤ L for every ξ ∈
∂f(p);

(ii) for every v ∈ TpM, we have

f◦(p; v) = max{⟨ξ, v⟩ : ξ ∈ ∂f(p)},

and so for any ξ ∈ TpM, ξ ∈ ∂f(p) if and only if f◦(p; v) ≥ ⟨ξ, v⟩;

(iii) let {pi} and {ξi} be sequences in M and TM such that ξi ∈ ∂f(pi). Suppose that pi
converges to p and η ∈ Rn is a cluster point of the Gφ(xi)[Dφ(pi)ξi], then we have

[Dφ(p)]−1[G−1
φ(p)η] ∈ ∂f(p).
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3.2 Tangent and Normal Cone

Let C be a subset in Rn and x ∈ C. We use TC(x) (resp. NC(x)) to denote the (Clarke)
tangent (resp. normal) cone (see [7]) to C at x. By [7, Thm 2.4.5], the (Clarke) tangent
cone is in accordance with the one defined by [20, Def. 12.2].

Using the coordinate chart, we can define the tangent cone of a nonempty closed subset of
Riemannian manifold M. To this end, assume S is a nonempty closed subset of Riemannian
manifold M and p ∈ S, and (U,φ) is a chart of M at p. Then we define the (Clarke) tangent
cone TS(p) to S at p as follows:

TS(p) := [Dφ(p)]−1[Tφ(S∩U)(φ(p))]. (3.7)

It is true that this definition of TS(p) does not depend on the choice of the chart (U,φ) at p
(see [19]). Furthermore, we can also define the normal cone, denoted by NS(p), to S at p as

NS(p) := {u ∈ TpM : ⟨u, v⟩ ≤ 0, ∀v ∈ TS(p)}. (3.8)

Using (2.4) and (3.8), it is easy to prove the following result.

Proposition 3.6. We have NS(p) = [Dφ(p)]−1[G−1
φ(p)Nφ(S∩U)(φ(p))].

For a function f defined on a set S ⊆ M, we say that f attains a local minimum over S
at p if there exists a neighborhood V ⊆ M of p such that f(y) ≥ f(p), ∀y ∈ V ∩ S.

Proposition 3.7. Suppose that f is Lipschitz at p and attains a local minimum over a set
S at p. Then 0 ∈ ∂f(p) +NS(p).

Proof. Let (U,φ) be a chart around p. By Lemma 3.1, f̂ = f ◦ φ−1 is also Lipshitz and f̂
attains a local minimum over the set φ(S ∩ U) at p̂. From the proof on [7, p. 52], we have

0 ∈ ∂f̂(p̂)+Nφ(S∩U)(p̂), which together with Propositions 3.3 and 3.6 implies the assertion.
�

Remark 3.8. In [12], the normal cone is again defined on the cotangent space. For our
discussion, according to Proposition 3.7, we prefer the definition (3.8) because ∂f(p) ⊆ TpM.
In particular, if f is continuously differentiable and attains a minimum over a set S ⊂ M
at p, then similar to the proof in Proposition 3.7, it is true that

−gradf(p) ∈ NS(p),

which is a generalization of the traditional result on Rn. Since the gradient is a tangent
vector of M, it is more reasonable to define the normal cone on the tangent space.

4 Necessary Optimality Conditions for Constrained Problems

4.1 First-order Optimality Conditions

Now we consider the problem of the form (1.2) in which f is a locally Lipschitz function and
ci for all i ∈ E ∪ I are differentiable functions. We denote the feasible region of (1.2) by Ω.

