
2014

386 F. WEI, Y. WANG AND Z. MENG

In recent years, many new theoretical and computational contributions have been re-
ported for solving global optimization problems. Global optimization is mainly concerned
with the characteristics and algorithms for the multi-modal functions. In general, the exist-
ing approaches can be classified into two categories: deterministic methods [1,3,7,8,13,15,18,
e.g.] and probabilistic methods [2,4,11,12,20, e.g.]. The typical examples of the former are the
filled function method (FFM) [7,8], the trajectory method [3,18], the tunneling method [13],
and the covering method [1, 15], whereas ones of the latter are the clustering method [2],
evolutionary algorithms (EAs) [11, 12, 20], and the simulated annealing method [4], where
evolutionary algorithms are one of most efficient and popular algorithms, they exploit a
set of potential solutions, named a population, and detect the optimal solution through
cooperation and competition among individuals of the population. However, for EAs in
global optimization, the major challenge is that an algorithm may be trapped in the local
optima of the objective function and the convergence speed may be slow. These issues are
particularly challenging when the dimension of the problem is high and there are numerous
local optima. In order to improve the performance of EAs, researchers have incorporated
other techniques to enhance their performance. Among these techniques, function smooth-
ing and local search are two important and effective techniques. In the function smoothing
techniques, the objective function is transformed into another function called smoothing
function which can smooth the rugged landscapes of the objective function, and alleviate
local minimizers. As a result, looking for global minimizers by EAs becomes easier. One
of these techniques constructs a smoothing function called ”stretching” function (e.g., [17]).
But it usually generates the so called ”Mexican hat” effect (for details please refer to [17]),
and it is sensitive to the parameter values in stretching function. Another one constructs
the smoothing function by convolution transformation in which the smoothing function is
defined by an integral of multiplication of the objective function and the smoothing ker-
nel (usually Gaussian function, [24]), but to compute the smoothing function, one has to
use the Monte-Carlo method. This is computationally expensive and the error of estimat-
ing the integral may be large. To overcome these shortcomings, some smoothing functions
(e.g., [23]) are proposed. However, they are usually nondifferentiable, which often results in
the calculation difficulties. To deal with these problems, a new smoothing function with two
parameters, which is continuously differentiable and the parameters are easy to adjust, is
proposed in this paper. And a new search method called uniform design search algorithm is
proposed. Based on these, a novel effective evolutionary algorithm for global optimization is
proposed. The numerical simulations are made and the performance of the proposed algo-
rithm is compared with that of eight evolutionary algorithms published recently. The results
indicate that the proposed algorithm is statistically sound and has better performance for
the test functions.

2 Smoothing Function

For global optimization methods, one of the most frequently happened situations is that
they often trap into some local optimal solutions. Thus, one of the greatest challenges of
global optimization methods is how to avoid trapping into local optimal solutions. In order
to achieve this purpose, a smoothing function of f(x) at the current local minimizer x∗k is
designed as follows:

P (x, x∗k) = f(x∗k) + g(f(x)− f(x∗k)), (2.1)

g(t) =

{
0, t ≥ 0,
r · tρ, t < 0.

A SMOOTHING FUNCTION METHOD 387

where r is an adjustable positive real number as large as possible, used as the weight
factor, and ρ > 1 is a positive odd integer.

Obviously, this smoothing function has some properties as follows:
Suppose that x∗k is the current best solution of f(x), then

• P (x, x∗k) will keep the local optimal solutions of f(x) unchanged at any point x better
than x∗k. This can be proved by the following theorem 2.1.

• P (x, x∗k) will flatten the landscape at any point no better than x∗k, i.e., ∀x ∈ Ω, if
f(x) ≥ f(x∗k), then P (x, x

∗
k) = f(x∗k). This can be proved by the following theorem 2.2.

• P (x, x∗k) is continuously differentiable, that is different from the existing literature (e.g.,
[23]) and helpful to the local search. This can be proved by the following theorem 2.3.

Theorem 2.1. Suppose x∗k is a local minimizer of f(x), P (x, x∗k) is a smoothing function at
x∗k, if there exists a better local minimizer x∗k+1 of f(x), then x∗k+1 is also a local minimizer
of P (x, x∗k).

Proof. Suppose x∗k+1 is a better local minimizer of f(x), then there exists a small positive
real number ε, and a neighborhood δ = U(x∗k+1, ε), such that for all x ∈ δ, when x ̸= x∗k+1,
then f(x) > f(x∗k+1), therefore f(x)− f(x∗k+1) > 0.

