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In order to recover the sparse signal x from the underdetermined system (1.1), one could
naturally consider seeking among all solutions of (1.1) the sparsest one, which results in the
optimization problem

min
x∈Rn

{∥x∥0 : Ax = b}. (1.2)

Problem (1.2) is called the L0 minimization problem. The solution is called the sparse
solution of Ax = b. Unfortunately, problem (1.2) is a discrete minimization problem which
is very hard to deal with. In terms of computational complexity, it is NP-hard [19]. In order
to overcome such difficulty, a typical relaxation problem is the L1 minimization problem

min
x∈Rn

{∥x∥1 : Ax = b}, (1.3)

where ∥x∥1 =
n∑

i=1

|xi| is the standard L1 norm. This problem was studied independently by

Tibshirani [24] and Chen, Donoho and Saunders [8], known respectively as LASSO [24] and
Basis Pursuit [8]. It is a convex quadratic optimization problem, and therefore, can be very
efficiently solved. Many researchers have made a lot of contributions to tackle the problem
(1.3), see, e.g., [2, 9, 11, 13, 16, 17, 23, 25, 29, 30]. However, the L1 minimization problem
often leads to sub-optimal sparsity in reality [31]. For many practical applications, the solu-
tions yielded from L1 minimization problems are less sparse than those of L0 minimization
problems.

Another approach for the computation of the sparse solutions is based on the Lp mini-
mization problem

min
x∈Rn

{∥x∥pp : Ax = b}, (1.4)

where ∥x∥pp =
∑n

i=1 |xi|p and 0 < p < 1. This Lp minimization problem is motivated by the
fact

∥x∥0 = lim
p→0+

∥x∥pp.

From the theory of optimization, the solution of the Lp minimization problem (1.4) can be
found via solving the L2-Lp minimization problem

min
x∈Rn

1

2
∥Ax− b∥22 + ρ∥x∥pp, (1.5)

where ∥·∥22 stands for the Euclidian norm of vectors and ρ > 0 is a parameter. Compared with
the L1 minimization problem, the Lp minimization problem with 0 < p < 1 can find sparser
solutions, which was evidenced in extensive computational studies [6, 7, 27]. Moreover, Xu,
Zhang, Wang and Chang [27] numerically justified that the sparsity-promotion capability of
the L1/2 minimization problem was strongest among the Lp minimization problems with all
p ∈ [1/2, 1) and the Lp minimization problem performed similarly when 0 < p ≤ 1/2. So the
L1/2 minimization problem can be taken as a representative of Lp (0 < p < 1) minimization
problems. However, the Lp (0 < p < 1) minimization problem is a nonconvex, nonsmooth
and non-Lipschitz optimization problem. It is very difficult in general to have a thorough
theoretical understanding and efficient algorithms for its solutions. Ge, Jiang and Ye [14]
proved that finding the global minimal value was strongly NP-hard, while computing a local
minimizer could be done in polynomial time. They developed an interior-point potential
reduction algorithm with a provable complexity bound to solve this problem.
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Recently, there have been developed some iterative methods for solving the L2-Lp min-
imization problem. Chen, Xu and Ye in [10] developed a lower bound theorem to classify
zero and nonzero entries in every local solution. By combining the orthogonal matching
pursuit (OMP) algorithm [4] and the smoothing gradient (SG) algorithm, they proposed
a hybrid OMP-SG algorithm to solve the L2-Lp minimization problem (1.5). Based on a
smoothing technique, Lai and Wang [18] developed an iterative algorithm to solve problem
(1.5). However, this algorithm requires solving a series of systems of nonlinear equations.
Recently, Xu, Chang, Xu and Zhan [28] developed a threshoding representation theory for
the L2-L1/2 minimization problem and proved an alternative feature theorem on its solu-
tions. They proposed an iterative half thresholding algorithm for solving it and verified the
convergence of the iterative half thresholding algorithm.