Using coordinate charts, we can transform (1.2) into a traditional nonlinear programming
problem locally. Indeed, for x ∈ Ω, suppose (U,φ) is a chart around x, then we have the
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following nonlinear programming problem in Rn:

min f̂(x̂) (4.1)

s.t. ĉi(x̂) = 0, i ∈ E = {1, . . . , l}
ĉi(x̂) ≥ 0, i ∈ I = {l + 1, . . . , r}
x̂ ∈ φ(U) ⊆ Rn,

where f̂ and ĉi are defined by (2.3). If we define the active set A(x) at x ∈ M of (1.2) by

A(x) := E ∪ {i ∈ I | ci(x) = 0}, (4.2)

then it is clear that A(x̂) = A(x), where A(x̂) is the active set of x̂ for the problem (4.1).
With the active setA(x), we say that the linear independence constraint qualification (LICQ)
on manifold M holds at x if

{grad ci(x), i ∈ A(x)} is linearly independent on TxM. (4.3)

It is not difficult to check by (2.6) that (4.3) is equivalent to the statement that {∇ĉi(x̂), i ∈
A(x)} is linearly independent, that is {∇ĉi(x̂), i ∈ A(x)} satisfies the LICQ (see [20]) on
Rn. To further explore the optimality condition, we next define the concept of linearized
feasible direction.

Definition 4.1. Given a feasible point x ∈ M and the active constraint set A(x) given by
(4.2), the set of linearized feasible directions F(x) is defined by

F(x) =

{
d ∈ TxM

∣∣∣ ⟨grad ci(x), d⟩ = 0, for all i ∈ E ,
⟨grad ci(x), d⟩ ≥ 0, for all i ∈ A(x) ∩ I

}
.

For any d ∈ F(x), since ⟨grad ci(x), d⟩ = ⟨∇ĉi(x̂), d̂⟩, we have

d̂ ∈ F (x̂), (4.4)

where F (x̂) is the set of linearized feasible directions of the problem (4.1) (see [20, Def.
12.3]) given by

F (x̂) =

{
d̂ ∈ Rn

∣∣∣ ⟨∇ĉi(x), d̂⟩ = 0, for all i ∈ E ,
⟨∇ĉi(x), d̂⟩ ≥ 0, for all i ∈ A(x̂) ∩ I

}
. (4.5)

By [20, Lem. 12.2], (4.4) and (3.7), it is straightforward to prove the following lemma.

Lemma 4.2. Let x ∈ Ω be a feasible point. The following two statements are true:

(i) TΩx ⊆ F(x), and

(ii) if the LICQ condition (4.3) is satisfied at x, then TΩx = F(x).

With Lemma 4.2 (ii) in hand, following the procedure of proving [20, Lem. 12.9], we can
characterize the normal cone NΩ(x) in the following way:

Corollary 4.3. If the LICQ condition (4.3) is satisfied at x, then

NΩ(x) = {
∑

i∈A(x)

λigrad ci(x), λi ≤ 0 for i ∈ A(x) ∩ I}. (4.6)
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By Proposition 3.7 and Corollary 4.3 consequently, it is easy to prove the following result.

Theorem 4.4 (First-Order Necessary Conditions). Suppose that x∗ is a local solution of
(1.2) and that the LICQ (4.3) holds at x∗. Define the Lagrangian function for problem (1.2)
as

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x). (4.7)

Then there is a Lagrange multiplier vector λ∗, with components λ∗i , i ∈ E ∪ I, such that the
following conditions are satisfied at (x∗, λ∗)

0 ∈ ∂xL(x∗, λ∗),
ci(x

∗) = 0, for all i ∈ E , (4.8)

ci(x
∗) ≥ 0, λ∗i ≥ 0, λ∗i ci(x

∗) = 0, for all i ∈ I.

Remark 4.5. Consider the nonlinear programming problem (4.1). The Lagrangian function

of (4.1) is L(x̂, λ) = f̂(x̂) −
∑

i∈E∪I λiĉi(x̂). Let λ∗ be the Lagrange multiplier satisfying
(4.8). By Proposition 3.3, it is easy to prove that 0 ∈ ∂x̂L(x̂

∗, λ∗), which means that λ∗ is
also the Lagrange multiplier of (4.1).

Remark 4.6.

1. In the case that f is continuously differentiable, replacing 0 ∈ ∂xL(x∗, λ∗) in (4.8) by
gradxL(x∗, λ∗) = 0, we get the first-order necessary condition of (1.2).