And for all x ∈ δ, and ρ > 1 is a positive odd integer, set ρ = ρ1, then

P (x, x∗k) = f(x∗k) + r · (f(x)− f(x∗k))
ρ1 , and

P (x∗k+1, x
∗
k) = f(x∗k) + r · (f(x∗k+1)− f(x∗k))

ρ1 .

Since f(x) > f(x∗k+1), f(x
∗
k+1) < f(x∗k), and ρ1 is a positive odd integer, therefore

(f(x)− f(x∗k+1))
ρ1 > (f(x∗k+1)− f(x∗k))

ρ1 ,

and r is an adjustable positive real number, then

P (x, x∗k)− P (x∗k+1, x
∗
k) = r · [(f(x)− f(x∗k+1))

ρ1 − (f(x∗k+1)− f(x∗k))
ρ1] > 0

Therefore P (x, x∗k) > P (x∗k+1, x
∗
k), when x ∈ δ. Then x∗k+1 is also a local minimizer of

P (x, x∗k). The proof is completed.

It can be seen from theorem 2.1 that the smoothing function keeps the local optimal
solutions of f(x) unchanged in the region where the value of f(x) is better than that at
the current best solution found by the algorithm. This means that the smoothing function
will not destroy the global optimal solution of f(x) in the region containing better than the
current best solution found.

Theorem 2.2. Suppose x∗k is a local minimizer of f(x), P (x, x∗k) is a smoothing function
at x∗k, then P (x, x

∗
k) will flatten the landscape at any points no better than x∗k, i.e., ∀x ∈ Ω,

if f(x) ≥ f(x∗k), then P (x, x
∗
k) = f(x∗k).

Proof. Since x∗k is a local minimizer of f(x), P (x, x∗k) is a smoothing function at x∗k, ∀x ∈ Ω,
if f(x) ≥ f(x∗k), then P (x, x

∗
k) = f(x∗k). P (x, x

∗
k) will flatten all such local optimal solutions

worse than the best solution found so far. The proof is completed.

It can be seen from Theorem 2.2 that the smoothing function makes the objective function
f(x) become flat in the region where f(x) is no better than that at the current best solution
found. This means that the smoothing function can eliminate all the local optimal solutions
no better than the current best solution found.

388 F. WEI, Y. WANG AND Z. MENG

Theorem 2.3. Suppose x∗k is a local minimizer of f(x), P (x, x∗k) is as shown in equation
(2.1), which is a smoothing function at x∗k, then P (x, x

∗
k) is continuously differentiable.

Proof. Since x∗k is a local minimizer of f(x), P (x, x∗k) is a smoothing function at x∗k, ∀x ∈ Ω,

P (x, x∗k) =

{
f(x∗k), f(x) ≥ f(x∗k),
f(x∗k) + r · (f(x)− f(x∗k))

ρ, f(x) < f(x∗k).

Then

▽P (x, x∗k) =
{

0, f(x) ≥ f(x∗k),
r · ρ · (f(x)− f(x∗k))

ρ−1, f(x) < f(x∗k).

(i) When f(x) ≥ f(x∗k), ▽P (x, x∗k) is continuously;
(ii) When f(x) < f(x∗k), since f(x) is continuously differentiable, then ▽f(x) is contin-

uously, and ▽P (x, x∗k) is continuously;
(iii) lim

f(x)→f(x∗
k)

−
▽P (x, x∗k) = 0, and lim

f(x)→f(x∗
k)

+
▽P (x, x∗k) = 0.

Therefore ▽P (x, x∗k) is continuously at the points that f(x) = f(x∗k). The proof is
completed.

It is known from the definition of a continuously differentiable function and the above
(i)-(iii) that P (x, x∗k) is continuously differentiable.

It can be seen from the third property that the smoothing function is continuously
differentiable. This makes it flexible to select a local optimization method for the algorithm.

These three properties can be intuitively illustrated by a function with one variable as
an example in the following Figure 1, where the solid line represents the original function,
and the dotted line represents the smoothing function.

It can be seen from Figure 1 that if a proper search scheme is used to the smoothing
function, the search will quickly go out the flattening region and can find a better solution
fast.

Figure 1: P (x, x∗k) is indicated by dotted line and has only three local optimal solutions, and
three local optimal solutions of f(x) were eliminated, where x∗k is the best solution found
by the algorithm so far.