In this paper, our goal is to develop a first order method to solve the following L2-L1/2

minimization problem

min
x∈Rn

f(x) , 1

2
∥Ax− b∥22 + ρ∥x∥1/21/2. (1.6)

The method is a descent algorithm in the sense that the generated sequence of function
evaluations is decreasing. We show that the method is globally convergent under mild
conditions. Finally, we shall apply the proposed method to solve some practical problems
from the sparse signal recovery.

The remainder of the paper is organized as follows. In Section 2, we derive an equiva-
lent nonsmooth equation to the first order necessary condition of the L2-L1/2 minimization
problem (1.6) and construct a descent direction of the objective function f defined by (1.6).
In Section 3, we propose a gradient based method for solving (1.6) and establish its global
convergence. In Section 4, we do some preliminary numerical experiments to test the effi-
ciency of the proposed method. The numerical results show that the proposed method can
recover the original signal well.

2 Preliminaries

For simplicity, we let L(x) , 1

2
∥Ax − b∥22 in the latter part of this paper. Suppose that

x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T ∈ Rn is a solution of (1.6). Then for x∗
i ̸= 0, it holds that

∇iL(x
∗) +

ρsign(x∗
i )

2|x∗
i |1/2

= 0.

Here and throughout, ∇iL(x) denotes the ith component of ∇L(x) and ∇L(x) denotes the
gradient of L at x. The last equation can be further written as

∇iL(x
∗) +

ρ

2|x∗
i |1/2

= 0, x∗
i > 0,

∇iL(x
∗)− ρ

2|x∗
i |1/2

= 0, x∗
i < 0,

or equivalently, {
2|x∗

i |1/2∇iL(x
∗) + ρ = 0, x∗

i > 0,
2|x∗

i |1/2∇iL(x
∗)− ρ = 0, x∗

i < 0.

Define h(x) = (h1(x), h2(x), . . . , hn(x))
T : Rn → Rn with elements

hi(x) = mid
{
2|xi|1/2∇iL(x)− ρ, xi, 2|xi|1/2∇iL(x) + ρ

}
, i = 1, 2, . . . , n, (2.1)
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where for a, b, c ∈ R, the function mid{a, b, c} takes the medium value among a, b and c.
Then it is not difficult to see that a solution of (1.6) must be a solution of the nonlinear
equation h(x) = 0. Specifically, we have the following proposition.

Proposition 2.1. If x∗ ∈ Rn is a minimizer of problem (1.6), then

h(x∗) = 0. (2.2)

The condition h(x∗) = 0 is called the first order necessary condition for x∗ ∈ Rn to be a
solution of (1.6). A point is called a stationary point of f if it satisfies (2.2). If some second
order condition holds at the stationary point x∗, then it will be a local minimizer of the
problem [14].

We are not intended to solve the nonsmooth equation (2.2) directly. Instead, we are
going to find a descent direction for f(x) based on the function h(x) defined by (2.1) and
then develop a decent method for solving (1.6). The following proposition shows that if x
is not a stationary point, then −h(x) provides a descent direction of f at x.

Proposition 2.2. Let x ∈ Rn satisfy h(x) ̸= 0. Then d = −h(x) is a descent direction of
f at x, i.e., there is a constant ᾱ > 0 such that

f(x+ αd) < f(x), ∀α ∈ (0, ᾱ).

Moreover, for all α > 0 sufficiently small it holds that

f(x+ αd) ≤ f(x)− γα
∥d∥2

µ(x)
, (2.3)

where γ ∈ (0, 1) and µ(x) = 2 max
1≤i≤n

|xi|1/2.

Proof. First we note that the condition h(x) ̸= 0 implies x ̸= 0. By Taylor’s expansion, for
any α > 0 sufficiently small, we get by the definition of f(x)

f(x+ αd) = L(x+ αd) + ρ∥x+ αd∥1/21/2

= L(x) + α∇L(x)T d+ o(α) + ρ∥x∥1/21/2 + ρ
(
∥x+ αd∥1/21/2 − ∥x∥

1/2
1/2

)
= f(x) +

n∑
i=1

[
α∇iL(x)di + ρ(|xi + αdi|1/2 − |xi|1/2)

]
+ o(α).