2. More particularly, if f is a continuously differentiable function and x∗ is a local solution
of minx∈M f(x), then we have gradf(x∗) = 0.

4.2 Second-order Optimality Conditions

Now we are in a position to describe the second-order optimality conditions for (1.2). In
this subsection, assume that f and ci, i ∈ E ∪ I, are twice differentiable. Suppose x∗ is
a local solution of (1.2) and λ∗ is some Lagrange multiplier vector that satisfies the KKT
conditions (4.8). We further define the critical cone C(x∗, λ∗) associated with (x∗, λ∗) as
follows:

C(x∗, λ∗) (4.9)

= {w ∈ F(x∗) | ⟨grad ci(x∗), w⟩ = 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0}.

Equivalently, one can readily verify that

w ∈ C(x∗, λ∗) ⇔


w ∈ Tx∗M,

⟨grad ci(x∗), w⟩ = 0, for all i ∈ E ,
⟨grad ci(x∗), w⟩ = 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0,
⟨grad ci(x∗), w⟩ ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i = 0.

Given F (x̂∗) defined by (4.5) and λ∗ satisfying (4.8), let the critical cone ( cf. [20, p.
330]) C(x̂∗, λ∗) be defined by

ŵ ∈ C(x̂∗, λ∗) ⇔

 ⟨∇ĉi(x∗), ŵ⟩ = 0, for all i ∈ E ,
⟨∇ĉi(x∗), ŵ⟩ = 0, for all i ∈ A(x∗) ∩ I with λ∗i > 0,
⟨∇ĉi(x∗), ŵ⟩ ≥ 0, for all i ∈ A(x∗) ∩ I with λ∗i = 0.
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By (2.5), we have

w ∈ C(x∗, λ∗) ⇐⇒ ŵ ∈ C(x̂∗, λ∗). (4.10)

With the aid of these results, we can state the second-order necessary optimality conditions
as follows:

Theorem 4.7 (Second-Order Necessary Conditions). Suppose that x∗ is a local solution of
(1.2) and that the LICQ condition (4.3) is satisfied. Let λ∗ be the Lagrange multiplier vector
for which (4.8) are satisfied. Then

HessxL(x∗, λ∗)[w,w] ≥ 0, ∀w ∈ C(x∗, λ∗).

Proof. Let (U,φ) be the normal coordinate defined by (2.7) around x∗. Consider the non-
linear programming problem (4.1). It is obvious that x̂∗ is a local solution of (4.1), and λ∗ is
also the Lagrange multiplier vector for which the KKT conditions hold. Then the assertion
follows from (2.9), (4.10) and [20, Thm. 12.5]. �

The following corollary is a direct application of Theorem 4.7 for the case E = I = ∅.

Corollary 4.8. Let x∗ be a local solution of minx∈M f(x). Then Hessf(x∗) is positive
semidefinite on Tx∗M.

Similar to the proof of Theorem 4.7, we can also establish the following second-order
sufficient conditions for problem (1.2).

Theorem 4.9 (Second-Order Sufficient Conditions). Suppose that for some feasible point
x∗ ∈ M there is a Lagrange multiplier vector λ∗ such that the KKT conditions (4.8) are
satisfied. Suppose also that

HessxL(x∗, λ∗)[w,w] > 0, ∀w ∈ C(x∗, λ∗), w ̸= 0.

Then x∗ is a strict local solution for (1.2).

Analogously, in the special case E = I = ∅, Theorem 4.9 reduces the following second-
order sufficient optimality condition.

Corollary 4.10. Let x∗ ∈ M be such that gradf(x∗) = 0 and Hessf(x∗) is positive definite
on Tx∗M. Then x∗ is a strict local solution of minx∈M f(x).