3 Uniform Design

Note that there will be a large flat area on the landscape of the smoothing function. In
order to get a better solution than the best one found so far quickly, it is necessary to go
through this area fast and fall in a lower area quickly. For this purpose, we design a uniform
design search method.

A SMOOTHING FUNCTION METHOD 389

3.1 Uniform Design

Experimental design method is a sophisticated branch of statistics [9,16]. In this section,
we briefly describe an experimental design method called uniform design. The main objective
of uniform design is to sample a small set of points from a given set of points, such that the
sampled points are uniformly scattered. We describe the main features of uniform design in
the following, and we refer the readers to [9, 22] for more details.

Suppose the yield of a chemical depends on the temperature, the amount of catalyst,
and the duration of the chemical process. These three quantities are called the factors of
the experiment. If each factor has ten possible values, we say that each factor has ten levels.
There are 103 = 1000 combinations of levels. To find the best combination for a maximum
yield, it is necessary to do 1000 experiments. When it is not possible or cost-effective to do all
these experiments, it is desirable to select a small but representative sample of experiments.
The uniform design was developed for this purpose [9, 22].

Let there be n factors and q levels per factor. When n and q are given, the uniform design
selects q combinations out of qn possible combinations, such that these q combinations are
scattered uniformly over the space of all possible combinations. The selected q combinations
are expressed in terms of a uniform array U(q, n) = [Ui,j]q×n, where Ui,j is the jth level of
the ith factor in the combination.

Uniform arrays can be constructed as follows. Consider a unit hypercube over a n-
dimensional space. We denote this hypercube by the set of points in it

C = {(c1, c2, ..., cn), 0 ≤ ci ≤ 1, i = 1, 2, ..., n}.

Consider any point in C, say r = (r1, r2, ..., rn). We form a hyper-rectangle between 0
and r, and we denote it by the set of points in it

C(r) = {(c1, c2, ..., cn), 0 ≤ ci ≤ ri, i = 1, 2, ..., n}.

We select a sample of q points such that they are scattered uniformly in the hypercube.
Suppose q(r) of these points are in the hyper-rectangle C(r). Then the fraction of points in
the hyper-rectangle is q(r)/q. The volume of the unit hypercube is 1, and hence the fraction
of the volume of this hyper-rectangle is r1r2...rn. The uniform design is to determine points
in C such that the following discrepancy is minimized:

sup
r∈C

q(r)/q − r1r2...rn,

Then we map these q points in the unit hypercube to the space with n factors and q
levels. When q is prime and q > n, it has been proven that Ui,j is given by [5],

Ui,j = (iσj−1modq) + 1

where σ is a parameter given in Table 1.

Example 1: We construct a uniform array with five factors and seven levels as follows.
From Table 1, we see that is equal to 3. We compute U7,5 and we get

2 4 3 7 5
3 7 5 6 2
4 3 7 5 6
5 6 2 4 3
6 2 4 3 7
7 5 6 2 4
1 1 1 1 1

390 F. WEI, Y. WANG AND Z. MENG

Table 1: Values of the parameter for different number of factors and different number of
levels per factor

Number of levels per factor Number of factors σ

5 2-4 2

7 2-6 3

11 2-10 7

13
2 5
3 4

4-12 6

17 2-16 10

19
2,3 8
4-18 14

23
2,13,14,20-22 7

8-12 15
3-7,15-19 17

29

2 12
3 9
4-7 16

8-12,16-24 8
13-15 14
25-28 18

31
2,5-12,20-30 12
3,4,13-19 22

In the first combination, the five factors have respective levels 2, 4, 3, 7, 5; in the second
combination, the five factors have respective levels 3, 7, 5, 6, 2, etc.

When the solution space is large, it is desirable to sample more points for a better
coverage. In principle, we can apply the uniform array with a larger number of levels.
However, only the uniform arrays with at most 31 levels have been tabulated in Table 1,
and it is very time consuming to compute the larger uniform arrays. To bypass this difficulty,
we divide the solution space into multiple subspaces, and then apply the uniform array to
sample some points in each subspace.