(2.4)

For i with xi ̸= 0, it holds that

|xi + αdi|1/2 − |xi|1/2 =
αdisign(xi)

2|xi|1/2
+ o(α),

which implies
α∇iL(x)di + ρ

(
|xi + αdi|1/2 − |xi|1/2

)
= α

(
∇iL(x) + ρsign(xi)/2|xi|1/2

)
di + o(α)

=
α
(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di

2|xi|1/2
+ o(α).

(2.5)

For i with xi = 0, we deduce from (2.1) and the definition of d that di = 0 and hence

α∇iL(x)di + ρ(|xi + αdi|1/2 − |xi|1/2) = 0. (2.6)
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Combining (2.4)-(2.6), we obtain

f(x+ αd) = f(x) + α

∑
xi ̸=0

(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di/2|xi|1/2

+ o(α). (2.7)

For index i with xi > 0, we have either hi(x) = 2|xi|1/2∇iL(x) + ρ and(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di = −h2

i (x),

or hi(x) < 2|xi|1/2∇iL(x) + ρ and(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di < −h2

i (x).

This implies that for each i with xi > 0, it holds that(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di ≤ −h2

i (x). (2.8)

For index i with xi < 0, by a similar argument we get(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di ≤ −h2

i (x). (2.9)

Since h(x) ̸= 0 and hi(x) = 0 for each i satisfying xi = 0, it must hold∑
xi ̸=0

h2
i (x) > 0.

This together with (2.8) and (2.9) implies∑
xi ̸=0

(
2|xi|1/2∇iL(x) + ρsign(xi)

)
di/2|xi|1/2 ≤ −

∥d∥2

µ(x)
. (2.10)

Therefore we claim by (2.7) that (2.3) is satisfied for all α > 0 sufficiently small. In particular,
d is a descent direction of f at x. The proof is complete. �

Proposition 2.2 gives a descent direction of the objective function f at x. Based on this
descent direction, we will propose a gradient based method to solve the L2-L1/2 minimization
problem (1.6) in the next section.

3 A Gradient Based Method and Its Convergence

In this section, we present an algorithm with a nonmonotone line search strategy [15] for
solving problem (1.6), and establish its global convergence. Let xk be the current iterate.
For simplicity, in the following, we denote dk , −h(xk).

Algorithm 3.1 (Gradient Based Method). Given x0 ̸= 0, 0 < λmin < λmax < ∞, λ0 ∈
[λmin, λmax], integer M ≥ 0, γ ∈ (0, 1), 0 < σ1 < σ2 < 1. Set k := 0.

Step 1. If dk = 0, stop. Otherwise, compute

µk , max
i=1,··· ,n

2|xk
i |1/2.
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Step 2. Backtracking line search

Step 2.1 Set λ← λk.

Step 2.2 (nonmonotone line search)
If

f(xk + λdk) ≤ max
0≤j≤min(k,M)

f(xk−j)− γλ
∥dk∥2

µk
, (3.1)

then set αk = λ, xk+1 = xk + αkdk, sk = xk+1 − xk, yk = dk − dk+1. Go to Step
3.

Step 2.3 Choose

λnew ∈ [σ1λ, σ2λ].

Set λ← λnew, and go to Step 2.2.

Step 3. Compute pk = ⟨sk, yk⟩. If pk ≤ 0, set λk+1 = λmax; else, compute qk =
⟨yk, yk⟩ and

λk+1 = min{λmax,max{λmin, p
k/qk}}.

Set k := k + 1, and go to Step 1.

Remark 3.2. (i) The determination of the steplength αk in Steps 2 and 3 is based on the
steplength rule in [1] and [15].

(ii) It is not difficult to see from Proposition 2.2 that the cycle between Steps 2.2 and
2.3 is finite. Consequently, Algorithm 3.1 is well defined.

(iii) Denote

Ω0 , {x : f(x) ≤ f(x0)}.

It is easy to see that Ω0 is a bounded set. Moreover, the sequence {xk} generated by
Algorithm 3.1 is contained in Ω0.