5 The Case When M is a Riemannian submanifold of Rm

In Section 4, we have established the optimality conditions for the case when M is a general
n-dimensional Riemannian manifold. In real-world applications, however, it turns out that
the manifolds we can encounter always Riemannian submanifolds of Rm with m > n. In
this section, we will consider the case that M is a Riemannian submanifold (for definition,
see [15, p.132]) of Rm, which means for any x ∈ M,

⟨ξx, ξx⟩x = (Di(x)ξx)
⊤(Di(x)ξx) ∀ξx ∈ TxM,

where i : M → Rm is the inclusion map and Di(x) is the differential of i at x.
For simplicity, we always write x and ξx for i(x) and Di(x)ξx, that is, M is a subset

of Rm and TxM is a subspace of Rm for any x ∈ M. We use Px to denote the orthogonal
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projection onto TxM. Then TxM = {Pxy|y ∈ Rm}. This expression of the tangent space is
very useful, because for any differentiable real-valued function h defined on Rm, the gradient
of the restriction h|M : M → R, of h on M can be simply formulated as (see [2, (3.3.7)])

gradh|M(x) = Px∇h(x), (5.1)

where ∇h(x) stands for the gradient of h, viewed as a function defined on Rm, at x.
Let f be a nonsmooth Lipschitz function. We use the notation

f̄ := f |M (5.2)

to denote the restriction of f on M. It is easy to prove that f̄ , as a function on manifold
M, is also a Lipschitzian function. Motivated by (5.1), it is natural to ask whether ∂f̄(x) =
Px∂f(x). As we will see in Theorem 5.3 that ∂f̄(x) ⊂ Px∂f(x) is always true, but the
converse is not, as Example 5.1 demonstrates.

Example 5.1. Let M = {(x1, 0) : x1 ∈ R} be the embedded submanifold in R2. Let
f : R2 → R be defined by

f(x1, x2) =

 −x2, if x1 ≥ −x2, x2 ≤ 0;
x1, if x1 ≤ −x2, x1 ≥ 0;
0, otherwise.

Then f equals 0 on the whole of M and so f̄ ≡ 0. Let x = (0, 0) and v = (1, 0). Then
f◦(x; v) = 1, f◦(x;−v) = 0 and f̄◦(x; v) = 0. It is easy to see that ∂f(x) ⊃ {(x1, 0) : 0 ≤
x1 ≤ 1}. Thus we have [0, 1] = Px∂f(x) ̸= ∂f̄(x) = {0}.

We next will establish a sufficient condition for the relation ∂f̄(x) = Px∂f(x).

Definition 5.2. A function f is said to be regular [7] at x ∈ M along TxM if

(i) for all v ∈ TxM, f ′(x; v) := limt↓0
f(x+tv)−f(x)

t exists, and

(ii) for all v ∈ TxM, f ′(x; v) = f◦(x; v).

Theorem 5.3. Let M be an embedded submanifold of Rm. Let f be a Lipschitz function at
x ∈ M and f̄ be defined by (5.2). Then we have

(i) f◦(x; d) ≥ f̄◦(x; d) for any d ∈ TxM,

(ii) ∂f̄(x) ⊂ Px∂f(x), and

(iii) if f is regular at x along TxM, then ∂f̄(x) = Px∂f(x).

Proof. (i). Pick any d ∈ TxM. Let (U,φ) be a chart around x. Assume that φ(z) =
(u1(z), . . . , un(z)), ∀z ∈ U . Then ∂

∂ui , i = 1, . . . , n, is a smooth vector field on U . Let
Uδ := {y ∈ M : d(x, y) < δ}. Fix ϵ > 0. Then there exists δ1 > 0 such that Uδ1 ⊂ U and
for all y ∈ Uδ1 ,

∥Dφ−1(φ(y))(Dφ(x)(d))− d∥

= ∥
n∑

i=1

di
∂

∂ui
|y −

n∑
i=1

di
∂

∂ui
|x∥

≤ ϵ∥d∥, ∀d ∈ TxM, (5.3)



OPTIMALITY CONDITIONS FOR NLP ON RIEMANNIAN MANIFOLDS 427

where the inequality holds because ∂
∂ui is smooth on U . For y ∈ Uδ1 , define y(t) =