Denote that Ω = [l, u] = {x|l ≤ x ≤ u, l, u ∈ Rn} is the solution space, we divide
[l, u] into subspaces [l(1), u(1)], [l(2), u(2)], . . . , [l(S), u(S)], where the design parameter S
can be assumed to be the values 2, or 22, or 23, etc. First, we divide the solution space
into two subspaces as follows. We select the dimension with the largest domain and divide
the solution space into two equal subspaces along this dimension. Then we divide the two
subspaces into four subspaces as follows. For any subspace, say [l(1), u(1)], we select the
dimension with the largest domain, and then divide the two subspaces along this dimension
into four equal subspaces. We repeat this step in a similar manner, until the solution space
has been divided into S subspaces. The details are as follows:

Algorithm 3.1 (Dividing the Solution Space).

Step 1. Let a = l and z = u. Repeat the following computation log2 S times: select the sth
dimension such that zs − as = max

1≤i≤N
{zi − ai}, and then compute zs = (as + zs)/2.

Step 2. Compute δi = zi − ai and ni = (ui − li)/δi, for all i = 1, 2, ..., N . Then compute the
subspace [l(k), u(k)], for all 1 ≤ ji ≤ ni, and 1 ≤ i ≤ N as follows:

A SMOOTHING FUNCTION METHOD 391

{
l(k) = l + ((j1 − 1)δ1, (j2 − 1)δ2, ..., (jN − 1)δN)
u(k) = l + (j1δ1, j2δ2, ..., jNδN)

where k = (j1 − 1)n2n3...nN + (j2 − 1)n3...nN + ...+ (jN−1 − 1)nN + jN .
After dividing the solution space into S subspaces, we select a sample of points from
each subspace as follows. Consider any subspace, say the kth subspace, and denote
it by

[l(k), u(k)] = [(l1(k), l2(k), ..., lN (k)), (u1(k), u2(k), ..., uN (k)].

In this subspace, we quantize the domain [li(k), ui(k)] of xi into Q0 levels αi,1(k),
αi,2(k), ..., αi,Q0(k), where the design parameter Q0 is prime and αi,j(k) is given by

αi,j(k) =

 li(k), j = 1
li(k) + ((j − 1)(ui(k)− li(k))/(Q0 − 1), 2 ≤ j ≤ Q0 − 1
ui(k), j = Q0

(3.1)

In other words, the difference between any two successive levels is the same.
We let αi(k) = (αi,1(k), αi,2(k), ..., αi,Q0(k)).After quantization, the subspace con-
sists of QN

0 points. We apply the uniform array U(N,Q0) to sample the following
Q0 points:

(α1,U11(k), α2,U12(k), ..., αN,U1N (k))
(α1,U21(k), α2,U22(k), ..., αN,U2N

(k))
...
(α1,UQ01

(k), α2,UQ02
(k), ..., αN,UQ0N

(k))

(3.2)

We repeat the above steps for each of the N subspaces, so that we get a total of
SQ0 points.

3.2 Uniform Design Local Search Algorithm (UDA)

Step 1. x∗k is the current best solution, and M is the set of all points that have been used
so far, and Ω is the operating region, given a positive integer I.

Step 2. Find the better point than the current best solution x∗k in M , denoted as x
′

k+1, and
go to step 5; else, i = 1, go to step 3.

Step 3. Generate N points by using uniform design and generate N points random strategy,
and put them into S1 and S2 respectively, where N = i ·n, and n is selected in Table
1, if the number of generating points is not enough, then subdivide the operator
region into several sub-region by using Algorithm 3.1, and then generated points by
using the uniform design in each sub-region, until that the number of generating
points is satisfied. Then go to step 4.

Step 4. Random select [N/2] points in S1, and N − [N/2] points in S2, and put them into
M , find the better point than the current best solution x∗k in M , denoted as x

′

k+1.

if x
′

k+1 is found
go to step 5;

elseif i ≤ I,
i = i+ 1, and go to step 3;

else
x∗k+1 = x∗k, stop.

Step 5. Starting from the point x
′

k+1, minimize f(x) by using a local optimization method
to obtain x∗k+1, stop.

392 F. WEI, Y. WANG AND Z. MENG

4 Crossover Operator and Mutation Operator

4.1 Crossover Operator

In this section, the uniform design method [5] is used to design a new crossover operator.
This operator can explore the search space effectively. The detail is as follows.

Denote Cn = {(x1, ..., xn)|0 ≤ x1, ..., xn ≤ 1} and let {α} denote the decimal part
of a real number α. Three widely used methods to generate q approximately uniformly
distributed points in Cn are as follows [5], where q is a positive integer.