The latter part of this section is dedicated to the global convergence of Algorithm 3.1.
To this end, we first show the following lemma.

Lemma 3.3. Suppose that the sequence {xk} generated by Algorithm 3.1 is infinite. Then
we have

lim
k→∞

αkdk = 0.

Proof. Let l(k) be an integer such that

k −min(k,M) ≤ l(k) ≤ k and f(xl(k)) = max
0≤j≤min(k,M)

f(xk−j). (3.2)

Then, we have

f(xl(k+1)) = max
0≤j≤min(k+1,M)

f(xk+1−j) ≤ max
0≤j≤min(k,M)+1

f(xk+1−j)

= max
{
(f(xk+1), f(xl(k)))

}
.

This together with (3.1) implies

f(xl(k+1)) ≤ f(xl(k)).
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Hence, the sequence {f(xl(k))} is nonincreasing. Moreover we obtain from (3.1) for any
k > M ,

f(xl(k)) = f(xl(k)−1 + αl(k)−1dl(k)−1)

≤ max
0≤j≤min(l(k)−1,M)

f(xl(k)−1−j)− γαl(k)−1 ∥dl(k)−1∥2

µl(k)−1

= f(xl(l(k)−1))− γαl(k)−1 ∥dl(k)−1∥2

µl(k)−1
.

(3.3)

Since f(xk) ≤ f(x0) for all k, we have {xk} ⊂ Ω0. Consequently the sequence {f(xl(k))}
admits a limit. Also since αk > 0, it follows from (3.3) that

lim
k→∞

αl(k)−1 ∥dl(k)−1∥2

µl(k)−1
= 0, (3.4)

and hence it must hold

lim
k→∞

αl(k)−1 ∥dl(k)−1∥
µl(k)−1

= 0. (3.5)

In fact, if (3.5) does not hold, there exists a subsequence

lim
k′→∞

αl(k′)−1 ∥dl(k
′)−1∥

µl(k′)−1
= c, (3.6)

where 0 < c ≤ +∞. Equation (3.6) together with (3.4) implies lim
k′→∞

∥dl(k′)−1∥ = 0. Since

0 < αl(k)−1 ≤ λmax, it follows from (3.6) that lim
k′→∞

µl(k′)−1 = 0. By the definition of µk, dk

and h(x), we have d
l(k′)−1
i = −hi(x

l(k′)−1) = −xl(k′)−1
i for any i and all k′ sufficiently large.

This yields lim
k′→∞

∥dl(k′)−1∥
µl(k′)−1

= 0. Consequently, we obtain

lim
k′→∞

αl(k′)−1 ∥dl(k
′)−1∥

µl(k′)−1
= 0.

This is a contradiction to (3.6). The contradiction proves (3.5).
In what follows, we shall prove limk→∞ αk∥dk∥/µk = 0. Let

l̂(k) , l(k +M + 2).

Here and in the sequel, we assume, without loss of generality, that the iteration index k is
large enough to avoid the occurrence of negative subscripts, that is k ≥ j − 1.

First we show, by induction, that for any given j ≥ 1

lim
k→∞

αl̂(k)−j ∥dl̂(k)−j∥
µl̂(k)−j

= 0 (3.7)

and

lim
k→∞

f(xl̂(k)−j) = lim
k→∞

f(xl(k)). (3.8)

If j = 1, since {l̂(k)} ⊂ {l(k)}, (3.7) follows from (3.5). Since Ω0 is bounded, µl̂(k)−j

must be bounded from above. This and (3.7) in turn imply
{
∥xl̂(k) − xl̂(k)−1∥

}
→ 0. Since
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f(x) is uniformly continuous on Ω0, we obtain (3.8) for j = 1. Assume now that (3.7) and
(3.8) hold for a given j. Then by (3.1) one can write

f(xl̂(k)−j) ≤ f(xl(l̂(k)−j−1))− γαl̂(k)−j−1 ∥dl̂(k)−j−1∥2

µl̂(k)−j−1
.