φ−1(φ(y) + tDφ(x)(d)). Then there exists t1 > 0 such that y(s) ∈ U for any y ∈ Uδ1

and any s ∈ [0, t1]. We also have

y(t) = y + tDφ−1(φ(y))(Dφ(x)(d)) + t2ψ(y),

where ψ is smooth of y. This together with (5.3) implies that for all t ∈ [0, t1],

∥y(t)− (y + td)∥ ≤ ϵt∥d∥+Mt2, ∀y ∈ Uδ1 , (5.4)

where M is independent of y and t. By the definition of the Clarke generalized directional
derivative, there exists δ2 > 0 and t2 > 0 such that for any δ ∈ (0, δ2) and any t ∈ (0, t2),
we have

sup
∥z−x∥<δ,0<s<t

f(z + sd)− f(z)

s
− f◦(x; d) ≤ ϵ; (5.5)

on the other hand, by definition of (3.1), there are δ3 > 0 and t3 > 0 such that for any
δ ∈ (0, δ3) and t ∈ (0, t3),

f̄◦(x; d)− f(ȳ(t̄))− f(ȳ)

t̄
≤ ϵ, (5.6)

for some ȳ ∈ Uδ and t̄ ∈ (0, t), where ȳ(t̄) = φ−1(φ(ȳ) + t̄Dφ(x)(d)). Let δ and t be small
enough such that δ < min{δ1, δ2, δ3}, t < min{t1, t2, t3} and the Lipschitz constant of f on
{y : ∥y − x∥ ≤ δ} is L and LMt ≤ ϵ. Then by (5.4), we have∣∣∣f(ȳ(t̄))− f(ȳ)

t̄
− f(ȳ + t̄d)− f(ȳ)

t̄

∣∣∣ ≤ ϵL∥d∥+ ϵ. (5.7)

From (5.5), (5.6), and (5.7), it follows that

f̄◦(x; d) ≤ f◦(x; d) +
f(ȳ(t̄))− f(ȳ)

t̄
− sup

∥z−x∥<δ,0<s<t

f(z + sd)− f(z)

s
+ 2ϵ

≤ f◦(x; d) +
f(ȳ(t̄))− f(ȳ)

t̄
− f(ȳ + t̄d)− f(ȳ)

t̄
+ 2ϵ

≤ f◦(x; d) + (3 + L∥d∥)ϵ.

Since ϵ is arbitrary, we conclude f̄◦(x; d) ≤ f◦(x; d).
If (ii) does not hold, there must exist a vector η such that η ∈ ∂f̄(x) but η ̸∈ Px∂f(x).

By [7, Prop. 2.1.2], Px∂f(x) ⊂ TxM is a closed convex set. Note that ∂f̄(x) ⊂ TxM. By
the Convex Separation theorem, there exists d ∈ TxM such that

⟨η, d⟩ > sup
ξ∈Px∂f(x)

⟨ξ, d⟩. (5.8)

Since Px is a symmetric matrix and Pxd = d, we have

sup
ξ∈Px∂f(x)

⟨ξ, d⟩ = sup
ζ∈∂f(x)

⟨Pxζ, d⟩ = sup
ζ∈∂f(x)

⟨ζ, d⟩ = f◦(x; d). (5.9)

By (5.8) and (5.9), f̄◦(x; d) ≥ ⟨η, d⟩ > f◦(x; d), which contradicts (i).
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(iii). From the proof of (ii), it suffices to prove that f̄◦(x; d) = f◦(x; d). Let (U,φ) be a
chart around x and let x(t) = φ−1(φ(x) + tDφ(x)(d)). If x(s) ∈ U for any s ∈ [0, t], then

x(t) = x+ tDφ−1(φ(x))(Dφ(x)(d)) +O(t2) = x+ td+O(t2). (5.10)

Assume that the Lipschitz constant of f at x is L. Fix ϵ > 0. By (5.10), for sufficiently
small t, we have ∣∣∣f(x+ td)− f(x)

t
− f(x(t))− f(x)

t

∣∣∣ ≤ ϵL. (5.11)

Since by assumption f ′(x; d) exists, we can also assume that for all sufficiently small t > 0,

f ′(x; d)− f(x+ td)− f(x)

t
≤ ϵ.