• Denote (γ1, ..., γn) = (
√
p1, ...,

√
pn), where p1, ..., pn are the first n positive primes.

Then
{({kγ1}, {kγ2}, ..., {kγn})|k = 1 ∼ q} (4.1)

is a set of q approximately uniformly distributed points in Cn.
• Let p be a positive prime. Denote λ = 1/(n + 1) and (γ1, ..., γn) = (pλ, p2λ, ..., pnλ),

then
{({kγ1}, {kγ2}, ..., {kγn})|k = 1 ∼ q} (4.2)

is a set of q approximately uniformly distributed points in Cn.
• Let p be a positive prime satisfying p ≥ 2n + 3. Denote ω = 2π/p and (γ1, ..., γn) =

2(cos(ω), cos(2ω), ..., cos(nω)), then

{({kγ1}, {kγ2}, ..., {kγn})|k = 1 ∼ q} (4.3)

is a set of q approximately uniformly distributed points in Cn.
Suppose that x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are any two parents chosen for

crossover. Let li = min{xi, yi} and ui = max{xi, yi} for i = 1 − n. Now a new crossover
operator is designed to generate q approximately uniformly distributed points in the set
[l, u] = {x|li ≤ xi ≤ ui, i = 1 ∼ n}.

Algorithm 4.1 (Crossover operator).

1) Generate q approximately uniformly distributed points in Cn by one of the formulas (4.1),
(4.2) and (4.3), and denote the set of these points by

{({ck1, ..., ckn})|k = 1 ∼ q} = {({kγ1}, {kγ2}, ..., {kγn})|k = 1 ∼ q}.

In simulation formula (4.2) is used and the parameter values are p = 7 and q = 5.
2) Generate q uniformly distributed points in set [l, u] by B = {({bk1, ..., bkn})|bkj = lj +

ckj(uj − lj), k = 1 ∼ q}. Then the points in B are offspring of x and y.

4.2 Mutation Operator

For each individual generated by the local search, the mutation is executed on it. For
example, suppose z = (z1, z2, ..., zn) is any individual generated by the local search, its
offspring z = (o1, o2, ..., on) of the mutation is as follows:

o = z +△z,△z = (△z1,△z2, ...,△zn)

where△zi ∼ N(0, σi), i.e., △zi is a value of stochastic variable obeying Gaussian distribution
with mean zero and variance σ2

i , and △z1,△z2, ...,△zn are mutually independent.
If oi, i ∈ (1, 2, ..., n) run out of the boundary, then oi − zi.

A SMOOTHING FUNCTION METHOD 393

5 Smoothing with Uniform Design Evolutionary Algorithm(SUDEA)

Step 1. (Initialization) Given population size N , crossover probability pc > 0, mutation
probability pm > 0, and a positive integer K. Generate N1 points by using a
uniform design method, and generate N − N1 points randomly, put them into an
initial population POP (0). Let k = 0.

Step 2. (Local search) Find out the best individual x
′

k in POP (k). Starting from the point

x
′

k, minimize f(x) by using a local optimization method BFGS to obtain x∗k.
Step 3. (Fitness) Define the fitness function P (x, x∗k) by formula (1), then go to step 8.
Step 4. (Jump out of the local minimizer) Use UDA in section 3.2 to find a better solution

of P (x, x∗k), denoted as x∗k+1, k = k + 1, and go to step 3; if the x∗k+1 is not found,
then go to step 5.

Step 5. (Crossover) Randomly choose [pc × N/2] pairs of parents from POP (k). For each
pair, denote a and b, if rand(0, 1) < pm, then generate offspring a

′
and b

′
, where

a
′
= αa + (1 − α)b, b

′
= (1 − α)a + αb, and α ∈ (0, 1); else use Algorithm 4.1 to

generate offspring. The set of all these offspring is denoted as O1.
Step 6. (Mutation) For each individual z ∈ O1, use the mutation operator to get an offspring

O. The set of all these offspring is denoted as O2.
Step 7. (Selection) Select best [N/2] individuals among POP (k)∪O1∪O2∪{x∗k} to put into

POP (k + 1), and randomly select N − [N/2] individuals among POP (k) ∪O1 ∪O2

to put into POP (k + 1), k = k + 1, and go to step 2.
Step 8. (Termination) If k > K, and |x∗k − x∗k−1| ≤ ε, or the gradient of the fitness function

P (x, x∗k) is zero, the algorithm stop, and output x∗ = x∗k; otherwise, go to step 4.