Taking limits in both sides of the last inequality as k →∞, we derive by (3.8)

lim
k→∞

αl̂(k)−(j+1) ∥dl̂(k)−(j+1)∥2

µl̂(k)−(j+1)
= 0.

Similar to the proof of (3.5), it is not difficult to derive

lim
k→∞

αl̂(k)−(j+1) ∥dl̂(k)−(j+1)∥
µl̂(k)−(j+1)

= 0.

This implies
{
∥xl̂(k)−j − xl̂(k)−(j+1)∥

}
→ 0. By (3.8) and the uniform continuity of L on

Ω0, we get

lim
k→∞

f(xl̂(k)−(j+1)) = lim
k→∞

f(xl̂(k)−j) = lim
k→∞

f(xl(k)).

By the principle of induction, we have proved (3.7) and (3.8) for any given j ≥ 1.
Now for any k, it holds that

xk+1 = xl̂(k) −
l̂(k)−k−1∑

j=1

αl̂(k)−jdl̂(k)−j . (3.9)

By (3.2), we have l̂(k)− k − 1 = l(k +M + 2)− k − 1 ≤ M + 1. It then follows from (3.7)
and (3.9) that

lim
k→∞

∥xk+1 − xl̂(k)∥ = 0.

Since {f(xl(k))} admits a limit, by the uniform continuity of f on Ω0, it holds that

lim
k→∞

f(xk) = lim
k→∞

f(xl̂(k)). (3.10)

By (3.1), we have

f(xk+1) ≤ f(xl(k))− γαk ∥dk∥2

µk
.

Taking limits in both sides of the last inequality as k → ∞, we obtain by (3.10)

limk→∞ αk ∥dk∥2

µk
= 0. Following a similar argument to the proof of (3.5), it is not difficult

to get

lim
k→∞

αk ∥dk∥
µk

= 0.

Since Ω0 is bounded, the positive sequence {µk} must be bounded from above. By the
definition of µk, we get lim

k→∞
αk∥dk∥ = 0 as desired.

�
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The global convergence of Algorithm 3.1 is stated in the following theorem.

Theorem 3.4. Suppose that the sequence {xk} is generated by Algorithm 3.1. Then either
h(xj) = 0 for some finite j, or every limit point x̄ of {xk} satisfies h(x̄) = 0.

Proof. When {xk} is finite, from the termination condition, it is clear that there exists some
finite j satisfying h(xj) = 0. Suppose that {xk} is infinite. Then by Lemma 3.3, we have

lim
k→∞

αk∥hk∥ = 0. (3.11)

Let x̄ be an arbitrary limit point of {xk} and relabel {xk} a subsequence converging to x̄.
It is easy to see from (3.11) that either limk→∞ ∥h(xk)∥ = 0, which implies, by continuity,
h(x̄) = 0, or there exists a subsequence {αk}K ⊂ {αk} such that

lim
k→∞,k∈K

αk = 0.

In the latter case, by the line search rule, there exists a positive integer k̄ satisfying for all
k ≥ k̄, k ∈ K there is a constant σk ∈ [σ1, σ2] such that

f

(
xk − αk

σk
hk

)
> max

0≤j≤min(k,M)
f(xk−j)− γ

αk

σk

∥hk∥2

µk
≥ f(xk)− γ

αk

σk

∥hk∥2

µk
.

This implies,

f

(
xk − αk

σk
hk

)
− f(xk) ≥ −γ α

k

σk

∥hk∥2

µk
. (3.12)

By the mean value theorem, for any k ≥ k̄, k ∈ K, there exists an ωk ∈ (0, 1) such that

f(xk − αk

σk
hk)− f(xk) = L(xk − αk

σk
hk)− L(xk) + ρ(∥xk − αk

σk
hk∥1/21/2 − ∥x

k∥1/21/2)

= −αk

σk
∇L(xk − ωk

αk

σk
hk)Thk + ρ

∑
xk
i ̸=0

(|xk
i −

αk

σk
hk
i |1/2 − |xk

i |1/2)

= −αk

σk

∑
xk
i ̸=0

(∇iL(x
k − ωk

αk

σk
hk) +

ρsign (xk
i )

|xk
i − αk

σk h
k
i |1/2 + |xk

i |1/2
)hk

i .