Recall that Uδ := {y ∈ M : d(x, y) < δ}. By (3.1) and f̄ = f |M, there exist δ > 0 and
t0 > 0 such that

sup
y∈Uδ,0<t<t0

f ◦ φ−1(φ(y) + tDφ(x)(d))− f(y)

t
− f̄◦(x; d) ≤ ϵ. (5.12)

From (5.10), (5.11) and (5.12), it follows that

f ′(x; d) ≤ f̄◦(x; d) + (2 + L)ϵ.

Since ϵ is arbitrary, we have f ′(x; d) ≤ f̄◦(x; d). By the assumption that f is regular at x
along d, we have

f ′(x; d) = f◦(x; d) ≥ f̄◦(x; d) ≥ f ′(x; d).

Thus f̄◦(x; d) = f◦(x; d) and the proof is complete. �

According to [7, Prop. 2.3.6], we know that there are a variety of types of functions
satisfying the conditions of Definition 5.2. In particular, we have the following lemma.

Lemma 5.4. Let f = f1+f2 be a function on Rm, where f1 is convex and f2 is continuously
differentiable. Then f is regular along TxM, where x ∈ M is arbitrary.

Now we discuss the connection between our optimization conditions on Riemannian
manifolds with the traditional ones by considering the more specific situation when

M = {x ∈ Rm | Φ(x) = 0},

where Φ : Rm → Rq (q = m − n) is a smooth mapping with DΦ(x) of full row rank
for all x ∈ M. For these problems, we can incorporate the particular manifold M into our
original problem (1.2), and simply state it as the following traditional nonlinear programming
problem:

min f(x) (5.13)

s.t. ci(x) = 0, i ∈ E = {1, . . . , l}
ci(x) ≥ 0, i ∈ I = {l + 1, . . . , r}
Φ(x) = 0.
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When the problem (1.2) is put in this way, one then can directly apply the traditional
optimality conditions without referring to the underlying manifold structure of M. Then,
we will describe the connection between our established optimality conditions in Section
4 with the traditional conditions, and show that our optimality conditions can be derived
directly from the traditional optimality conditions. We believe that this connection could
also be helpful for designing efficient numerical algorithms.

First, if we simply regard (5.13) as the traditional nonlinear programming, then the
Lagrangian function is

L(x, λ, µ) = f(x)−
∑

i∈E∪I
λici(x)−

q∑
i=1

µiΦi(x),

and the traditional linear independence constraint qualification (LICQ) (see [20, Def. 12.4])
at x is as follows:

{∇ci(x), i ∈ A(x)} ∪ {∇Φj(x), 1 ≤ j ≤ q} is linearly independent on Rm. (5.14)

On the other hand, under the condition that DΦ(x) of full row rank for all x ∈ M, it is
well known that (see [2, Sec. 3.5.7])

TxM = Ker(DΦ(x)), ∀x ∈ M.

Moreover, since DΦ(x) has full row rank, the matrix

Px := Im −DΦ(x)⊤(DΦ(x)DΦ(x)⊤)−1DΦ(x)

is the orthogonal projection onto TxM. If f is differentiable, using Px, we have the relation

gradxL(x, λ) = Px∇xL(x, λ, µ),

where the function L(x, λ) is defined in (4.7). If f is convex, then by Theorem 5.3 and
Lemma 5.4, we have

∂xL(x, λ) = Px∂xL(x, λ, µ). (5.15)

To show the connection between our optimality conditions in Section 4 with the tradi-
tional conditions, we establish the following three key lemmas, from which the equivalence
of the two types of optimality conditions becomes evident.

Lemma 5.5. For all x ∈ Ω, the LICQ condition (4.3) holds if and only if the LICQ condition
(5.14) holds.