6 Numerical Experiments

6.1 Test Problems

In this section, the proposed algorithm is tested on problems 1-8 taken from [21].

Problem 1. F1 =
n∑

i=1

−xi sin(
√
|xi|)

Problem 2. F2 =
n∑

i=1

(x2i − 10 cos(2πxi) + 10)

Problem 3. F3 = 1
4000

n∑
i=1

x2i −
n∏

i=1

cos(xi√
i
) + 1

Problem 4. F4 = π
n{10 sin

2(πy1)+
n−1∑
i=1

z2i · [1+ 10 sin2(πyi+1)]+ z2n}+
n∑

i=1

u(xi, 10, 100, 4),

where yi = 1+(xi+1)/4, zi = yi−1, and u(xi, a, k,m) =

 k(xi − a)m, xi > a,
0, −a ≤ xi ≤ a,
k(−xi − a)m, xi < −a.

Problem 5. F5 = 1
10{10 sin

2(3πx1) +
n−1∑
i=1

y2i · [1 + sin2(3πxi+1)] + y2n · [1 + sin2(2πxn)]}+
n∑

i=1

u(xi, 5, 100, 4),

394 F. WEI, Y. WANG AND Z. MENG

where yi = xi − 1.

Problem 6. F6 =
n∑

i=1

{
n∑

j=1

(χij sinωj + ψij cosωj)−
n∑

j=1

(χij sinxj + ψij cosxj)}2,

where χij and ψij are random integers in [−100, 100], and ωj is a random number in
[−π, π].

Problem 7. F7 = 1
n

n∑
i=1

(x4i − 16x2i + 5xi)

Problem 8. F8 =
n−1∑
i=1

[100(x2i − xi+1)
2 + (xi − 1)2]

6.2 Parameters Setting for SUDEA

The proposed algorithm SUDEA is executed 50 independent runs for each test problem.
In experiments, we adopted the parameters as follows:
• Population size: N = 20.
• Crossover and mutation parameters: pc = 0.5, pm = 0.1.
• Parameters in Algorithms UDA and SUDEA: I = 30, K = 50, N1 = 10, and ε = 1.0e− 9.
• Stopping criterion: when the best solution cannot be improved further in successive 50
generations, the execution of the algorithm is stopped.

6.3 Simulation Results

8 widely used and challenging benchmarks are selected to test the proposed algorithm
SUDEA. F1-F8 are chosen from [21], and the basic properties of these 8 problems are listed
in Table 2.

Table 2: Basic Characteristics of Test Functions F1-F8
No. Search space Globally minimal function value Number of local minima

F1 [−500, 500]n -12569.5 NA
F2 [−5.12, 5.12]n 0 NA
F3 [−600, 600]n 0 NA
F4 [−50, 50]n 0 NA
F5 [−50, 50]n 0 NA
F6 [−π, π]n 0 2n

F7 [−5, 5]n -78.33236 2n

F8 [−5, 10]n 0 NA

In each table from Tables 2 to 4, ”NA” represents the results are not provided in the
related reference, and ”−” means the experiment is not carried out on the related function.
We choose 8 algorithms for comparison: Minimum-Elinination-Escape Memetic(MEEM) [6],
Fast Evolutionary Programming with CauchyMutation (FEP) [25], Orthogonal Genetic Al-
gorithm with Quantization (OGA/Q) [12], Hybrid Taguchi-Genetic Algorithm (HTGA) [19],
Hybrid Estimation of Distribution Algorithm (EDA/L) [26], Evolutionary Programming
with Adaptive LevyMutation (ALEP) [10], Comprehensive Learning Particle Swarm Op-
timizer (CLPSO) [14], Evolutionary Algorithmbased on the Level-set Evolution and Latin
Squares (LEA) [21].