This together with (3.12) implies

∑
xk
i ̸=0

(
∇iL(x

k − ωk
αk

σk
hk) +

ρsign (xk
i )

|xk
i − αk

σk h
k
i |1/2 + |xk

i |1/2

)
hk
i ≤ γ

∥hk∥2

µk
.

Let {xk}K1 ⊂ {xk}K be a subsequence such that lim
k→∞,k∈K1

xk = x̄. Since σk ∈ [σ1, σ2] and

lim
k→∞

αkhk = 0, taking limits in the last inequality, we obtain

∑
x̄i ̸=0

(
∇iL(x̄) +

ρsign (x̄i)

2|x̄i|1/2

)
hi(x̄) ≤ γ

∥h(x̄)∥2

µ̄

with µ̄ = max
i=1,...,n

{2|x̄i|1/2}, which yields

∑
x̄i ̸=0

(2|x̄i|1/2∇iL(x̄) + ρsign (x̄i))hi(x̄)

2|x̄i|1/2
≤ γ
∥h(x̄)∥2

µ̄
,
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and hence

∥h(x̄)∥2

µ̄
=

∑
x̄i=0

(hi(x̄))
2 +

∑
x̄i ̸=0

(hi(x̄))
2

µ̄

≤
∑
x̄i ̸=0

(2|x̄i|1/2∇iL(x̄) + ρsign (x̄i))hi(x̄)

2|x̄i|1/2
≤ γ
∥h(x̄)∥2

µ̄
,

where the first inequality can be obtained in a way similar to the proof of (2.10). Since
γ ∈ (0, 1) and µ̄ > 0, we get h(x̄) = 0. This completes the proof. �

4 Applications to Compressive Sensing

In this section, we provide some applications to demonstrate the high performance of the
proposed algorithm (abbreviated as GBM).

We apply the GBM method to a typical compressive sensing problem, i.e., sparse signal
recovery, where the goal is to reconstruct a length-n sparse signal (in the canonical basis)
from m observations with m < n. Our purpose is to assess the efficiency, accuracy and the
ability in recovering the sparsity of the algorithm. In particular, we compare the performance
of the GBM with five other existing algorithms, namely the orthogonal greedy algorithm
(OGA, see [21]), the regularized orthogonal matching pursuit algorithm (OMP, see [20]), the
spg−bp algorithm (spg−bp, see [26]), the iterative half thresholding algorithm (abbreviated
as IHTA), which was proposed recently by Xu et al. [28] to find sparse solutions via solving
the L2-L1/2 minimization problem (1.6), and the iterative algorithm (abbreviated as IALW)
proposed by Lai and Wang [18].

While do numerical experiments, we chose the parameters in the GBM method as the
same as those in [3] and [22]. Specifically, we took λmin = 10−3, λmax = 103, λ0 = 1,
M = 5, γ = 10−4, σ1 = 0.1 and σ2 = 0.6. The code of the iterative half threshold-
ing algorithm (IHTA) was provided by Dr. Chang, one author of [28]. The parameters
µn and λn in the IHTA were chosen according to Scheme 3 with the values suggested by
the authors. We wrote the code of the IALW method with the parameters as given in
[18]. The Matlab codes for other compared algorithms were obtained via internet. Specifi-
cally, the OGA code was from http : //www.math.drexel.edu/ ∼ foucart/software.htm, the
OMP code from http : //www − personal.umich.edu/ ∼ romanv/software/romp.m and the
spg−bp code came from http : //www.cs.ubc.ca/ ∼ mpf/software.html. All the codes were
run on a Lenovo PC (2.53GHz, 2.00GB of RAM) with the use of Matlab 7.8.

We applied the above six algorithms to the sparse signal recovery problem. We say the
original signal xs to be T -sparse if only T of the signal coefficients are nonzero and the others
are zero. In the experiments, we used the following Matlab code to generate the original
signal xs, the sensing matrix A and the observation b.

xs = zeros(n, 1); p = randperm(n); xs(p(1 : T)) = sign(randn(T, 1));
A = randn(m,n); A = orth(A′)′; b = A ∗ xs.