Proof. Sufficiency : Assume that (4.3) holds. If (5.14) is not true, then there exist λi, i ∈
E ∪ I, and µj , 1 ≤ j ≤ q, such that

∑
i∈E∪I

|λi|+
q∑

j=1

|µj | > 0 (5.16)

and ∑
i∈E∪I

λi∇ci(x) +
q∑

j=1

µj∇Φj(x) = 0. (5.17)
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Since Px∇Φj(x) = 0, (5.17) and (5.1) imply that∑
i∈E∪I

λigrad ci(x) =
∑

i∈E∪I

λiPx∇ci(x) = 0. (5.18)

From (4.3), it follows that λi = 0, ∀i ∈ E∪I, which together with (5.17) imply
∑q

j=1 µj∇Φj(x) =
0. This and the assumption that DΦ(x) has full row rank imply that µj = 0, ∀1 ≤ j ≤ q, a
contradiction to (5.16).

Necessity : If (4.3) does not hold, then there exists λi, i ∈ E ∪ I, not all zero, such that
(5.18) holds. Since Px is the orthogonal projection onto Ker(DΦ(x)), by (Ker(DΦ(x)))⊥ =
Range(DΦ(x)⊤), there exists a vector µ ∈ Rq such that

∑
i∈E∪I

λi∇ci(x) = (DΦ(x))⊤µ =

q∑
j=1

µj∇Φj(x).

Then (5.14) is not true and the proof is complete. �

Related with the traditional nonlinear programming problem (5.13), the set of linearized
feasible directions F(x) (see [20, Def. 12.3]) is given by

F(x) =

 d ∈ Rm
∣∣∣ ⟨∇Φi(x), d⟩ = 0, for all 1 ≤ i ≤ q,

⟨∇ci(x), d⟩ = 0, for all i ∈ E ,
⟨∇ci(x), d⟩ ≥ 0, for all i ∈ A(x) ∩ I

 ,

which is shown to be identical to F(x) defined by (4.5).

Lemma 5.6. For all x ∈ M, we have F(x) = F(x).

Proof. Note that ⟨∇Φi(x), d⟩ = 0 for all 1 ≤ i ≤ q is equivalent to d ∈ TxM. This together
with the fact

⟨∇cj(x), d⟩ = ⟨∇cj(x), Pxd⟩ = ⟨Px∇cj(x), d⟩ = ⟨grad cj(x), d⟩, ∀d ∈ TxM,

implies that F(x) = F(x). �

Recall that NΩ(x) is the normal cone to Ω at x in the traditional sense. If (4.3) holds,
by Lemma 5.5, the LICQ condition (5.14) holds also, which together with [20, Lem. 12.9]
implies that

NΩ(x) = {
∑

i∈A(x)

λi∇ci(x) +
q∑

j=1

µj∇Φj(x), λi ≤ 0 for i ∈ A(x) ∩ I}. (5.19)

Using Px∇Φj(x) = 0 again, we have the following result.

Lemma 5.7. Let Ω be the feasible set of (5.13) and x ∈ Ω. Suppose that the LICQ condition
(4.3) is satisfied. Then

NΩ(x) = PxNΩ(x),

where NΩ(x) is defined by (4.6).
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Equipped with the previous results and techniques, we are able to derive the optimality
conditions in the preceding sections.

Consider the optimization problem (1.2), with f = f1 + f2, where f1 is convex and f2
is continuously differentiable, and the LICQ condition (4.3) holds. Then Propostion 3.7
follows from [7, Cor. 2.4.3], Theorem 5.3, Lemmas 5.4 and 5.7.

The first-order optimality condition in Theorem 4.4 directly follows from the traditional
KKT conditions (see [7, Cor. 2.4.3]) for problem (5.13):

0 ∈ ∂xL(x, λ, µ),

Φ(x) = 0, ci(x) = 0, for all i ∈ E , (5.20)

ci(x) ≥ 0, λi ≥ 0, λici(x) = 0, for all i ∈ I,

where λ ∈ Rr and µ ∈ Rq. In fact, if the LICQ condition (4.3) holds, by Lemma 5.5, it
follows that the LICQ condition (5.14) is true, and so NΩ(x

∗) is given by (5.19). By [7,
Cor. 2.4.3], there exists (x∗, λ∗, µ∗) satisfying the KKT condition (5.20), which, together
with (5.15), shows that (x∗, λ∗) satisfy the KKT conditions given in Theorem 4.4.