A SMOOTHING FUNCTION METHOD 395

Table 3: the results of SUDEA
No. n M-fun Best Worst M-best std

F1 30 2.4904e+04 -12573.45226 -12573.45226 -12573.45226 2.4253e-012
F2 30 3.0426e+03 0 0 0 0
F3 30 2.9706e+03 0 0 0 0
F4 30 5.9948e+03 3.5875e-019 3.5875e-019 3.5875e-019 5.0753e-035
F5 30 4.7016 e+03 7.1593e-023 7.1593e-023 7.1593e-023 1.2391e-038
F6 30 47050.0 4.3867e-018 4.3867e-018 4.3867e-018 5.6653e-026
F7 100 2.8280e+03 -78.33233 -78.33233 -78.33233 7.5731e-012
F8 100 2.8140e+03 1.4378e-023 1.4378e-023 1.4378e-023 0

Each of the above algorithms is executed to solve some of the test functions, and the
results are reported in related articles. We use these existing results for a direct comparison,
and the results obtained are listed in Tables 3 and 4. The convergence rate of algorithms for
solving test functions F1-F8 is shown in Figures 2-9, where horizontal axis shows the times
of iterations and the vertical axis shows the fitness value of the original objective function.

The symbols used in Tables 3 and 4 are given as follows:
No.: the number of the test problems;
n: the dimension of the test problems;
M-fun: the total number of function and gradient evaluations of f(x) and P (x, x∗k);
Best : the best function value in 50 runs;
Worst : the worst function value in 50 runs;
M-best : the mean best function values in 50 runs;
std : the standard deviation of function values of the best solutions found in 50 runs;

Table 4: Results and Comparisons

For the proposed algorithm SUDEA in a fixed problem, the BFGS method is used in the
local minimization of the function f(x) and the smoothing function P (x, x∗k), and the step
length is determined by using the Armijo condition.

It can be seen from Tables 3 and 4 that the proposed algorithm has the following advan-
tages:

396 F. WEI, Y. WANG AND Z. MENG

1. A better solution is obtained
In SUDEA, the uniform design is helpful to find a better global optimum solution more

quickly in the 50 runs. For example, in Table 4, for problems 1,2,3,5,6 and 8, better optimal
solutions are obtained by SUDEA than those obtained by other algorithms.

2. More effective and efficient
The optimal solutions of all test problems can be found by SUDEA. This indicates the

effectiveness of SUDEA. In addition, it can be seen from Table 4 that whether the calculation
accuracy of function value, or the total number of function and gradient evaluations of f(x)
and P (x, x∗k) used by SUDEA is fewer than that those used by other algorithms in Table 4.
This indicates SUDEA is more efficient.

3. More stability
It can be seen from column Std in Tables 3 and 4 that the Std for the successful runs for

all problems are very close to zero, which shows that SUDEA is stable. In addition, it can be
seen from columns M-best and Std that difference between M-best and Best is small. This
also indicates SUDEA is stable and robust to the initial points and parameter variation.

4. Applicable to multidimensional problems
In Table 3, SUDEA is tested on F1-F8 with different dimensions, and the numerical

results indicate that SUDEA can find optimal solutions for different dimension problems.
Thus SUDEA is suitable for solving multidimensional problems.

5. Fast convergence to the optimal solution
It can be seen from Figures 2 to 9 that the proposed algorithm can quickly converge to

the optimal solution.

7 Conclusions

The smoothing function method is an approach to find the global minima of multi-modal
functions. The existing smoothing functions are often nondifferentiable at some point in
search domain. In this paper, first, a smoothing function with two parameters was designed,
which was continuously differentiable, and which could eliminate all such local optimal
solutions worse than the best solution found so far. Second, this smoothing function could
keep the local optimal solutions unchanged in the region in which the values of the original
function were not worse than its value at the best solution found so far. Third, by making
use of the properties of the smoothing function, the uniform design search technique was
properly combined into the algorithm, which would make the proposed algorithm converge
much faster. Based on all these, a novel effective evolutionary algorithm with uniform design
scheme was proposed, and the algorithm was numerically stable. At last, the numerical
simulations for several standard benchmark problems were made and the simulation results
showed that the proposed algorithm was very effective and efficient.

References

[1] P. Basso, Iterative methods for the localization of the global maximum, SIAM Journal
on Numerical Analysis 19 (1982) 781–792.

[2] L. Bai, J.Y. Liang, C.Y. Dang and F.Y. Cao, A cluster centers initialization method
for clustering categorical data, Expert Syst. Appl. 39 (2012) 8022–8029.

[3] F.H. Branin, Jr, Widely convergent methods for finding multiple solutions of simulta-
neous nonlinear equations, IBM Journal of Research Developments 16 (1972) 504–522.

A SMOOTHING FUNCTION METHOD 397

[4] C.Y. Dang, W. Ma and J.Y. Liang, A deterministic annealing algorithm for approxi-
mating a solution of the min-bisection problem, Neural Networks 22 (2009) 58–66.