(4.1)

We first compared the GBM algorithm with OGA, OMP, spg−bp and IHTA in the ability
of recovering the sparse solutions. We constructed 400 random pairs (A, xs) with matrices
A ∈ R64×256 and vectors xs ∈ R256 using (4.1) for sparsity ∥xs∥0 = T with T = 1, 2, . . . , 30.
For each T and each pair, we run these algorithms to obtain a vector x̃. We regard the
recovery a success if ∥xs − x̃∥∞ < 10−5. We plot the percentages of successfully finding
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Fig. 1: Successful sparse recovery rates of the five algorithms.
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Fig. 2: MSE and CPU times for GBM and IHTA, as a function of the number of non-zero components of
xs.

the sparse solutions for each method in Fig. 1. From Fig. 1, we can see that GBM gives
somewhat better success rates than the other four algorithms considered.

We then compared the computational efficiency of the GBM algorithm against the IHTA
algorithm, which is regarded as a highly efficient method for the L2-L1/2 minimization
problem. In the experiments, we fixed the matrix size (m = 1024 and n = 4096) and
considered a range of degrees of sparseness: the number T of non-zeros spikes in xs (randomly
located values of ±1) ranges from 50 to 250. For each value of T , we generated the random
data set (xs,A, b) by (4.1). For each data set, we used GBM and IHTA to reconstruct the
signal. We measured the quality of the reconstructed signal x̂ using the mean-square error

MSE = ∥x̂− xs∥2.

Fig. 2 plots the reconstruction MSE and the CPU time, as a function of the number of
nonzero components in xs. We observe that both methods obtain exact reconstructions for
T from 50 up to 250. Concerning computational efficiency, our main focus in this experiment,
we can observe that GBM performed faster than IHTA.
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Prolem GBM IHTA

n = 4096,m = 1024 MSE time (seconds) MSE time (seconds)
T = 50 1.2025e-001 0.5623 1.5823e-001 1.3659
T = 60 1.7591e-001 0.5562 1.8044e-001 1.2997
T = 70 1.9563e-001 0.6014 2.1009e-001 1.3514
T = 80 2.0486e-001 0.5827 2.0778e-001 1.3383
T = 90 1.9742e-001 0.8591 1.9882e-001 1.7846
T = 100 2.2087e-001 0.8160 2.3341e-001 1.6472

Table 1: Results for signal reconstruction with noisy.

We then added noisy signals to the problem, i.e.,

b = A ∗ xs − w,

where w = ση is independent identically distributed Gaussian noise with zero mean and
variance σ2 = 10−4. We applied GBM and IHTA to reconstruct the signal. To compare
both algorithms under noisy circumstance, we listed the MSE and the CPU time in Table
1. The results in Table 1 show the out-performance of the GBM algorithm, as compared
with the IHTA algorithm.

We also compared our algorithm with the IALW algorithm. We fixed the degree of
sparseness, i.e., T = 10, and considered a range of the matrix size. For each pair of (n,m),
we generated the random data set (xs,A, b) by (4.1) and used GBM and IALW to reconstruct
the signal. The results were listed in Table 2.

Prolem GBM IALW

T = 10 MSE time (seconds) MSE time (seconds)
n = 256,m = 64 8.5814e-008 0.0268 2.0438e-007 0.0468
n = 512,m = 128 9.3586e-008 0.0468 1.2125e-007 0.1560
n = 1024,m = 256 6.1938e-008 0.0468 7.9912e-008 0.7332
n = 2048,m = 512 6.3102e-008 0.1716 7.9845e-008 4.0872
n = 4096,m = 1024 7.1798e-008 0.4524 8.4210e-008 28.1738

Table 2: Results for signal reconstruction by GBM and IALW.

The results in Table 2 show that the GBM used much less CPU time to solve the L2-L1/2

minimization problem especially when n = 2048,m = 512 and n = 4096,m = 1024.
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