Now assume that f and ci for i ∈ E ∪I are twice differentiable functions. For the second-
order optimality conditions, we suppose that (x∗, λ∗, µ∗) satisfy the KKT condition (5.20).
Then the traditional critical cone C(x∗, λ∗, µ∗) of problem (5.13) is defined by (see [20, Sec.
12.5])

C(x∗, λ∗, µ∗) =
{
w ∈ F (x∗)

∣∣∣ ⟨∇Φi(x
∗), d⟩ = 0, for all 1 ≤ i ≤ q,

⟨∇ci(x∗), w⟩ = 0, all i ∈ A(x∗) ∩ I with λ∗i > 0

}
.

Similar to the proof of Lemma 5.6, it is easy to see that

C(x∗, λ∗) = C(x∗, λ∗, µ∗), (5.21)

where C(x∗, λ∗) is given in (4.9). Moreover, given x ∈ M and λ ∈ Rr, if the LICQ condition
(5.14) holds at x, then the system ∇xL(x, λ, µ) = 0 in (5.20) admits a unique least-squares
solution

µ(x, λ) = −DΦ(x)⊤(DΦ(x)DΦ(x)⊤)−1DΦ(x)(∇f(x)−
∑

i∈E∪I

λi∇ci(x)). (5.22)

Note that the Hessian of the restriction h|M at x ∈ M can be calculated via (see [2,
Prop. 5.3.2])

Hessh|M(x) = PxD(gradh|M)(x)

= PxD(Px∇h)(x). (5.23)

For simplifying the following presentation, when the meaning is clear from the context, we
will also use h to denote the restriction h|M of h on M. Additionally, we will use gradh(x)
and ∇h(x) to distinguish the gradients of h|M and h at x, respectively, and similarly, use
Hessh(x) and ∇2h(x) to distinguish the Hessians of h|M and h, respectively.

For any x ∈ Ω, λ ∈ Rr and w ∈ TxM, by the technique used in [4] and (5.23), we have
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that

HessxL(x, λ)[w]
= Px

[
Dx(Px∇L(x, λ))

]
[w] (by (5.23))

= Px

[
Dx(∇L(x, λ)−DΦ(x)⊤(DΦ(x)DΦ(x)⊤)−1DΦ(x)∇L(x, λ))

]
[w]

= Px

[
Dx(∇L(x, λ)−DΦ(x)⊤µ(x, λ))

]
[w] (by (5.22))

= Px

[
∇2

xxL(x, λ)−
q∑

i=1

µi(x, λ)∇2
xxΦi(x)−DΦ(x)⊤Dxµ(x, λ)

]
[w]

= Px∇2
xxL(x, λ, µ(x, λ))Px[w],

where the last equality follows due to PxDΦ(x)⊤ = 0 and Pxw = w. Thus, we have

HessxL(x, λ) = Px∇2
xxL(x, λ, µ(x, λ))Px. (5.24)

Therefore, if x∗ is a local solution of (1.2) with Lagrange multipliers (λ∗, µ∗) satisfying
(5.20), from (5.24), it follows that

HessxL(x∗, λ∗) = Px∗∇2
xxL(x

∗, λ∗, µ∗)Px∗ .

As a result, with the aid of (5.21), and Px∗w = w for any w ∈ C(x∗, λ∗, µ∗), Theorems
4.7 and 4.9 can then be obtained from the traditional second-order optimality conditions
Theorems 12.5 and 12.6 of [20], respectively.

6 Conclusion

In this paper, we formulated the general nonlinear programming that is built upon a gen-
eral Riemannian manifold, and established its optimality conditions. We showed that, in
the language of differential geometry, these optimality conditions coincide with the tradi-
tional conditions for the nonlinear programming. This result, on the one hand, sheds some
lights on the underlying optimization problem, and on the other hand, lays the ground for
further generalizing other classical optimization methods to the manifold-based nonlinear
programming.
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