[5] K. Fang and Y. Wang, Number-Theoretic Methods in Statistics, London, U.K.: Chap-
man & Hall, 1994.

[6] L. Fan and Y. Wang, A Minimum-Elimination-Escape Memetic Algorithm for Global
Optimization: MEEM. International Journal of Innovative Computing, Information
and Control 7 (2012) 3689–3703.

[7] R.P. Ge, A filled function method for finding a global minimizer of a function of several
variables, Mathematical Program. 46 (1990) 191–204.

[8] R.P. Ge and Y.F. Qin, A class of filled functions for finding global minimizers of a
function of several variables, Journal of Optimization Theory and Applications 54 (1987)
241–252.

[9] C.R. Hicks, Fundamental Concepts in the Design of Experiments, New York: Saunders,
1993.

[10] C.Y. Lee and X. Yao, Evolutionary programming using mutations based on the Lvy
probability distribution. IEEE Transactions on Evolutionary Computation 8 (2004) 1–
13.

[11] Y.W. Leung and Y.P. Wang, Multiobjective programming using uniform design and
genetic algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part C 30
(2000) 293–304.

[12] Y.W. Leung and Y.P. Wang, An orthogonal genetic algorithm with quantization for
global numerical optimization. IEEE Transactions on Evolutionary Computation 5
(2001) 41–53.

[13] A.V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of
functions, SIAM Journal on Scientific and Statistical Computing 6 (1985) 15–29.

[14] J. Liang, A. Qin, P. N. Suganthan et al., Comprehensive learning particle swarm op-
timizer for global optimization of multimodal functions. IEEE Transactions on Evolu-
tionary Computation 10 (2006) 281–295.

[15] R. Mladineo, An algorithm for finding the global maximum of a multimodal, multivari-
ate function, Math. Program 34 (1986) 188–200.

[16] D.C. Montgomery, Design and Analysis of Experiments, NewYork: Wiley, 1991.

[17] K.E. Parsopoulos and M.N. Vrahatis, On the computation of all global minimizers
through particle swarm optimization. IEEE Transactions on Evolutionary Computation
8 (2004) 211–224.

[18] J. Snyman and L. Fatti, A multi-start global minimization algorithm with dynamic
search trajectories. Journal of Optimization Theory and Applications 54 (1987) 121–
141.

[19] J.T. Tsai, T.K. Liu and J.H. Chou, Hybrid Taguchi-genetic algorithm for global numer-
ical optimization. IEEE Transactions on Evolutionary Computation 8 (2004) 365–377.

398 F. WEI, Y. WANG AND Z. MENG

[20] Y.Y. Wang, A uniform enhancement approach for optimization algorithms: smoothing
function method, International Journal of Pattern Recognition and Artificial Intelli-
gence 24 (2010) 1111–1131.

[21] Y. Wang and C. Dang, An evolutionary algorithm for global optimization based on level-
set evolution and Latin squares. IEEE Transactions on Evolutionary Computation 11
(2007) 579–595.

[22] Y. Wang and K. Fang, A note on uniform distribution and experimental design. Ke
Xue Tong Bao 26 (1981) 485–489.

[23] Y. Wang and D. Liu, A global optimization evolutionary algorithm and its convergence
based on a smooth scheme and line search, Chinese Journal of Computers 29 (2006)
670–675.

[24] D. Yang and S.J. Flockton, Evolutionary algorithms with a coarse-to-fine function
smoothing, in Proc. of IEEE Intern. Conf. Evolutionary Computation, Perth, Australia
2 (1995) 657–662.

[25] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster. IEEE Transactions
on Evolutionary Computation 3 (1999) 82–102.

[26] Q. Zhang, J. Sun, E. Tsang et al., Hybrid estimation of distribution algorithm for global
optimization. Engineering Computations 21 (2004) 91–107.

A SMOOTHING FUNCTION METHOD 399

Manuscript received 2 October 2012
revised 22 May 2013

accepted for publication 11 June 2013

Fei Wei
School of Computer Science and Technology, Xidian University
Xi’an, 710071, China
E-mail address: feiweixjf@gmail.com

Yuping Wang
School of Computer Science and Technology, Xidian University
Xi’an, 710071, China
E-mail address: ywang@xidian.edu.cn

Zhiqing Meng
College of Business and Administration
Zhejiang University of Technology
Zhejiang 310023, China
E-mail address: mengzhiqing@zjut.edu.cn

